Research interest: Statistical mechanics at and out of equilibrium,
Field theory and non perturbative renormalization group.
Keywords: Frustrated magnetic systems, Langevin dynamics, Directed percolation, Voter model, Branching and annihilating random walks, Kardar-Parisi-Zhang equation, Statistical field theory, Nonperturbative phenomena.
Adresse personnelle : 40 Avenue d'Italie, 75013 Paris, Tel : 01 45 88 92 38
Publications
-
[1] B. Delamotte et F. Delduc, “Analytic formulation of N=2 Yang-Mills theories in harmonic superspace”, Phys. Lett. B182(1986)337.
[2] B. Delamotte et P. Fayet “N=2 massive gauge superfields in harmonic superspace”, Phys. Lett. 176 (1986) 409.
[3] B. Delamotte et J. Kaplan, “The geometry of N=2 supergravity in harmonic superspace”, Class; Quantum Grav. 4(1987)1233.
[4] B. Delamotte, F. Delduc et P. Fayet, “Spontaneous electroweak breaking and massive gauge superfields in six dimensions” Phys. Lett. 195 (1987) 563.
[5] B. Delamotte et F. Delduc, “Renormalisation properties of the self interactions of a massive superfield”, Nucl. Phys. B167(1986)473.
[6] B. Delamotte et S. Ouvry, “Generalized Fayet-Sohnius hypermultiplet”, Class. Quantum Grav. 5(1988)1367.
[7] B. Delamotte et M. Fabbrichesi, “A no-interaction theorem for classical strings”, Phys. Lett. B220(1989)527.
[8] P. Azaria, B. Delamotte et T. Jolicoeur, “Non-universality in Helical and canted spin systems”, Phys. Rev. Lett. 64(1990)3175.
[9] P. Azaria, B. Delamotte et T. Jolicoeur, “On the nature of the phase transition in Helimagnets”, J. Appl. Phys. 69(1991)8.
[10] P. Azaria, B. Delamotte, “A renormalization group analysis of frustrated non collinear magnets” Int. J. of Mod. Phys.
[11] P. Azaria, B. Delamotte, T. Jolicoeur et D. Mouhanna, “Spin stiffness of canted antiferromagnets”, Rapid Comm. Phys. Rev B45(1992)12612.
[12] P. Azaria, B. Delamotte et D. Mouhanna, “Low temperature properties of two-dimensional frustrated quantum antiferromagnets”, Phys. Rev. Lett. 68(1992)1762.
[13] P. Azaria, B. Delamotte et D. Mouhanna, “Low temperature properties of two-dimensional frustrated antiferromagnets”, Helv. Phys. Acta 65(1992)458.
[14] P. Azaria, B. Delamotte et D. Mouhanna, “Symmetry breaking and finite size scaling of quantum antiferromagnets”, Journal de Physique C 3 (1993) 291.
[15] P. Azaria, B. Delamotte, F. Delduc et T. Jolicoeur, “The Renormalization group study of Helimagnets in D = 2 + 03B5; dimensions”, Nucl. Phys. B. 408(1993)485.
[16] B. Delamotte “An approximate (but non perturbative) method for solving differential equations and finding limit cycles” Phys. Rev. Lett. 70(1993)3361.
[17] P. Azaria, B. Delamotte et D. Mouhanna, “Spontaneous symmetry breaking in quantum frustrated antiferromagnets”, Phys. Rev. Lett. 70(1993)2483.
[18] P. Azaria et B. Delamotte, “The Renormalization Group Approach to Frustrated Heisenberg Spin Systems” in MAGNETIC SYSTEMS WITH COMPETING INTERACTIONS, Ed. H.T. Diep, World Scientific, (1994).
[19] S. Bottani, B. Delamotte, “Self-organized criticality and synchronization in pulse coupled relaxation oscillator systems: the Olami, Feder and Christensen and the Feder and Feder models”, Physica D 103 (1997) 430.
