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1 Introduction
"J’écrivais des silences, des nuits, je notais l’inexprimable. Je fixais des vertiges. "
Arthur Rimbaud

"Il y a un autre monde mais il est dans celui-ci."
Paul Eluard

1.1 What we shall talk about and what we shall leave out
In these notes, we shall be talking about the modern version of the renormalization group (RG) à la
Wilson, now known as the functional renormalization group (FRG), the non-perturbative renormal-
ization group (NPRG) or the non-perturbative functional renormalization group (NPFRG). The first
part of the course will focus on methodology, using second-order phase transitions in simple models
such as Ising or O(N) to show how the calculations are carried out and the fundamental concepts
underlying the whole approach. Some structural aspects of the functional renormalization group will
be demonstrated: RG flow in an infinite-dimensional space (“large river effect”), notion of contin-
uous limit, convergence of the derivative expansion, ultraviolet (UV) and infrared (IR) asymptotic
freedom, and so on. The relationship between perturbative and non-perturbative renormalization
and some artifacts of perturbation theory will also be shown (alas, briefly). And finally, for this first
part, the advantages and disadvantages of Wilsonian renormalization will be shown.

Although the first part of the course will present some physical results relating to phase transi-
tions, it is in the second part of the course that non-trivial applications to physical systems, in this
case quantum condensed matter, will be presented. Applications to gauge theories, cosmology and
quantum gravity, for example, will not be covered. It will therefore be useful to consult the review:

“The nonperturbative functional renormalization group and its applications", N. Dupuis, L. Canet,
A. Eichhorn, W. Metzner, J. M. Pawlowski, M. Tissier, N. Wschebor, Physics Reports 910, 1 (2021)
and arXiv:2006.04853
which describes a fairly large number of physical applications of the method and provides an extensive
bibliography in the field.

An introduction to functional renormalization is given in:
An Introduction to the Nonperturbative Renormalization Group, B. Delamotte, in: A. Schwenk,
J. Polonyi (Eds.), Renormalization Group and Effective Field Theory Approaches to Many-Body
Systems, Vol. 852 of Lecture Notes in Physics, Springer Berlin Heidelberg, 2012, pp. 49-132.
doi:10.1007/978-3-642-27320-9_2 and arXiv:cond-mat/0702365
and in the notes made available by N. Dupuis on his homepage.

The curious can also consult the pedagogical (?) article introducing perturbative renormalization:
A hint of renormalization, B. Delamotte, Am. J. Phys. 72, 170-184 (2004) https://doi.org/10.1119/1.1624112
and Arxiv hep-th/0212049v3
as well as the book:
Quantum and Statistical Field Theory, M. Le Bellac, Oxford Science Publications, Clarendon Press,
1991.
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1.2 Renormalization, a little history
“Truth never triumphs, but its opponents eventually die”

M. Planck

The history of renormalization and the renormalization group remains largely unwritten. While
it is perfectly possible to understand Maxwell’s equations without delving into the history of electro-
magnetism, this is not entirely the case for renormalization, and even less so for the renormalization
group, as the weight of history continues to shape minds in 2025. What follows is by no means a
faithful account of the historical development of renormalization, as gaps and overly approximate
statements abound, and is intended only to suggest the reason for this strange state of affairs: we
now have a renormalization method, admittedly incomplete but as powerful from a practical point
of view as it is conceptually clear, which nevertheless remains largely ignored, if not condemned, by
most of the physics community directly interested in the problems it could help to solve. This is
why it is so important to pass on this method to the younger generation in the form of the course
that is the subject of these notes.

Let’s start with a bit of chronology.

• 1947: First Lamb shift calculation in quantum electrodynamics by H. Bethe; renormalization
is truly born here,

• 1953 and 1954: E. Stueckelberg and A. Petermann, then M. Gell-Mann and F. E. Low: group
law structuring perturbative renormalization and first notion of energy-scale-dependent cou-
pling constant,

• 1957: First systematic procedure for eliminating UV divergences in quantum field theories by
N. N. Bogoliubov and O. Parasiuk,

• 1959: Book by N. N. Bogoliubov and D. Shirkov entitled “The Theory of Quantized Fields”,
claims to explain the conceptual background of the renormalization group: largely misunder-
stood,

• 1966 - 1969: K. Heppe and then W. Zimmermann complete the construction initiated by
Bogoliubov and Parasiuk; perturbative renormalization is fully under control (BPHZ program),

• 1960s: quantum field theory (QFT) was increasingly sidelined in particle physics, except for
QED, which many saw as a fortunate exception that could not be generalized to other inter-
actions (weak, strong and gravitational); statistical field theory (SFT) was not yet born,

• 1970 - 1972: proof of the renormalizability of gauge theories (Yang-Mills theories) by G. ’t
Hooft and M. Veltman: renewed interest in field theory in high-energy physics; the Glashow-
Weinberg-Salam model developed in the 1960s was soon recognized as a serious candidate for
the description of electromagnetic and weak interactions,

• 1970: formulation of the renormalization group equations by Callan and Symanzik,

• 1971: formulation by K. Wilson of his vision of the renormalization group and its applications
to critical phenomena; SFT, although still in its infancy before this date, is truly born here,

• 1972: elaboration of the ϵ = 4− d expansion with applications to statistical mechanics by K.
Wilson and M. Fisher,

• 1973: proof of asymptotic freedom in Yang-Mills theories (one-loop calculation) by D.J. Gross
and F. Wilczek and H.D. Politzer (for which they won the Nobel Prize),
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• 70’s and 80’s: explosion of studies using renormalization and the perturbative renormalization
group in high-energy physics, statistical physics and quantum condensed matter physics; very
few studies were undertaken at this time following Wilson’s non-perturbative ideas: “we think
à la Wilson and calculate à la Feynman”,

• 1984: J. Polchinski derives an exact Wilsonian RG equation and applies it to perturbative
quantum field theory,

• 1994: U. Ellwanger, T. Morris and C. Wetterich independently derive an exact RG equation
for the functional renormalization group different from Polchinski’s (and related by Legendre
transformation). This equation and the approximations it allows mark the revival of functional
and non-perturbative renormalization à la Wilson.1

On the history of this field, we recommend reading K. Wilson’s Nobel lecture: The renormalization
group and critical phenomena, December 8, 1982.

Since 1995, FRG methods have been used in a large number of papers in many fields (see the
bibliography of the review by N. Dupuis et al. cited above). Somewhat strangely, and despite the
undeniable progress this method has made in many fields, it remains the prerogative of a fairly small
community and is still regarded by many as an oddity leading to uncontrolled calculations that are
best ignored (implying that perturbative calculations are, for their part, completely controlled!).
Who in the string theory community, for example, has heard of the so-called “asymptotic safety”
scenario for quantum gravity, showing that Hilbert-Einstein gravity could lead to a renormalizable
quantum theory in a non-perturbative sense? Essentially nobody, although this scenario was initiated
by S. Weinberg in the late 70s...

Historically, renormalization was developed in quantum field theory (in fact, essentially in QED)
to eliminate the divergences that appear at second order in perturbation theory and at all subse-
quent orders.2 These divergences are UV divergences, i.e. divergences originating in the theory’s
high-momentum regime (high-energy) or, to put it another way, short-distance behavior. The renor-
malization has therefore been constructed as a recursive algorithm, i.e. operating order by order of
the perturbative series, for eliminating these divergences. The algorithm seemed a little magical and
ill-defined to many physicists from the ’50s to the ’80s, but was justified a posteriori by the construc-
tion of a (renormalized) perturbation theory which, order by order, is well defined, at the sole cost
of fixing a finite (and small) number of external parameters, such as masses and coupling constants.
The method constructs a predictive theory, since an infinite number of independent quantities can
be calculated on condition that a finite number of parameters not predicted by the theory are fixed
by experiment.

The origin of the UV divergences is well known. In the transition from classical to quantum
theory, fields must be considered not as functions, but as operator-valued distributions.3 Since in-
teractions are local, they translate into products of operators at the same space-time point (e.g.
ϕ4(x) or ψ̄(x)γµψ(x)Aµ(x)), i.e. products at the same point of distributions, which is generally
illegal. From classical theories that are local, the canonical quantization procedure generically pro-
duces distributional continuations that are sick at short range, and the perturbative renormalization
constructs the right continuation order by order, modifying (we say, regularizing) the theory’s short-
range structure while preserving the long-range one.4 Whether this problem reflects a real physical

1Note: this equation had been derived before them on several occasions, including in the 70s, but had either not
been exploited, or had only been exploited in the perturbative framework.

