Marco TARZIA
Maître de conférences
Laboratoire de Physique Théorique de la Matière Condensée (LPTMC)
Université Pierre et Marie Curie
Tour 12/13  5ème étage, bureau 508, 4 Place Jussieu, 75252 Paris Cedex 05, France
Phone: (+33) 1 44 27 72 40 Fax: (+33) 1 44 27 51 00
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Research interests: Statistical physics of complex and disordered systems; Glass transition; Spin glasses; Anderson localization and random matrices; Frustrated magnetism; Quantum strongly correlated systems; Combinatorial oprimization problems in statistical physics and information theory; Soft matter; Statistical mechanics approach to granular materials; Agent based models for economic instabilities and crises.
Cv

Short Bio:
PhD in Physics at the University of Naples (Italy) under the supervision of A. Coniglio (20022005)
Postdoc at the School of Physics and Astronomy, University of Manchester, UK (2006)
Postdoc at the Laboratoire de Physique Theorique et Modeles Statistiques, Universite Paris Sud, France (2007)
Postdoc at the Institut de Physique Theorique, CEA/Saclay, France (2008)
Maitre de Conferences at the Universite Pierre et Marie Curie, France (2008present)
Habilitation à diriger des recherche (19/10/2017)My Cv
My Google Scholar profile
My articles on the arXiv: condmat and qfin
Research

My research activity is focused on complex and disordered classical and quantum systems.
In the following I present a brief summary of my work during the last few years on four specific topics.
Glass transition in molecular liquids: RG approach and Isinglike effective theories
There remains a wide divergence of views concerning the appropriate theoretical framework for understanding the nature of the glass transition. In the ongoing search, the Random FirstOrder Transition (RFOT) theory has proven to be a strong candidate, establishing what appears to be an intricate meanfield (MF) description of supercooled liquids and glasses. This MF treatment predicts a scenario with two critical temperatures T_A and T_K, the upper one T_A being a dynamical singularity and the lower one T_K a thermodynamic ideal glass transition characterized by a vanishing of the configurational entropy (i.e., the logarithm of the number of metastable states). To make progress toward a theory of the glass transition, one must, however, go beyond the MF description and include the effect of fluctuations in finitedimensional systems with finiterange interactions. Renormalization group analysis of the Random First Order Transition, C. Cammarota, G. Biroli, M. Tarzia, G. Tarjus, Phys. Rev. Lett 106, 115705 (2011)
 Nonlinear dielectric susceptibilities: Accurate determination of the growing correlation volume in supercooled liquids, C. Brun, F. Ladieu, D. L'Hôte, M. Tarzia, G. Biroli, J.P. Bouchaud, Phys. Rev. B 84, 104204 (2011)
 Fragility of the meanfield scenario of structural glasses for finitedimensional disordered spin models, C. Cammarota, G. Biroli, M. Tarzia, G. Tarjus, Phys. Rev. B 87, 064202 (2013)
 Randomfieldlike criticality in glassforming liquids, G. Biroli, C. Cammarota, G. Tarjus, M. Tarzia, Phys. Rev. Lett. 112, 175701 (2014)
 Nonperturbative fluctuations and metastability in a simple model: from observables to microscopic theory and back, C. Rulquin, P. Urbani, G. Tarjus, M. Tarzia, Journal of Statistical Mechanics: Theory and Experiment (JSTAT), 023209 (2016)
 Role of fluctuations in the phase transitions of coupled plaquette spin models of glasses, G. Biroli, C. Rulquin, G. Tarjus, M. Tarzia, SciPost Phys. 1, 7 (2016)Static properties of 2D spinice as a sixteenvertex model
Many interesting classes of classical and quantum magnetic systems are highly constrained. In particular, geometric constraints lead to frustration and the impossibility of satisfying all competing interactions simultaneously, giving rise to the existence of highly degenerate ground states. In conventional spinice, topological frustration arises from the fact that the Ising axes in the unit cell are fixed and different, forced to point towards the centers of neighboring tetrahedra. The configurations that minimize the energy of each tetrahedron are the six states (or vertices) with twoin and twoout pointing spins. Recently, the interest in spinice physics has been boosted by the advent of artificial samples on simpler square lattices. Static properties of 2D spinice as a sixteenvertex model, L. Foini, D. Levis, M. Tarzia, L. Cugliandolo, Journal of Statistical Mechanics: Theory and Experiment (JSTAT), P02026 (2013)
 Thermal phase transitions in artificial SpinIce, D. Levis, L. Cugliandolo, L. Foini, M. Tarzia, Phys. Rev. Lett. 110, 207206 (2013)
 FieldTuned Order by Disorder in Ising Frustrated Magnets with Antiferromagnetic Interactions, P. C. Guruciaga, M. Tarzia, M. V. Ferreyra, L. F. Cugliandolo, S. A. Grigera, R. A. Borzi, Phys. Rev. Lett. 117, 167203 (2016)Anderson localization and Random Matrices
Beyond a critical amount of disorder, the electrons are trapped and their diffusive motion comes to a complete halt. This phenomenon, for which P. Anderson won the Nobel prize in 1977, still reveals new facets and subtleties. On the one hand, it plays a central role in many areas of science, such as transport in disordered quantum systems (Many Body Localization), random matrices, and Quantum chaos. On the other hand, despite almost 60 years of research, the study of AL remains an active field with various unsolved problems.