[20] M. Caffarel, P. Azaria, B. Delamotte et D. Mouhanna, “Monte Carlo calculation of the spin stiffness of the two dimensional Heisenberg model”, Europhys. Lett. 26 (1994) 493.
[21] B. Delamotte, D. Mouhanna et P. Lecheminant, “Wilson Renormalization group of the principal chiral model around two dimensions”, Phys. Rev. B 59 (1999) 6006.
[22] M. Tissier, B. Delamotte, D. Mouhanna, “Frustrated Heisenberg magnets: a non perturbative approach”, Phys. Rev. Lett. 84 (2000) 5208.
[23] M. Tissier, B. Delamotte et D. Mouhanna, “Non perturbative approach of the principal chiral model between two and four dimensions”, Phys. Rev. B 61 (2000) 15327.
[24] D. Loison, A. I. Sokolov, B. Delamotte, S. A. Antonenko, K. D. Schotte, H. T. Diep “Critical behavior of frustrated systems: Monte Carlo simulations versus Renormalization Group”, JETP Lett. 72, 337 (2000).
[25] M. Caffarel, P. Azaria, B. Delamotte, D. Mouhanna,”Spin-stiffness and topological defects in two-dimensional frustrated spin systems” Phys. Rev. B 64 (2001) 014412/1.
[26] M. Tissier, B. Delamotte, D. Mouhanna, “An exact renormalization group approach to frustrated magnets” Int. J. Mod. Phys. A, 16 (2001) 2131. (conférence invitée)
[27] M. Tissier, D. Mouhanna, J. Vidal, B. Delamotte, “Randomly dilute Ising model: A nonperturbative approach”, Phys. Rev. B 65 (2002) 140402.
[28] L. Canet, B. Delamotte, D. Mouhanna, J. Vidal, “Optimization of the derivative expansion in the nonperturbative renormalization group”, Phys.Rev. D67 (2003) 065004.
[29] M. Tissier, B. Delamotte, D. Mouhanna “XY frustrated systems: continuous exponents in discontinuous phase transitions”, Phys. Rev. B67 (2003) 134422.
[30] L. Canet, B. Delamotte, D. Mouhanna, J. Vidal “Nonperturbative renormalization group approach to the Ising model: a derivative expansion at order 2202;4” Phys. Rev. B 68, (2003) 064421.
[31] “A hint of renormalization”, B. Delamotte, Am. J. Phys. 72(2004)170.
[32] “Nonperturbative renormalization group approach to frustrated magnets” B. Delamotte, D. Mouhanna, M. Tissier, Phys.Rev. B69 (2004) 134413
[33] “Non Perturbative Renormalization Group study of reaction-diffusion processes and directed percolation”, Léonie Canet, Bertrand Delamotte, Olivier Deloubrière, Nicolas Wschebor, Phys.Rev.Lett. 92 (2004) 195703
[34] “On the criticality of frustrated spin systems with noncollinear order”, Yurij Holovatch, Dmytro Ivaneyko, Bertrand Delamotte, J. Phys. A: Math. Gen. 37(2004)3569.
[35] “Critical properties of a continuous family of XY noncollinear magnets”, A. Peles, B.W. Southern, B. Delamotte, D. Mouhanna, M. Tissier, Phys. Rev. B69, 220408(R) (2004)
[36] “Frustrated magnets in three dimensions: a nonperturbative approach”, B. Delamotte, D. Mouhanna, M. Tissier, J. Phys.: Condens. Matter 16, S883-S889 (2004)
[37] “Quantitative Phase Diagrams of Branching and Annihilating Random Walks”, L. Canet, H. Chaté, B. Delamotte, Phys.Rev.Lett. 92 (2004) 255703
[38] “What can be learnt from the nonperturbative renormalization group?” B. Delamotte, L. Canet, Cond. Matt. Phys. 8 (2005) 163.
[39] “Non-perturbative fixed point in a non-equilibrium phase transition” L. Canet, H. Chaté, B. Delamotte, I. Dornic, M. A. Muñoz, Phys. Rev. Lett. 95, 100601 (2005)