2Perturbation theory (Feynman graphs) in QFT is a semi-classical expansion. For a given process that exists in
classical electrodynamics, such as the scattering of an electron on a nucleus, the first order of perturbation theory
gives the classical result and the successive orders a series in powers of ℏ. This is true for all quantum field theory

3To be precise if not pedantic, quantum fields must be considered as operator-valued tempered distributions.
4Of course, the notions of short and long distance should be made precise by specifying in relation to which

distance scale they are considered short or long. At this stage, it is enough to think in terms of asymptotically short
and asymptotically long distances, even if we can make all this much more quantitative
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problem of quantum field theories or is merely an artefact of perturbation theory is not easily de-
cided in the perturbative framework, and the reality is that the UV divergences encountered in
perturbation theory can reflect real behavior of short-distance quantum “fluctuations” and can also
be a pathology of the perturbative expansion itself. It is fair to say that, beyond the algorithm for
eliminating UV divergences, it was not easy to find one’s way through this conceptual imbroglio.

As for the renormalization group , it appeared at the time, i.e. before the 70s, as a condition for
the coherence of the perturbative renormalization which, in certain cases, enabled it to be improved
by resumming some of the terms of the perturbative expansion.5 Logically, then, renormalization
group comes after perturbative renormalization, which, from a practical point of view, can do without
it. It seems to be no more than a welcome by-product of perturbative renormalization. Even
with Callan and Symanzik’s definitive formalization of the renormalization group equations used
in perturbation theory, the latter does not constitute a computational method in itself, but is
rather a post-processing of perturbative results. For example, from a perturbative result such as
X(t) = X0(1 +αϵ log t+O(ϵ2)), the Callan-Symanzik renormalization group can, if this is the case,
show that this is the expansion of a power law which is therefore inevitably X(t) = X0 t

αϵ+O(ϵ2).
This is by no means trivial, as reconstructing the power law means resumming powers of arbitrarily
high order in ϵ, even though only the first order is initially known. However, the Callan-Symanzik
renormalization group cannot be used to calculate the perturbative expansion, and Feynman-style
techniques are required for this.

On the other hand, the renormalization group explains that coupling constants become functions
of the scale (distance, energy, etc.) on which they are measured. Coupling constants are indeed
constants in classical theories, as is the case for electric charge in classical electrodynamics: an
experiment (scattering of two electrons, for example) can measure this charge, which is the same
coupling constant involved in all classical electrodynamic phenomena involving only electrons. This
is not the case in quantum electrodynamics and, more generally, in quantum field theory. A coupling
constant is a measurable quantity (just like a mass) and, as such, must be determined from Green
functions (or correlation functions in SFT), functions which are the physical quantities of the theory,
unlike a Hamiltonian (or a Lagrangian).6 For example, in ϕ4 theory, the coupling constant of
the quartic term can be measured, at least in principle, from the four-field correlation function
Γ(4)(p1, p2, p3), which is a physical quantity. These functions, which are actually numbers in classical
field theory, become momentum-dependent functions in QFT, i.e. as soon as quantum "fluctuations"
are taken into account (or statistical fluctuations in SFT). As a result, we can no longer speak of
a single coupling constant, but of a scale-dependent coupling constant.7 The Callan-Symanzik
equations describe how the same field theory can be parameterized by coupling constants that differ
according to the scale on which they are measured.

The ambition of the Wilsonian RG is quite different, as its creator claimed. It is, on the one
hand, a genuine method for calculating correlation functions and, on the other, a method that is not
a priori linked to perturbation theory. A word of warning is in order here. If the FRG could be used
to calculate exactly all the correlation functions of a non-trivial statistical (or quantum) field theory
model, it would have been solved. This is almost never the case in reality, and approximations have
to be used to make use of the FRG as a computational method. Over and above its conceptual
relevance, which is very high indeed, its ability to enable non-trivial calculations therefore rests

5It should be noted that the resummation of some of the perturbative diagrams, the so-called parquet diagrams for
example, was practiced in the 60s independently of any reference to the renormalization group. The Russian school,
following Landau, counted specialists in this technique among its ranks.

6Carlo Becchi, a great expert in field theory, used to say that a Lagrangian is an opinion. The a sorrowful spirit
might object that Green functions in QFT are not physical either, only “on-shell” functions are. This is not the case
in SFT, and this assertion about QFT is only valid because only S matrix elements are considered physical.

7In general, Green functions do not depend solely on an energy scale, but on all the kinematic configurations of the
momenta on which they depend. If we speak of coupling constants depending on the energy scale only, it is because
we are reasoning in terms of a given kinematic configuration (the angles between momenta) and we are studying the
variation of Green function when we vary only the scale of its momenta.
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on the possibility of implementing controlled approximations that go beyond perturbation theory.8
But having controlled approximate methods is a subtle art. The physics community still believes far
too often that perturbative methods are the only ones that can be controlled.9 But this is not the
case. The perturbative series encountered in physics are in the vast majority of cases non-convergent
series, and writing a O(ϵn+1) after a series of order n in ϵ makes no difference if the series is not
convergent. Quantum electrodynamics is an exception in this respect, because it allows very precise
calculations, which become more and more precise the higher the order of perturbation.10 In many
cases, renormalized series in field theory are at best asymptotic, Borel summable series. But even in
these happy cases, the physical results depend on the resummation procedures of the renormalized
series, which are largely arbitrary and for which it is very difficult to quantify the error bars.

FRG seeks to go beyond perturbative methods, but cannot escape the criticism of having difficulty
quantifying the errors made. This was the fundamental criticism levelled at the FRG community by
the perturbative RG community for several decades: due to approximations, even physical quantities
seemed to depend catastrophically on non-physical and arbitrary parameters (the parameters used
to perform coarse-graining, see the following). For a long time, these criticisms were justified.
However, after the mid-90s, when a new, exact RG equation was developed by C. Wetterich (and
also T. Morris and U. Ellwanger), the accumulation of completely non-trivial and accurate results
left little doubt in the minds of specialists that the results obtained by this method were indeed
inaccurate up to a certain point, but not catastrophically so, as was the case in earlier studies that
did not rely on the same approximation schemes. More recently, great progress has been made
in this direction, by showing that the most commonly used approximation scheme, the derivative
expansion, leads, at least in certain cases and for certain quantities, to series that are convergent and
therefore under control.11 It is worth noting, however, that most of the perturbative RG community
(and not just them) has not yet realized this change and remains on the idea that calculations based
on the Wilsonian approach are out of control. Patience, it will change...

2 Phase transitions and functional methods
“Vivre, c’est naître lentement”
Antoine de Saint-Exupéry

In what follows, we will be using the Ising model (and its O(N) symmetric generalization) and
the ϕ4 model (known as the Ginzburg-Landau model) as physical supports to illustrate the concepts
involved, and as frameworks for concrete calculations. They will be both simple enough not to add

8Some perturbative calculations can be performed very efficiently using the FRG, more efficiently in fact than
using à la Feynman graphical methods. It remains true, however, that to this day and for many others, the usual
graphical methods remain irreplaceable for perturbative calculations.

9By definition, exact methods for solving N -body systems - integrable or conformally invariant systems in d = 2 -
provide controlled results. As for approximate methods, the conformal bootstrap is one of the very few that provide
exact error bars. Unfortunately, very few physical quantities can be calculated using this method.

10It should be noted, however, that this does not mean that QED perturbative series are convergent series. They
are in fact divergent, but the small coupling constant used for development (α/2π ≃ 1/860 where α = 1/137 is the
fine structure constant) is responsible for the apparent convergence of the first orders of perturbation.

11Note now that the practical interest of the FRG is not just to provide accurate results in situations of strong
(renormalized) couplings where perturbation theory is in trouble. As these notes will show, the FRG can also be
used in certain cases to calculate quantities that are beyond the reach of any perturbative approach. The example
of non-universal quantities such as a phase diagram or even a critical temperature is emblematic in this respect: this
calculation is essentially impossible in the perturbative framework, but quite accessible, in some cases at least, to the
FRG, including lattice models. But there are also cases where universal quantities cannot be calculated perturbatively,
because they cannot be developed in series with a coupling constant. The Ising random-field model or the Kardar-
Parisi-Zhang equation in dimensions greater than one, or certain multi-critical phenomena in O(N) models, provide
such examples
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to the complexity of the field, and rich enough not to give an ideal vision that is inapplicable to any
more complicated system.