In particular the localization transition between the metallic and the insulating phase in the limit of large dimension is not yet completely understood. Anderson model on Bethe lattice: density of states, localization properties and isolated eigenvalue, G. Biroli, G. Semerjian, M. Tarzia, Prog. Theor. Phys. 184, 187 (2010)
 Difference between level statistics, ergodicity, and localization transitions on the Bethe lattice, A. C. Ribeiro Teixeira, M. Tarzia, arXiv:1211.7334
 Level Statistics and Localization Transitions of Levy Matrices, E. Tarquini, G. Biroli, M. Tarzia, Phys. Rev. Lett. 116, 010601 (2016)
 Critical properties of the Anderson localization transition and the highdimensional limit, E Tarquini, G Biroli, M Tarzia, Physical Review B 95, 094204 (2017)
 Delocalized glassy dynamics and manybody localization, G. Biroli, M. Tarzia, Physical Review B 96, 201114 (2017)
Statistical physics approach to micro and macroeconomy. Agent based models for economic instabilities and crises
Inferring the behaviour of large assemblies from the behaviour of its elementary constituents is arguably one of the most important problems in a host of different disciplines:
physics, material sciences, biology, computer sciences, sociology and, of course, economics. It is also a notoriously hard problem. Statistical physics has developed in the last 150 years essentially to understand this micromacro link. In the framework of the European project CRISIS (http://crisis.oxalto.co.uk), we have explored the possible types of phenomena that simple macroeconomic AgentBased models (ABM) can reproduce, proposed a methodology, inspired by statistical physics, which offers a key tool to characterize a model: its phase diagram in the space of parameters, which allows one to unveil the skeleton of the ABM. Tipping Points in Macroeconomic AgentBased Models, S. Gualdi, M. Tarzia, F. Zamponi, J.P. Bouchaud, J. Econ. Dyn. Control 50, 29 (2015)
 Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior, S. Gualdi, J.P. Bouchaud, G. Cencetti, M. Tarzia, F. Zamponi, Phys. Rev. Lett. 114, 088701 (2015)
 Spontaneous instabilities and stickslip motion in a generalized HebraudLequeux model, J.P. Bouchaud, S. Gualdi, M. Tarzia, F. Zamponi, Soft matter 12, 1230 (2016)
 Monetary Policy and Dark Corners in a stylized AgentBased Model, S. Gualdi, M. Tarzia, F. Zamponi, J.P. Bouchaud, J. Econ. Interact. Coord. 12, 507 (2017)
 Optimal inflation target: insights from an agentbased model, J.P. Bouchaud, S. Gualdi, M. Tarzia, F. Zamponi, Accepted for publication in Economics, arXiv:1709.05117 Publications

39. Optimal inflation target: insights from an agentbased model
J.P. Bouchaud, S. Gualdi, M. Tarzia, F. Zamponi
Accepted for publication in Economics, arXiv:1709.05117
38. Delocalized glassy dynamics and manybody localization
G. Biroli, M. Tarzia
Physical Review B 96, 201114 (2017)
37. Critical properties of the Anderson localization transition and the highdimensional limit
E Tarquini, G Biroli, M Tarzia
Physical Review B 95, 094204 (2017)
36. Monetary Policy and Dark Corners in a stylized AgentBased Model
S. Gualdi, M. Tarzia, F. Zamponi, J.P. Bouchaud
J. Econ. Interact. Coord. 12, 507 (2017)
35. FieldTuned Order by Disorder in Ising Frustrated Magnets with Antiferromagnetic Interactions
P. C. Guruciaga, M. Tarzia, M. V. Ferreyra, L. F. Cugliandolo, S. A. Grigera, R. A. Borzi
Phys. Rev. Lett. 117, 167203 (2016)
34. Role of fluctuations in the phase transitions of coupled plaquette spin models of glasses
G. Biroli, C. Rulquin, G. Tarjus, M. Tarzia
SciPost Phys. 1, 7 (2016)
33. Nonperturbative fluctuations and metastability in a simple model: from observables to microscopic theory and back
C. Rulquin, P. Urbani, G. Tarjus, M. Tarzia
Journal of Statistical Mechanics: Theory and Experiment (JSTAT), 023209 (2016)
32. Spontaneous instabilities and stickslip motion in a generalized HebraudLequeux model
J.P. Bouchaud, S. Gualdi, M. Tarzia, F. Zamponi
Soft matter 12, 1230 (2016)
31. Level Statistics and Localization Transitions of Levy Matrices
E. Tarquini, G. Biroli, M. Tarzia
Phys. Rev. Lett. 116, 010601 (2016)
30. Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior
S. Gualdi, J.P. Bouchaud, G. Cencetti, M. Tarzia, F. Zamponi
Phys. Rev. Lett. 114, 088701 (2015)
29. Tipping Points in Macroeconomic AgentBased Models
S. Gualdi, M. Tarzia, F. Zamponi, J.P. Bouchaud
J. Econ. Dyn. Control 50, 29 (2015)
28. Randomfieldlike criticality in glassforming liquids
G. Biroli, C. Cammarota, G. Tarjus, M. Tarzia
Phys. Rev. Lett. 112, 175701 (2014)
27. Thermal phase transitions in artificial SpinIce
D. Levis, L. Cugliandolo, L. Foini, M. Tarzia
Phys. Rev. Lett. 110, 207206 (2013)
26. Fragility of the meanfield scenario of structural glasses for finitedimensional disordered spin models
C. Cammarota, G. Biroli, M. Tarzia, G. Tarjus
Phys. Rev. B 87, 064202 (2013)
25. Static properties of 2D spinice as a sixteenvertex model
L. Foini, D. Levis, M. Tarzia, L. Cugliandolo
Journal of Statistical Mechanics: Theory and Experiment (JSTAT), P02026 (2013)
24. Nonlinear dielectric susceptibilities: Accurate determination of the growing correlation volume in supercooled liquids
C. Brun, F. Ladieu, D. L'Hôte, M. Tarzia, G. Biroli, J.P. Bouchaud
Phys. Rev. B 84, 104204 (2011)23. Renormalization group analysis of the Random First Order Transition
C. Cammarota, G. Biroli, M. Tarzia, G. Tarjus
Phys. Rev. Lett 106, 115705 (2011)
22. On the solution of a 'solvable' model for an ideal glass of hard spheres displaying a jamming transition
M. Mézard, G. Parisi, M. Tarzia, F. Zamponi
Journal of Statistical Mechanics: Theory and Experiment (JSTAT), P03002 (2011)
21. Anomalous nonlinear response of glassy liquids: General argument and a modecoupling approach
M. Tarzia, G. Biroli, A. Lefèvre, J.P. Bouchaud
J. Chem. Phys. 132, 054501 (2010)
20. Anderson model on Bethe lattice: density of states, localization properties and isolated eigenvalue
G. Biroli, G. Semerjian, M. Tarzia
Prog. Theor. Phys. 184, 187 (2010)
19. BoseEinstein condensation in quantum glasses
G. Carleo, M. Tarzia, F. Zamponi
Phys. Rev. Lett. 103, 215302 (2009)
18. Exact solution of the BoseHubbard model on the Bethe lattice
G. Semerjian, M. Tarzia, F. Zamponi
Phys. Rev. B 80, 014524 (2009)
17. Lattice models for colloidal gels and glasses
F. Krzakala, M. Tarzia, L. Zdeborovà
Phys. Rev. Lett. 101, 165702 (2008)
16. The valence bond glass phase
M. Tarzia, B. Biroli
Europhys. Lett. 82, 67008 (2008)
15. Group testing with random pools: phase transitions and optimal strategy
M. Mézard, M. Tarzia, C. Toninelli
J. Stat. Phys. 131, 783 (2008)
14. Statistical mechanics of the hitting set problem
M. Mézard, M. Tarzia