2.1 O(N) models, Hamiltonians, free energies and correlation functions
The Ising model is a model of classical spins on a d-dimensional lattice (assumed to be hypercubic),
meaning it consists of random variables σi = ±1 located at the nodes of a lattice indexed by i.
We will consider in the following hypercubic lattices and the lattice spacing will be denoted by
a, and its size by L. Periodic boundary conditions are assumed, and we will primarily focus on
the thermodynamic limit where L → ∞. The interaction between spins is assumed to occur only
between nearest neighbors and to be ferromagnetic. The interaction Hamiltonian in the presence of
an external magnetic field hi is therefore:

H = −J
∑
⟨ij⟩

σiσj −
∑
i

hiσi (1)

where ⟨ij⟩ means the sum is taken over pairs of sites i and j that are nearest neighbors, and where
J > 0 is the ferromagnetic exchange constant. In the presence of a constant magnetic field, the
magnetic term becomes −h∑i σi, and the field couples to the magnetization mode, i.e., the sum of
the spins whose average value is the total magnetization of the system. When hi = 0, the system
exhibits a Z2 symmetry of simultaneous inversion of all spins: σ′

i = −σi.
The model can be generalized to spins with N components of unit magnitude: |σi| = 1, with a

Hamiltonian exhibiting O(N) symmetry when the magnetic field is zero:

H = −J
∑
⟨ij⟩

σi · σj −
∑
i

hi · σi. (2)

If we agree that O(1) = Z2, the Ising model becomes a special case of the family of O(N) models.12

We will also be interested in "ϕ4 models," which are models where ϕ(x) is an N -component field
varying between −∞ and +∞, defined on d-dimensional Euclidean space and featuring an internal
O(N) symmetry.13 The Hamiltonian we will consider is:

H =

∫
x

(
1

2
(∇ϕ(x))2 +

1

2
r0ϕ

2(x) +
1

4!
g0(ϕ

2(x))2
)
−
∫
x

h(x) · ϕ(x) (3)

where
∫
x
=
∫
ddx. The partition functions of these models are

Z[h] =
∑
σi

e−βH[σ,h] or Z[h] =

∫
Dϕ e−βH[ϕ,h] (4)

depending on the type of model considered. In the previous equation, β = 1/kT , where T is the
temperature, and the sum or integral represents a summation over all configurations of the σi or ϕ(x)
fields, so the integral is a functional integral. In all that follows, the β factor will be absorbed into
H via a redefinition of the field and the constants r0 and g0, with the result that H will depend on

12Note: The inversion operation, which involves changing a spin to its opposite: σ′
i = −σi, is or is not a rotation

depending on whether N is even or odd, respectively. For example, for N = 3, this inversion, represented by the matrix
diag(−1,−1,−1), has determinant −1 and does not belong to SO(3), while for N = 2 or 4, it is indeed a rotation.
On the other hand, mirror symmetries that change only one component of the vectors σi are never rotations; they
are elements of O(N) but not of SO(N).

13The models studied exhibit two types of symmetry: symmetries originating from the isotropy group of the d-
dimensional space on which they are defined, in our case the symmetries of the lattice or Euclidean space, and so-called
internal symmetries, here O(N). The fields ϕ(x) we consider are scalars for the isotropy group of Euclidean space and
vectors for O(N) (more precisely, true scalars and true vectors for O(N)). Note that we could also consider a third
type of model, where the random variables ϕi vary between −∞ and +∞ and are defined on a lattice.
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temperature, a forbidden characteristic for a true Hamiltonian. By abuse of notation and language,
we will continue to denote it H and call it the Hamiltonian of the system. The partition functions
will therefore be written as:

Z[h] =
∑
σi

e−H[σ,h] or Z[h] =

∫
Dϕ e−H[ϕ,h] (5)

By the same abuse of language, we will call

W [h] = logZ[h] (6)

the (Helmholtz) free energy instead of −kT logZ[h], as the −kT factor plays no interesting role in
what follows.

The correlation functions of the components of the field are obtained by differentiating Z[h]:

G
(n)
α1,··· ,αn [i1, · · · , in;h] = ⟨σα1

i1
· · ·σαn

in
⟩ = 1

Z[h]

∂nZ[h]

∂hi1
αn · · · ∂hinαn

(7)

or, in the continuous case:

G(n)α1, · · · , αn[x1, · · · , xn;h] = ⟨ϕα1(x1) · · ·ϕαn
(xn)⟩ =

1

Z[h]

δnZ[h]

δhα1
(x1) · · · δhαn

(xn)
(8)

where these are now functional derivatives.
Of course, one can calculate these correlation functions in a zero external field, which means

that after calculating the derivatives of Z[h], we evaluate them at h = 0. However, note that even
in this case, we must first consider the functional dependence of Z on h in order to compute its
derivatives with respect to h. This is why Z[h] is called the generating functional of correlation
functions, and the dependence on h is indicated with square brackets rather than parentheses to
follow the universally applied rule for denoting functionals. Similarly, W [h] generates the so-called
connected correlation functions:

G
(n)
c,α1,··· ,αn [i1, · · · , in;h] = ⟨σα1

i1
· · ·σαn

in
⟩c =

∂nW [h]

∂hi1
αn · · · ∂hinαn

(9)

and

G
(n)
c,α1,··· ,αn [x1, · · · , xn;h] = ⟨ϕα1(x1) · · ·ϕαn(xn)⟩c =

δnW [h]

δhα1(x1) · · · δhαn(xn)
. (10)

For the two-point function (this would not be true for the four-point function or higher), the
connected function is the correlation function of the field fluctuations around its mean value, as an
elementary calculation shows:

G(2)
c,α1,α2

[x1, x2;h] = ⟨
(
ϕα1

(x1)− ⟨ϕα1
(x1)⟩

)(
ϕα2

(x2)− ⟨ϕα2
(x2)⟩

)
⟩. (11)

In the following, when we deal with correlation functions, whether connected or not, in a constant
field, we will write them as functions of h: G(2)

α1,··· ,αn(x1, · · · , xn,h), and when they are in a zero
field, we will omit the last argument and write them simply as G(2)

α1,··· ,αn(x1, · · · , xn). In both cases,
the system being translation invariant, these functions depend on one less argument because they
only depend on the differences xi − xj , or in other words, one of the xi can be chosen as the origin.

The Fourier transform is defined by :

f̃(q) =

∫
x

e−iqxf(x) (12)
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and its inverse by

f(x) =

∫
q

eiqxf̃(q) (13)

where
∫
q
=
∫
ddq/(2π)d. In cases where there is translation invariance, i.e. when the h field is

constant, it is convenient to define new correlation functions in Fourier space by recognizing that
the G̃(n) are proportional to (2π)dδ(q1 + · · ·+ qn) and thus defining:

G̃
(n)
α1,··· ,αn(q1, · · · , qn, h) = (2π)dδ

(
n∑

i=1

qi

)
G

(n)
α1,··· ,αn(q1, · · · , qn−1, h) (14)

where the function on the right-hand side has no tilde. There should be no confusion with a function
in direct space, as the context always tells us what kind of function we are talking about.

The average value is called the total magnetization:

M = ⟨
∑
i

σi⟩. (15)

We often prefer to work with the local magnetization

mi = ⟨σi⟩ =
∂W [h]

∂hi
(16)

or, in the continuum

m(x) = ⟨ϕ(x)⟩ = δW [h]

δh(x)
. (17)

Of course, if h is constant, m is also constant and is an intensive quantity, while M is extensive.
Note that the function G(2)

c (x, y) can be written as

G
(2)
c,αβ(x, y) =

δmα(x)

δhβ(y)
(18)

and is therefore nothing other than the response of the local magnetization at x to a variation of the
magnetic field at y. It is thus a local generalization of the magnetic susceptibility, which represents
the response of the magnetization to a variation of a constant magnetic field.

For what follows, it is important to define another free energy by changing the state variable
from magnetic field to magnetization. This is done, as usual, by Legendre transformation, and so
we define Γ[m], the Gibbs free energy, by (from now on, to establish the definitions of the quantities
we are interested in, we will only give their definitions in the continuum):

Γ[m] +W [h] =

∫
x

h(x) ·m(x). (19)

This free energy exists because W can be shown to be a convex function of h, so Eq. (17) can be
inverted and h can be calculated as a function of m and inserted into equation (19) to give Γ. Note
that Eq. (19) is symmetrical in the simultaneous exchange W → Γ and h → m, so from Eq. (17)
we necessarily have the reciprocal relationship:

h(x) =
δΓ[m]

δm(x)
, (20)
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a relation that can obviously be established directly from Eq.(19) by differentiating with respect to
m(x).14 It should be noted that in the absence of a magnetic field, h = 0, the previous relation
implies that the magnetization of the system is the one that minimizes the Gibbs free energy (a
maximum is excluded because Γ is a convex function, as it is the Legendre transform of a convex
function). In the presence of a constant h field, Eq.(20) is the equation of state of the system, which
relates the magnetic field, magnetization, and temperature.