Phys. Rev. E 76, 041124 (2007)
13. Glass phenomenology from the connection to spin glasses
M. Tarzia, M. A. Moore
Phys. Rev. E 75, 031502 (2007)
12. On the absence of the glass transition in two dimensional hard disks
M. Tarzia
Journal of Statistical Mechanics: Theory and Experiment (JSTAT), P01010 (2007)
11. Lamellar order, microphase structures, and glassy phase in a field theoretic model for charged colloids
M. Tarzia, A. Coniglio
Phys. Rev. E 75, 011410 (2007)10. Columnar and lamellar phases in attractive colloidal systems
A. de Candia, E. Del Gado, A. Fierro, N. Sator, M. Tarzia, A. Coniglio
Phys. Rev. E Rapid Comm. 74, 010403 (2006)
9. Pattern formation and glassy phase in the phi4 theory with screened electrostatic repulsion
M. Tarzia, A. Coniglio
Phys. Rev. Lett. 96, 075702 (2006)
8. Granular segregation under vertical tapping
M. Pica Ciamarra, M. D. De Vizia, A. Fierro, M. Tarzia, M. Nicodemi, A. Coniglio
Phys. Rev. Lett. 96, 058001 (2006)
7. Size segregation in granular media induced by phase transition
M. Tarzia, A. Fierro, M. Nicodemi, M. Pica Ciamarra, A. Coniglio
Phys. Rev. Lett. 95, 078001 (2005)
6. Statistical mechanics of dense granular media
A. Coniglio, A. Fierro, M. Nicodemi, M. Pica Ciamarra, M. Tarzia
J. Phys.: Condens. Matter 17, S2557 (2005)
5. Jamming transition in granular media: A mean field approximation and numerical simulations
A. Fierro, M. Nicodemi, M. Tarzia, A. de Candia, A.Coniglio
Phys. Rev. E 71, 061305 (2005)
4. Segregation in fluidized versus tapped packs
M. Tarzia, A. Fierro, M. Nicodemi, A. Coniglio
Phys. Rev. Lett. 93, 198002 (2004)
3. Glass transition in granular media
M. Tarzia, A. de Candia, A. Fierro, M. Nicodemi, A. Coniglio
Europhys. Lett. 66, 531 (2004)
2. A monodisperse model suitable to study the glass transition
M. Pica Ciamarra, M. Tarzia, A. de Candia, A. Coniglio
Phys. Rev. E 68, 066111 (2003)
1. A lattice glass model with no tendency to crystallize
M. Pica Ciamarra, M. Tarzia, A. de Candia, A. Coniglio
Phys. Rev. E 67, 057105 (2003)
Conference proceedings
6. Statistical physics of group testing
M. Mézard, M. Tarzia, C. Toninelli
International Workshop on StatisticalMechanical Informatics
J. Phys.: Conf. Ser. 95, 012019 (2008)5. Statistical mechanics of dense granular media
M. Pica Ciamarra, A. De Candia, M. Tarzia, A. Coniglio, M. Nicodemi
Advances in Complex Systems 8, 217 (2007)4. Modulated phases and slow dynamics in attractive colloids
A. Coniglio, M. Tarzia, A. de Candia, E. Del Gado, A. Fierro, N. Sator
Internation Symposium on Nonlinearity, Nonequilibrium and Complexity  Questions and Perspectives in Statistical Physics
Physica A 372, 298 (2006)3. Jamming in dense granular media
A. Coniglio, A. Fierro, A. de Candia, M. Nicodemi, M. Tarzia, M. Pica Ciamarra
19th Sitges Conference on Jamming, Yielding, and Irreversible Deformation in Condensed Matter
Lecture Notes in Physics 688, 53 (2006)2. Statistical mechanics approach to the jamming transition in granular materials
A. Coniglio, A. de Candia, A. Fierro, M. Nicodemi, M. Tarzia
International Workshop on Trends and Perspectives in Extensive and NonExtensive Statistical Mechanics
Physica A 344, 431 (2004)1. On Edwards' theory of powders
A. Coniglio, A. de Candia, A. Fierro, M. Nicodemi, M. Pica Ciamarra, M. Tarzia
Conference on New Materials and Complexity
Physica A 339, 1 (2004)