Just as we defined correlation functions by functionally differentiating Z[h] and W [h], we can
define new functions by differentiating Γ. The functions obtained in this way are called the 1-
Particle-Irreducible (1PI) correlation functions or vertex functions.15 They are defined by:

Γ
(n)
α1,··· ,αn [x1, · · · , xn;m] =

δnΓ[m]

δmα1
(x1) · · · δmαn

(xn)
. (21)

Here too, we can evaluate Γ in a configuration where m(x) is constant, which implies that the
external magnetic field is also constant. In this case, the system is invariant under translation
and the Γ(n) depend only on n − 1 space variables, xi − xj . Then, the Fourier transform of these
functions depends only on n − 1 momenta qi and just like for the G(n), Eq.(14), we define func-
tions Γ

(n)
α1,··· ,αn(q1, · · · , qn−1,m) without a tilde, once a factor of (2π)d and a Dirac delta for the

conservation of the total momentum are extracted.
Of course, the set of 1PI functions contains the same information as the set of connected corre-

lation functions, since one can go from W to Γ via a Legendre transform. One can thus establish,
function by function, how to reconstruct the G(n)

c from the Γ(p≤n).
As an example, and because it will be useful later, let us establish the relation between G

(2)
c =

W (2) and Γ(2) in the case where N = 1. We start with Eq. (19), which we differentiate with respect
to h(z):

δ(x− z) =
δh(x)

δh(z)
=

∫
y

δ2Γ[m]

δm(x)δm(y)

δm(y)

δh(z)
=

∫
y

Γ(2)[x, y;m]W (2)[y, z;h]. (22)

The previous relation, valid in the presence of any field h(x), generalizes the matrix relation that
connects a matrix to its inverse,

∑
j Aij A

−1
jk = δik: Γ(2) and W (2) are therefore inverses of each

other in a functional sense. The relation (22) simplifies when h is constant:∫
y

Γ(2)(x− y,m)W (2)(y − z, h) = δ(x− z) (23)

and even further when working in Fourier space:

Γ(2)(p,m)W (2)(p, h) = 1 (24)

Thus, in a uniform field and in Fourier space, Γ(2) and W (2) are inverses in the ordinary sense of
the term. Note that for O(N), the previous relation generalizes trivially to:

Γ
(2)
αβ(p,m)W

(2)
βγ (p, h) = δαγ . (25)

14It is important to alert the beginner reader to a small subtlety when handling formulas involving the Legendre
transform. Clearly, the definition of Z[h] in Eq.(5) makes Z a functional of h(x), and the same obviously applies to
W [h]. The magnetization m(x) defined in Eq.(17) is therefore a derived quantity, obtained once h is specified: m(x)
is a function of h(y). One can reverse the point of view and consider that it is m(x) that is fixed. The "correct"
state function to consider is then Γ, and it is h(x) that becomes a function of m(y) via Eq.(20). Specifically, when
taking a (functional) derivative with respect to either h(x) or m(x), one must consider that the conjugate variable,
respectively m(x) and h(x), become functionals of the variable with respect to which we are differentiating. Thus,
when differentiating Eq.(19) functionally with respect to m(x), one should not forget to differentiate W [h], on the
grounds that it is a functional of h and not of m(x), and one must write: δW [h]

δm(x)
=

∫
y

δW [h]
δh(y)

δh(y)
δm(x)

=
∫
y m(y)

δh(y)
δm(x)

.
15The terminology "connected" and "1PI" for the correlation functions G(n)

c and Γ(n) comes from their perturbative
expansion in terms of Feynman diagrams. The connected functions only receive contributions from connected graphs,
meaning graphs that are not made up of several disconnected subgraphs. The graphs contributing to Γ(n) are those
that remain connected when any of their internal lines are cut, i.e., a line connecting two vertices.
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where the Einstein summation convention over repeated indices has been used: AαβBβγ =
∑

β AαβBβγ .

Studying correlation functions consists in analyzing the information contained in the generating
functionals (the free energies in particular) through Taylor expansions in powers of the fields. For
example, for N = 1, if we perform an expansion around a constant field, h0 for W and m0 for Γ, we
obtain:

W [h] =

∞∑
n=0

∫
x1,··· ,xn

G(n)
c (x1, · · · , xn, h0) (h(x1)− h0) · · · (h(xn)− h0) (26)

and

Γ[m] =

∞∑
n=0

∫
x1,··· ,xn

Γ(n)(x1, · · · , xn,m0) (m(x1)−m0) · · · (m(xn)−m0) . (27)

Another way to study the free energies is to perform an expansion in derivatives of the fields,
that is, in powers of the moments in Fourier space. This will be very useful later. We will implement
it on Γ, and this expansion reads for N = 1:

Γ[m] =

∫
x

{
U(m(x)) +

1

2
Z (m(x)) (∇m(x))

2
+O(∇4)

}
(28)

where the function Z (m(x)) must of course not be confused with the partition function Z[h]. We
note that for a constant field m(x) = m0, Γ(m0) = ΩU(m0) where Ω is the volume of the system.
The function U is called the effective potential in QFT and the thermodynamic potential (Gibbs
potential) in statistical mechanics. It plays a crucial role in characterizing spontaneous symmetry
breaking, for example. It is worth noting that by the isotropy of Euclidean space in d dimensions,
only even powers of ∇ can appear in this derivative expansion, and that the functions U and Z are
functions of m2 only due to the Z2 symmetry. For a more complicated internal symmetry group, the
derivative expansion must respect the fact that Γ is a scalar, and therefore must involve all scalars
in the space derivatives and under the internal symmetry group. For example, for O(N) models,
this expansion becomes:

Γ[m] =

∫
x

{
U(m2(x)) +

1

2
Z
(
m2(x)

)
(∇mα(x)) (∇mα(x)) +

1

4
Y
(
m2(x)

)
mα(x)mβ(x)∇mα(x)∇mβ(x) +O(∇4)

}
(29)

and there are thus two independent functions appearing at the second order of the derivative expan-
sion. Finally, note that U (n)(m0) = Γ(n)(p1 = 0, · · · , pn−1 = 0,m0), so that the effective potential
contains all the information about all the Γ(n) at zero momentum. Conversely, the Γ(n) contain
all the information about the momentum dependence of a given order term in fields. Therefore,
studying correlation functions or the functions U,Z, . . . are two different and complementary ways
to analyze the information contained in the free energies of a system with n bodies.

2.2 Phase transitions
The O(N) models defined by the Hamiltonians of Eqs.(2) and (3) undergo a phase transition at
h = 0 and for all d > 2 when varying the temperature. For N = 1, there is a transition in d = 2 but
not in d = 1. Strictly speaking, this occurs only in the thermodynamic limit: L→ ∞. These systems
are in a disordered phase at high temperature where the magnetization is zero: mi = ⟨σi⟩ = 0 and in
an ordered phase at low temperature where it is non-zero: |mi| = |⟨σi⟩| > 0. The magnetization is
called the order parameter because its value, whether zero or non-zero, is characteristic of the phase
in which the system resides. By definition, the temperature at which this transition occurs is called
the critical temperature Tc. This temperature depends on d, N , the model considered, whether on

10



a lattice or in the continuum. If defined on a lattice, it depends on the structure of the lattice: in
d = 2, for example, the critical temperature is different if we consider a square lattice or a triangular
lattice. In the continuum, Tc depends on the coupling constant g0 appearing in the Hamiltonian
Eq.(3). For this reason, Tc is said to be non-universal: it depends on the microscopic details of the
system.

For the models considered above, the transition is said to be continuous because the order
parameter in the zero-field limit varies continuously as a function of temperature, although this
variation is not analytic, see Fig. 2.2 where we can see how the non analyticity builds up as the
systems size increases.

Figure 1: Magnetization of a magnetic system as a function of temperature for several lattice sizes.

In general, phase transitions are divided into two distinct types: continuous transitions as de-
scribed above, and discontinuous transitions, or first-order transitions, where the order parameter
undergoes a discontinuity at the transition. In fact, the important aspect is less whether the order
parameter is continuous or not, but rather whether the correlation length diverges or remains finite
at the transition. By definition, the correlation length ξ of a system is the typical length scale that
gives the decay of the two-point correlation function. In d = 3 and at large distances compared to
the lattice spacing, the two-point function behaves for T ≃ Tc and N = 1 as:

G(2)(xi, xj , h = 0) = ⟨σiσj⟩ ∼
T→Tc

e−
|xi−xj |

ξ

|xi − xj |d−2+η
(30)

where η is called the anomalous dimension of the field (we will discuss it later) and ξ is a function
of temperature. For continuous transitions, ξ diverges at Tc and it is found that it diverges in a
power-law manner. For example, approaching Tc in the high-temperature phase:

ξ(T ) ≃
T→T+

c

ξ+0 (T − Tc)
−ν (31)

where ν is another critical exponent and ξ0 is an amplitude that depends on the system considered.
The divergence of the correlation length is the main feature of continuous transitions and will
condition the scale invariance (and conformal invariance in many cases) that will appear at the
transition.

Let us list some important properties of continuous transitions.