Books' chapters
7. Nonlinear Susceptibility Experiments in a Supercooled Liquid: Evidence of Growing Spatial Correlations Close to T_g
C. Brun, D. L'Hôte, F. Ladieu , C. CrausteThibierge, G. Biroli, J.P. Bouchaud, M. Tarzia
Recent Advances in Broadband Dielectric Spectroscopy (2012)6. Statistical mechanics of dense granular media
M. Nicodemi, A. Coniglio, A. de Candia, A. Fierro, M. Pica Ciamarra, M. Tarzia
Proceedings of the society of photooptical instrumentation engeneers, Conference on Complex Systems (2005)5. Mean field theory of dense granular media
A. Coniglio, A. Fierro, M. Nicodemi, M. Pica Ciamarra, M. Tarzia
Proceedings of the International Conference on Powders & Grains (2005)4. Unifying approach to the jamming transition in granular media and the glass transition in thermal systems
A. Coniglio, A. de Candia, A. Fierro, M. Nicodemi, M. Pica Ciamarra, M. Tarzia
Proceedings of Complexity, Metastability, and Nonextensivity, 31st Workshop of the International School of Solid State Physics (2004)3. Statistical Mechanics of granular media and glassy systems
A. Coniglio, A. de Candia, A. Fierro, M. Nicodemi, M. Pica Ciamarra, M. Tarzia
Proceedings of the International School of Physics Enrico Fermi on the Physics of Complex Systems  New Advances and Perspectives (2003)2. Numerical and meanfield study of a lattice glass model
M. Tarzia, M. Pica Ciamarra, A. de Candia, A. Coniglio
Proceedings of the International School of Physics Enrico Fermi on the Physics of Complex Systems  New Advances and Perspectives (2003)1. Statistical Mechanics of jamming and segregation in granular media
M. Nicodemi, A. Coniglio, A. de Candia, A. Fierro, M. Pica Ciamarra, M. Tarzia
Proceedings of the Workshop on Unifying Concepts in Granular Media and Glasses (2003), arXiv:0401602Unpublished preprints
2. Comment on "Phase transitions for quenched coupled replicas in a plaquette spin model of glasses"
G. Biroli, G. Tarjus, M. Tarzia, arXiv:1606.082681. Difference between level statistics, ergodicity, and localization transitions on the Bethe lattice
A. C. Ribeiro Teixeira, M. Tarzia, arXiv:1211.7334 Talks

Some recent talks
First steps towards a nonperturbative RG approach for spin glasses in finite dimensions [pdf]
Beyond Mean Field Theory: Renormalisation Group and Non Perturbative approaches in Disordered and Glassy Systems, Rome, January 35, 2018The Anderson model on the Bethe lattice: delocalized nonergodic crossover and ManyBody “glassy” dynamics
New aspects of localization, Toulouse, November 2728, 2017First steps towards the study of finitedimensional nonperturbative fluctuations beyond the meanfield theory of glasses [part1][part2]
Habilitation à diriger des recherches defense, Paris, October 19, 2017
Critical properties of Anderson localization in high dimensions [pdf]
Renormalization group theory of disordered systems, Paris, July 2527, 2016Level statistics, ergodicity, and localization transition of Lévy matrices [part1][part2][part3]
Quantum many body systems, Random Matrices, ans Disorder, Vienna, June 812, 2015Isinglike effective theories for the glass transition [part1][part2]
Spinglasses: an old tool for new problems, Cargèse, August 25  September 6, 2014 Links

Wind and Physics
The Beg Rohu Summer School of statistical physics and condensed matterSimons Collaboration "Cracking the Glass Problem"