• Scale invariance. A statistical system such as the Ising model (and this is generically true)
has two intrinsic scales: a microscopic scale, which in this case is the lattice spacing a, and a
macroscopic length scale L which is its length, which in units of a, is an integer. The Hamilto-
nian in Eq. (1) does not contain any length scale other than a and L. In the thermodynamic
limit, L→ ∞, only a remains. The dynamics of the system produces another scale, ξ, defined
in Eq. (30). It is therefore expected generically that this scale is of the order of a, and indeed
this is the case. But by finely tuning T so that T ≃ Tc, one finds that ξ can be arbitrarily
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large compared to a, which is very unusual in physics. One can suspect that the physics of the
system will be dominated by ξ, which already controls the behavior of the two-point function
when the distances considered are large compared to a. In other words, close to the transition
and at large distances, G(2) depends on ξ and no longer on a, which is still the natural scale
of the problem: a no longer plays a role for long-distance correlations. Therefore, exactly at
Tc, where ξ = ∞, and again for large distances compared to a, the system no longer presents
any characteristic scale, and one expects the emergence of scale symmetry (invariance under
dilation) at large length scales. In fact, the story is even more beautiful in many cases because
the system becomes conformally invariant at Tc and at large scales, not just invariant under
dilation.

• Power-law behaviors. Scale-invariant systems are generically characterized by power laws,
the only laws that are consistent with this symmetry.16 We indeed observe this phenomenon
for phase transitions: near criticality, various interesting physical quantities obey power laws,
as we have already seen for the correlation length in Eq.(31) and the two-point function when
ξ = ∞, Eq. (30). The magnetization, for example, behaves when approaching Tc from below
as:

m(T ) ≃
T→T−

c

m0 (Tc − T )β . (32)

The magnetic susceptibility at zero field, χ, which is the response of the magnetization to a
variation in the magnetic field, behaves as:

χ(T ) =
∂M

∂h |h=0
≃

T→T+
c

χ+
0 (T − Tc)

−γ . (33)

We also find that at T = Tc:
M(T ) ≃

h→0
m′

0 h
1/δ. (34)

The specific heat also diverges as a function of T − Tc with an exponent called α, and we
have already defined the anomalous dimension η in Eq.(30). In total, there are six critical
exponents, called dominant. Other exponents, called subdominant or corrections to scaling
laws, regulate the subdominant behaviors for T−Tc. For example, we can define the correction
to scaling exponent ω by:

ξ(T ) ≃
T→T+

c

ξ+0 (T − Tc)
−ν (1 +A(T − Tc)

ω + · · · ) (35)

where A is an amplitude that depends on the system considered.

It should be noted that for certain quantities, critical exponents can be defined in both the high
and low-temperature phases. For example, for the correlation length in the low-temperature
phase:

ξ(T ) ≃
T→T−

c

ξ−0 (Tc − T )−ν′
. (36)

Exponents in the high and low-temperature phases, when they exist, are often the same (al-
though the amplitudes are not). However, this is not always true (contrary to what is often
stated).

16Here, I am cheating a little because the power laws shown below refer to the temperature dependence and not the
distance dependence, which are the objects of dilations. But on further thought, we will see that we can substitute
the deviation from the critical temperature, T − Tc, with the correlation length and thus transform the power laws
in temperature into power laws in ξ. However, one must still remember that for ξ < ∞, there is not strictly speaking
dilation invariance...
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• Universality. We are very accustomed in physics to seeing very different systems at the
microscopic level behave in the same way at large scales. The ideal gas law, Ohm’s law, etc,
are valid regardless of the nature of the substances considered as long as they satisfy certain
prerequisites. For example, for the ideal gas law to apply, it is enough for the gas atoms to be
considered point-like and interact only through perfectly elastic collisions. It doesn’t matter
whether it is oxygen or carbon dioxide, or whether they are made up of electrons, protons,
and neutrons, which themselves are made up of quarks interacting via gluon exchange. This
property, foundational to all of physics, comes from the fact that, most often, in terms of
collective behaviors and large scales, the microscopic details have been "statistically averaged
out" and only general characteristics of the systems, described by a small number of quantities,
are relevant at these scales. The physics at short distances can thus be horribly complicated,
even chaotic, but the stochastic behaviors that emerge are usually simple. Thus, from Avo-
gadro’s number of degrees of freedom, needed to describe a gas molecule by molecule, emerge
a few quantities such as pressure, volume, and temperature in its large-scale description. From
the unpredictable, chaotic microscopic level emerges the quasi-determinism of thermodynamic
quantities.

Of course, the central limit theorem plays a considerable role here by telling us that when sum-
ming independent random variables, we obtain Gaussian laws that have (almost) completely
forgotten the underlying probability distribution. And the greater the number of summed
variables, the more precise the prediction of the behavior of the sum becomes in relative value.
Universality is the name of this phenomenon and has nothing to do with phase transitions
(contrary to what is generally suggested). The surprise is therefore not that there are univer-
sal phenomena in physics: they are everywhere. The surprise is that even critical phenomena
are subject to this.17 The central limit theorem is indeed valid for independent random vari-
ables whose mean and variance exist. For Ising away from criticality, the spins are certainly
correlated over typical distances of ξ, but since ξ ≃ a, their correlations are very weak, and
the system appears as a collection of clusters of typical size ξ, largely independent of each
other, even though the spins inside the clusters are not independent. For this reason, it is very
easy to generalize the central limit theorem to statistical systems away from criticality, and
universality works in this case in a "trivial" way.

This is not the case for systems at criticality, where all the spins are strongly correlated
because ξ = ∞. Therefore, it is difficult to know a priori whether any universality will survive
this situation, and if so, what the "universality classes" will be, that is, the set of systems
for which certain quantities have the same behavior. The surprise is therefore here: yes,
despite the strong correlations, there is universality in critical phenomena in the sense that
for certain classes of systems and for certain quantities, identical large-scale behaviors emerge
in microscopically different systems. The most well-known universal quantities are the critical
exponents, but there are many others, such as amplitude ratios between the high and low-
temperature phases, such as ξ+0 /ξ

−
0 . The prediction of this universality is one of the great

successes of RG (inaccessible, for example, to integrable models18), even though it is not easy
to predict a priori the contours of a universality class, already because it is not easy to predict
in general whether a given system undergoes a continuous phase transition or not.19 The

17The surprise comes from the major characteristic of these phenomena: the divergence of the correlation length,
which might (erroneously) suggest that since all degrees of freedom are coupled, no detail of the system can be
neglected.

18Having an exact solution for a given model such as the ferromagnetic Ising model in d = 2 on a square lattice
with nearest-neighbor interaction says nothing about another model, integrable or not, even if it is also invariant
Z2: integrability says nothing about universality and a fortiori nothing about the contours of a universality class.
One might think that conformal techniques would escape this criticism, since they are only concerned with symmetry
properties of models, but it is particularly difficult with this technique to link a given model with a given set of
conformal data.

19We often read that universality classes are determined by the space dimension d, the symmetry of the system
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notion of RG fixed point is what best explains universality in critical phenomena, and it is
not surprising that this concept is intimately linked to the generalization of the central limit
theorem to strongly correlated systems.

• Spontaneous symmetry breaking and ergodicity breaking. Quite often, but not al-
ways20, phase transitions are associated with spontaneous symmetry breaking. For the Ising
model, this is the complete breaking of the Z2 symmetry, and for the O(N) model defined
above, it is O(N) broken into O(N − 1). This symmetry breaking can only occur in the ther-
modynamic limit because for any finite volume, even if the majority of spins on average point
in the same direction, there is always a non-zero probability that a fluctuation will simultane-
ously change the direction of more than half of the spins. Of course, this probability vanishes
as the number of spins tends to infinity, so that in the low-temperature phase, when the system
has acquired a non-zero spontaneous magnetization, this magnetization can no longer change
direction. Therefore, in these situations, there is also spontaneous ergodicity breaking because
the system can no longer explore all the states that are, in principle, accessible to it.

For systems exhibiting spontaneously broken continuous symmetry at the transition, Gold-
stone’s theorem predicts the existence of modes whose susceptibility is infinite throughout
the low-temperature phase (so-called massless modes). The theorem predicts that there will
be as many as there are "broken generators," that is, as many as the difference between the
number of generators of the group G of the Hamiltonian (symmetry of the high-temperature
phase) and the number of generators of the group H of the system’s ground state (symmetry
of the low-temperature phase). In the case of O(N) broken into O(N − 1), there are thus
N(N − 1)/2− (N − 1)(N − 2)/2 = N − 1 Goldstone modes in the low-temperature phase.21

• Upper and lower critical dimensions. It is observed, and this will be explained later, that
for the Ising and O(N) models, the critical exponents, and more generally the universal quan-
tities, are correctly predicted by mean-field theory. This dimension, called the upper critical
dimension, dc, is four for these models.22 Note that the notion of upper critical dimension only
makes sense for universal quantities. For non-universal quantities, nothing in particular hap-
pens when crossing dimension four, and they remain non-exactly determined in all dimensions

and whether or not the interactions are short-range. This implies that any system with the same symmetry, the same
dimension and, for example, short-range interactions all share the same set of critical exponents. This is incorrect for
several reasons. Firstly, and most fundamentally, two such systems can undergo phase transitions, one continuous and
the other first-order: no universality here, of course. A simple example of this situation is given by a theory in the
continuum, in d = 3, with a field ϕ(x), of symmetry Z2 and whose Hamiltonian has a ϕ4 term with a very negative
coupling constant and a ϕ6 term with a small positive coupling constant. Although this model has Z2 symmetry, it
undergoes a first-order transition and is therefore obviously not in Ising universality class. Secondly, the symmetry
of a Hamiltonian is not everything. A given Hamiltonian can have different types of order in its low-temperature
phase (different spontaneous symmetry breaking schemes) depending on the value of its coupling constants. The
Hamiltonian can therefore be invariant under a group G, independent of the values of the couplings, and the low-
temperature phases, i.e. the fundamental states of H (which depend on the couplings) can be invariant under various
groups Hi with therefore different types of phase transition that are in general not in the same universality class.
Instead of talking about the symmetry G of the model, it is therefore better to talk about the symmetry-breaking
scheme: G → H1 or G → H2 or G → · · · . Furthermore, the same system can undergo critical, tricritical and, more
generally, multi-critical transitions. Here again, the critical exponents are not the same, depending on the degree
of multi-criticality considered. Finally, it is not out of the question for the same system to have several RG critical
fixed points, each with its own basin of attraction and therefore different universality classes. While this scenario is
generally perturbatively inaccessible, it is certainly no proof of its impossibility.

20For example, in the liquid-vapor transition, which is generically first-order but whose first-order line ends with a
second-order transition, there is no symmetry breaking.

21One must be careful not to over-interpret this result. It is possible that other modes are also massless in the low-
temperature phase. This is the case for the O(N) model, where the last mode is also massless due to its interactions
with the Goldstone modes. The mean-field analysis is wrong on this point because fluctuations must be taken into
account for this effect to appear.

22In d = 4, there are logarithmic corrections to mean-field theory, making it not entirely accurate in this dimension
for universal quantities.
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greater than four by the mean-field approximation. In fact, it is only in d = ∞ that mean-field
theory becomes exact, including for non-universal quantities.

There also exists for the O(N) models a lower critical dimension, below which there is no
longer a phase transition, or more precisely, where the phase transition temperature becomes
zero. For the Ising model, this lower critical dimension is one, and for N > 1, it is two.
The difference between these two cases arises from the fact that Ising symmetry is a discrete
symmetry, while for N > 1, it is a continuous symmetry.23 The presence of a lower critical
dimension for O(N > 1) is responsible for the existence of a perturbative theory in d = 2 + ϵ
for these models, performed starting from the nonlinear sigma model, with the case N = 2
being once again very special.

2.3 Mean-field approximation
“Ce qui est simple est faux, ce qui est compliqué est inutilisable.”
Paul Valéry

The entire difficulty of studying statistical systems such as O(N) models lies in the presence of
the very large number of degrees of freedom involved. This difficulty is even greater near a continuous
transition because, in this case, all degrees of freedom are strongly correlated, and thus the system
cannot a priori be considered as an assembly of small subsets essentially independent of each other.

The first approximation one might think of, the mean-field approximation in statistical mechanics
or the classical approximation in QFT, consists of approximating the summation over the system’s
configurations in the partition function in a way that makes it calculable. There are many ways to
achieve this. In all cases, the summation is truncated, which amounts to neglecting configurations
of the system that are expected to play a subdominant role compared to the one(s) retained.

A possible formulation of the mean-field (MF) approximation for ϕ4 theory consists of applying
a saddle-point approximation to the functional integral in Z[h], keeping only the configuration that
contributes the most to the integrand, i.e., the one that minimizes the Hamiltonian. In the remainder
of this section, we will consider only the case where the external magnetic field is constant and, for
simplicity of notation, restrict ourselves to N = 1, as the generalization to N > 1 is straightforward.
The configuration ϕ0 that minimizes the Hamiltonian at fixed h is assumed to be independent of x
since h is constant and the gradient term in H is positive, thus only increasing the energy. We then
obtain:

Z(h) → ZMF(h) = e−H(ϕ0,h) (37)

where ϕ0 is defined by
∂H(ϕ, h)

∂ϕ |ϕ=ϕ0

= 0 (38)

which defines ϕ0 as a function of h.
Let us show that at this level of approximation, ϕ0 is nothing more than the system’s magneti-

zation. To do this, let us calculate the magnetization from Eq. (37):

M = mΩ =
dW

dh
= −∂H(ϕ, h)

∂ϕ |ϕ0

∂ϕ0
∂h

− ∂H(ϕ, h)

∂h |ϕ0

= Ωϕ0 (39)

23The Mermin-Wagner and Coleman theorem ensures that for systems in thermodynamic equilibrium with short-
range interactions, a continuous symmetry cannot be broken in d ≤ 2. Note that the case N = 2 and d = 2 is special
because it features a very peculiar finite-temperature transition induced by the presence of topological defects, the
famous Kosterlitz-Thouless transition.
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where Ω = Ld is the system’s volume. It follows that m = ϕ0, as expected, because the spin
configuration corresponding to the magnetization is certainly the one that contributes the most to
Z.24 From this, we deduce the expression for Γ at this level of approximation:

ZMF(h) = e−H(ϕ0,h) = e−Γ(m)+Ωmh (40)

which implies the fundamental result:

ΓMF(m) = ΩV (ϕ = m) (41)

where V (ϕ) is the potential appearing in H, also called the bare potential. It is the part independent
of the field h and non-derivative, while the derivative part is referred to as the kinetic term. For the
ϕ4 theory, V (ϕ(x)) = r0ϕ

2(x)/2 + g0ϕ
4(x)/4!.

The previous result generalizes very easily to the case where one considers a non-constant field
h(x), in which case we find:

ΓMF[m] = H[ϕ(x) = m(x), h(x) = 0] (42)

that is to say, Γ is nothing but the part of the Hamiltonian independent of the magnetic field. This
result is crucial for several reasons:

• Discussions about a system’s thermodynamics are often based on the system’s Hamiltonian
(or Lagrangian in QFT). This is a priori incorrect because the statistical physics of a system
is determined by its free energies, not its Hamiltonian. However, the previous relation shows
that if the mean-field approximation is a good approximation, i.e., if fluctuations around the
mean field are small enough, then Γ ≃ ΓMF = H, and such discussions are valid. A striking
example of this type of misuse is the discussion of symmetry breaking in a system based on the
Hamiltonian, particularly on the double-well shape (or "Mexican hat") of the bare potential
V . Such discussions are generally incorrect because what matters for symmetry breaking is
not V but the effective potential U defined in Eqs.(28) and (29), as discussed later.25

• Equation (42) reveals a subtle issue: while H may very well be a non-convex function of ϕ,
Γ must be convex with respect to m. For instance, if r0 < 0 in H, Eq.(3), the potential for
N = 1 takes the form of a double well with minima at ±

√
−6r0/g0 and a local maximum at

0 (see Fig. 2). However, U can only equal V in its convex region, i.e., outside the interval
[−
√
−6r0/g0,+

√
−6r0/g0]. Thus, at the mean-field level, the effective potential U is repre-

sented by taking the convex envelope of V , i.e., drawing a horizontal line between the two
minima. Note that this part of the effective potential is physically inaccessible.

• The mean-field approximation predicts spontaneous magnetization for r0 < 0 because, in
this case, h = U ′(m) = V ′(m) (outside the non-convex region) has two non-zero solutions
±
√

−6r0/g0 as h → 0±. This corresponds to spontaneous symmetry breaking, correctly
reproduced at the mean-field level for generic dimensions d. However, a transition is also
predicted in d = 1, which is incorrect. For O(N > 1) models, the same would be true for
d ≤ 2, which is also incorrect, indicating that fluctuations around the mean field are large
enough in low dimensions to destabilize its predictions, even qualitatively.

24The true magnetization of the system, not its mean-field approximation, is different from ϕ0, as fluctuations around
the mean-field configuration modify it. In ferromagnetic models, these fluctuations tend to reduce the magnetization
compared to the mean-field prediction.

25There are cases where the bare and effective potentials differ significantly, making the mean-field analysis qual-
itatively incorrect. For example, mean-field theory may predict a second-order phase transition, whereas the actual
transition is first-order, or vice versa. It may even predict no phase transition, while a second-order transition exists
in reality. Examples include the 3-state Potts model in d = 2, frustrated magnetic systems in d = 3 on stacked
triangular lattices, branching annihilating random walks, etc.
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Figure 2: Double-well bare potential. At the mean-field level, this potential is identical to the
effective potential in the region where it is convex, i.e., outside the region between its two minima.

• The mean-field approximation is exact in d = ∞. Note here that for dimensions above the
upper critical dimension dc = 4, universal quantities are correctly obtained using the mean-
field approximation (see below). However, non-universal quantities are not: they generally
continue to receive significant corrections from fluctuations, often making their mean-field
approximation very poor. Only in infinite dimensions do these fluctuations disappear.26

One can go a bit further in the analysis of the mean-field approximation by calculating G(2), Γ(2),
and Γ(4). The calculation of Γ(2)(p,m) in the presence of a constant magnetization m is immediate
within the mean-field approximation using Eq.(42). We start by computing the first functional
derivative of Γ:

Γ(1)
α [x1,m] =

δΓ

δmα(x1)

=

∫
x

{
∇mα(x) · ∇δ(x− x1) + r0mα(x)δ(x− x1) +

g0
6
m2(x)mα(x)δ(x− x1)

}
=
(
−∇2 + r0 +

g0
6
m2(x1)

)
mα(x1).

(43)

We then compute the second functional derivative and evaluate the result in a configuration with
constant magnetization: mα(x) = mα:

Γ
(2)
αβ(x1 − x2,m) =

δ2Γ

δmα(x1)δmα(x2) |m(x)=m

= δαβ

(
−∇2 + r0 +

g0
6
m2
)
δ(x1 − x2) +

g0
3
mαmβδ(x1 − x2).

(44)

As expected, Γ(2)
αβ is a linear combination of the two (symmetric) rank-two tensors of O(N) that can

be constructed with the vector m, namely δαβ and mαmβ . In Fourier space, this becomes: 27

Γ
(2)
αβ(p,m) = δαβ

(
p2 + r0 +

g0
6
m2
)
+
g0
3
mαmβ . (45)

26From a technical standpoint (discussed later), it is the long-wavelength, or infrared, fluctuations that determine
universal behaviors and, consequently, the value of dc. Conversely, non-universal quantities depend on the microscopic
details of the model and are thus affected by short-wavelength, or UV, fluctuations. These fluctuations are generally
not suppressed as the dimension increases beyond dc, so there is no reason for non-universal quantities to be well
approximated in d > dc.

27Note that we have given the same name to Γ
(2)
αβ(x1 − x2,m) and Γ

(2)
αβ(x1, x2,m) even though the latter depends

on one additional argument. Its Fourier transform thus depends on two momenta and is proportional to a delta of
total momentum conservation, as well as (2π)d. When we consider a situation where the system is translationally
invariant and in accordance with our convention set out in Eq.(14), we will only use the Fourier transform of the
function Γ

(2)
αβ(x1 − x2,m), which depends on a single momentum.
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From Eq. (25), the function G(2)
c,αβ(p,h = 0) is the inverse of Γαβ(2)(p,m) with m the magnetization

at zero field, i.e., m = 0 in the high-temperature (symmetric) phase and |m| = ±
√

−6r0/g0 in the
low-temperature (broken) phase:28

G(2)c, αβ(p, h = 0) =
δαβ

p2 + r0
for T > Tc (46)

and
G

(2)
c,αβ(p, h = 0) =

δαβ
p2

− 2|r0|
p2(p2 + 2|r0|)

mαmβ

m2
pour T < Tc . (47)

Without loss of generality, we can take m in the direction 1, i.e., mα = mδα1. In this case, in the
broken phase (T < Tc):

G
(2)
c,11(p, h = 0) =

1

p2 + 2|r0|

G
(2)
c,22(p, h = 0) =

1

p2

(48)

These are called longitudinal susceptibility and transverse susceptibility, respectively (of course, the
direction 22 is not special, and all directions 33, · · · , NN play the same role). In the symmetric
phase, these two susceptibilities are naturally identical.

Recall that a correlation function proportional to 1/(p2 + ξ−2) implies an exponential decay
at large distances as exp(−r/ξ), which identifies ξ as the correlation length. Thus, in the high-
temperature phase, ξ = r

−1/2
0 , while in the low-temperature phase, the transverse directions have

an infinite correlation length (this is the Goldstone theorem), and the longitudinal direction allows
the definition of a correlation length ξ = (2|r0|)−1/2. Assuming r0 is a regular function of T and
is thus expandable, it must be proportional to T − Tc asymptotically close to the transition. This
allows us to conclude that the critical exponent ν = 1/2 within the mean-field approximation and
that it takes the same value in the low-temperature phase.29 We also note that the amplitudes ξ±0
of ξ are not identical and that their ratio is 1/

√
2, a universal number, i.e., here independent of g0.

2.4 Free Propagator and Perturbation Theory
Let us show in detail that the function G(2) is the Green function of the differential operator ap-
pearing in the quadratic part of H. To do so, let us rewrite this quadratic part:

Hquad. =

∫
x

ϕ(x)
(
−∇2 + r0

)
ϕ(x)

=

∫
xy

ϕ(x)
[(
−∇2

x + r0
)
δ(x− y)

]
ϕ(y)

=

∫
xy

ϕ(x)A(x, y)ϕ(y)

(49)

with A the differential operator: A(x, y) =
(
−∇2

x + r0
)
δ(x − y). Equation (49) generalizes to the

continuous case the discrete sum
∑

ij ϕiAijϕj where the ϕi would be the components of a vector in

28The inverse in O(N) space is straightforward to calculate if one recalls that G(2)c, αβ is also an O(N) tensor and
can thus be decomposed on the tensors mαmβ and δαβ .

29A word of caution is necessary here. For N = 1, there are no transverse directions, and the calculation above,
although quantitatively incorrect because ν receives corrections for d < 4, is qualitatively correct. For N > 1, however,
it suggests that N − 1 modes have an infinite correlation length but not the last one. In fact, the coupling between
the transverse modes and the longitudinal mode also makes the latter have an infinite correlation length, and the
mean-field approach is qualitatively incorrect here. Nevertheless, one can still define for T < Tc a length, called the
Josephson length, that separates Goldstone-type behavior from critical behavior, and for O(N) models, this length
diverges at the transition with an exponent equal to ν, the same as in the high-temperature phase.

18



an n-dimensional space and Aij the matrix elements of a diagonal matrix. Provided that none of the
Aii are zero, this matrix is invertible, and we obviously have

∑
j AijA

−1
jk = δik. In the continuous

case, the relation between the operator A and its inverse is written:∫
y

A(x, y)A−1(y, z) = δ(x− z). (50)

If A is a translation-invariant operator and can thus be written (abusively keeping the same name):
A(x, y) = A(x− y), then in Fourier transform, A−1(q) = 1/A(q). This applies to the operator A in
Eq. (49), and the inversion relation (50) takes the form:

δ(x− z) =

∫
y

[(
−∇2

x + r0
)
δ(x− y)

]
A−1(y − z)

=
(
−∇2

x + r0
) ∫

y

δ(x− y)A−1(y − z)

=
(
−∇2

x + r0
)
A−1(x− z)

(51)

which, in Fourier space, becomes:
(p2 + r0)A

−1(p) = 1 (52)

and we thus see that A−1(p) = G(2)MF(p). We conclude that in the mean-field approximation, the
function G(2) is the inverse of the quadratic part of the Hamiltonian. It is called the free propagator
of the theory (free because, in QFT, a Gaussian theory describes free particles). This function is one
of the essential ingredients of perturbation theory, as it consists of an expansion of Z[h] in powers
of g0 around the Gaussian theory:

Z[h] =

∫
Dϕ

(
1 + g0

∫
x1

ϕ4(x1) +
1

2
g20

∫
x1x2

ϕ4(x1)ϕ
4(x2) + · · ·

)
e−HG[ϕ]+

∫
hϕ (53)

where HG[ϕ] is the Gaussian part of the Hamiltonian at zero field: HG[ϕ] = 1/2
∫
x
[(∇ϕ(x))2 +

r0ϕ
2(x)].
The Gaussian functional integral is the only one that can be computed in any dimension:∫

Dϕ, e−
1
2

∫
x
ϕ(x)A(x)ϕ(x)+

∫
x
h(x)ϕ(x) ∝ 1√

detA
e

1
2

∫
x
h(x)A−1(x)h(x) (54)

and, of course, from this expression, one can compute the expectation value of an arbitrary product
of the field by functional differentiation with respect to h(x). Thus, we can compute any term such
as: ∫

Dϕϕ(x1) · · ·ϕ(xn)e−HG[ϕ]+
∫
hϕ (55)

and therefore all the terms of the perturbative expansion.30 From the above expression, we see that
it involves the inverse of the operator A which comes from the quadratic part of H and which is the
free propagator, highlighting its crucial importance in perturbation theory.

30What remains difficult in perturbation theory is not the computation of the functional integral but rather the
computation of "loop integrals," i.e., the integrals over the points x1, x2, · · · . There are as many such integrals (each
being in d dimensions) as there are independent loops in the Feynman diagrams representing a given contribution to
the perturbative expansion.
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3 The Functional Renormalization Group: Introduction and
Definitions

"L’ignorance est la nuit qui commence l’abîme"
V. Hugo

What is systematically neglected in the mean-field approximation, within the functional integral,
is the contribution of field configurations other than the one corresponding to its mean value. We will
call fluctuations around the mean field the contribution of these configurations. Going beyond the
mean field thus consists of reincorporating these fluctuations that were neglected at the mean-field
level in order to eventually compute the free energies W or Γ.

The idea of Wilsonian renormalization in its modern version is therefore to construct a trajectory
starting from the mean-field situation where fluctuations have been neglected, and reaching the free
energy Γ.

Historically, it was rather W than Γ that was targeted as the final point of the trajectory after
integrating out fluctuations. Of course, in principle, there is not much difference between obtaining Γ
instead of W , since one can reconstruct one from the other via a Legendre transformation. However,
in practice, the implementation of approximations does not lead to the same results at all, depending
on which quantity they are applied to: in this case, the equivalence between the two formulations no
longer holds. Moreover, as we now know—but which was not understood until quite recently— Γ is
a much better starting point for implementing approximations that go beyond perturbation theory
than W .31

The central idea of Wilsonian renormalization is to organize the summation over fluctuations
scale by scale in momentum space. In real space, this corresponds to Kadanoff’s block spin method:
at the lattice scale, one starts with the initial Hamiltonian and the corresponding Boltzmann weight,
then integrates out the fluctuations over a block of spins to obtain a new Hamiltonian, from which
a new Boltzmann weight follows for the spin configurations that have not yet been integrated out.
The process is then iterated until all configurations of the system have been integrated out. This
generates a flow of Hamiltonians that depends on the scale via the size of the blocks, linking the
initial Hamiltonian to W . Integrating this flow therefore means computing W as a function of H,
which amounts to solving the model.

Figure 3: Integration of fluctuations in Γk. Fluctuations of large wavelength, i.e., small momentum
compared to k, are frozen, and those of short wavelength are integrated without modification into
Γk.

The idea with a flow of Γ (rather than H or W ) is very similar: it involves starting from the
Hamiltonian, which is defined at the lattice scale, and successively integrating, scale by scale in

31In fact, the relative neglect of Wilsonian methods stems from this: for a long time, the conceptual framework
proposed by Wilson was very appealing, but the practical results obtained did not live up to expectations. That this
was due to the practical implementation of the chosen approximation schemes, and more importantly, that it was
possible to remedy this simply, was not at all clear and actually took decades to be understood and overcome through
the use of Γ. In the meantime, proponents of perturbative methods had made their peace with it: one was thinking
à la Wilson but was calculating à la Feynman.
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momentum space, over the fluctuations. Since H = ΓMF and the mean-field approximation consists
of neglecting all configurations in the functional integral except for one, at the lattice scale, it involves
freezing all fluctuations such that

H = ΓMF is replaced by H = ΓΛ (56)

where Λ is the inverse of a microscopic length scale used to define H, for example, a remnant of
the lattice spacing for the Ising model. At scale Λ, the idea is to replace H = Γ, which is just an
approximate relationship valid only at the mean-field approximation, by the relationship H = ΓΛ,
by cleverly freezing the fluctuations at this scale such that this relationship becomes exact. The
idea is then to proceed like the block spins, progressively integrating the fluctuations in a Gibbs free
energy Γk, depending on a scale k, until reaching Γ at k = 0 where, by definition, all fluctuations
will have been integrated: Γk=0 = Γ. Thus, we will have created a flow between H = Γk=Λ and
Γ = Γk=0, where, at an intermediate scale Λ > k > 0, only fluctuations with wavelengths between
a = Λ−1 and the running scale l = k−1 have been integrated out, which is in the spirit of block
spins.

To summarize, the idea is to construct a family of free energies Γk with a parameter interpolating
between the Hamiltonian for k = Λ and the free energy Γ that we aim to calculate at k = 0. To
do this, the idea is to freeze at scale k the fluctuations with momenta smaller than k, i.e., the
fluctuations with large wavelengths compared to k−1: we integrate the "fast" modes and freeze the
"slow" modes. The family of Γk must therefore satisfy:

• Γk=Λ = H

• Γk=0 = Γ

• Γk is the free energy of the fast modes (relative to k) that have been integrated out.

q

Rk HqL

k

k2

Figure 4: Typical form of the regulator Rk(q).

We thus need to modify our model to freeze the slow modes at scale k. This is simple to do
because, in a statistical sense, a mode is frozen when it no longer contributes to the partition
function, implying that its correlation length is small. Indeed, consider a mode whose correlation
length is zero. Its propagator also vanishes (this can be seen at the mean-field level in Eq.(46)) and
it no longer participates in the system’s dynamics. To modify its correlation length, we see from
Eq.(46) that we must change the value of r0 by making it very large. Physically, this is equivalent
to placing the system at very high temperature. In this case, the system is completely disordered
(the thermal energy kT becomes much larger than the magnetic energy J in lattice models like Ising
and O(N)), and it behaves like a system of spins that do not interact with each other: it is no
longer truly a many-body system but a collection of independent one-body systems for which the
mean-field approximation becomes exact.
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The problem with the previous idea – changing the temperature of the entire system – is that it
treats all fluctuation modes, whether fast or slow, equally. However, we want to freeze only the slow
modes (relative to k). The remedy is to assign a large r0 only to these modes while leaving the fast
modes unchanged. Therefore, we modify the initial Hamiltonian by adding a term that only freezes
the slow modes, i.e., giving them a "large mass" via a quadratic term in the field that is nearly zero
for the fast modes:

H[ϕ] → Hk[ϕ] = H[ϕ] + ∆Hk[ϕ] = H[ϕ] +
1

2

∫
q

Rk(q)ϕ(q)ϕ(−q) (57)

where we have written Hk[ϕ] in Fourier space for convenience, and where Rk(q), called the regulator
or cut-off function, has a typical form given in Fig. 4.32

We note the following two properties of Rk:

• Rk=0(q) ≡ 0 such that Hk=0[ϕ] = H[ϕ]

• Rk=Λ(q) ∼ Λ2 such that the term ∆Hk=Λ is very large compared to the other terms in H.

The partition function associated with this model is

Zk[h] =
∫
Dϕ, e−Hk[ϕ]+

∫
x
h(x)ϕ(x) (58)

Note the change in notation compared to what was previously used: now, the magnetic field term
is explicitly separated from the Hamiltonian Hk, which no longer depends on it. The Legendre
transform of Wk[h] = logZk[h], denoted ΓLeg

k [m], is

ΓLeg
k [m] +Wk[h] =

∫
x

h(x)m(x). (59)

It is convenient for the following to rewrite ΓLeg
k in the form

ΓLeg
k [m] = Γk[m] +

1

2

∫
q

Rk(q)m(q)m(−q) (60)

where Γk[m], called the modified Legendre transform, is the object we will work with from now on.
The difference between ΓLeg

k and Γk is a trivial term in m since it is quadratic, but it is convenient
to subtract it from ΓLeg

k to have the property Γk = Λ = H as we will show later. We then obtain:

Γk[m] +Wk[h] =

∫
x

h(x)m(x)− 1

2

∫
xy

Rk(x− y)m(x)m(y) (61)

where we have written the term coming from the regulator in position space this time.
Of course, decreasing k in Rk corresponds to integrating more and more fluctuations, and this

leads to an evolution of Γk[m] with k, called the renormalization flow. Let us now derive the exact
flow equation for Γk[m].

3.1 An exact identity for Γk[m] and the limit k → Λ

Intuitively, one might expect that if the function Rk(q) becomes very large for all fluctuation modes
regardless of their wavelength, the fluctuations of the system regulated by Rk will become very small,

32It will be shown later that in fact the value of Rk(q) at q = 0 is not exactly k2, as it will be convenient to include
a contribution from the renormalization of the field. For what concerns us at this stage, this is a detail, but we must
remember that we will have to return to the precise form of the regulator.
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and the mean-field approximation will cease to be an approximation—it will become exact. This is
what we will now demonstrate, using an exact identity satisfied by Γk.

Let us begin with the example of a theory involving a scalar field. Starting from Eq. (61), we
rewrite it as:

e−Γk[m]e
∫
x
h(x)m(x)− 1

2

∫
xy

Rk(x−y)m(x)m(y) =

∫
Dϕ e−H[ϕ]− 1

2

∫
xy

Rk(x−y)ϕ(x)ϕ(y)+
∫
x
h(x)ϕ(x). (62)

Furthermore, using Eqs. (20) and (60), we obtain:

δΓk[m]

δm(x)
= h(x)−

∫
y

Rk(x− y)m(y). (63)

Substituting Eq. (63) into Eq. (62), we finally obtain:

e−Γk[m] =

∫
Dϕ e−H[ϕ]+

∫
x

δΓk[m]

δm(x)
(ϕ(x)−m(x))− 1

2

∫
xy

Rk(x−y)(ϕ(x)−m(x))(ϕ(y)−m(y)). (64)

This equation is very interesting because it trivially shows that if ∀q, Rk(q) → ∞, then Γk = H, or
in other words, the mean-field approximation becomes exact in this limit.

To show this, we use the functional analogue of the relation√
2π

a
e−

1
2ax

2 ∼
a→∞

δ(x), (65)

which reads
e−

1
2

∫
xy

Rk(x−y)(ϕ(x)−m(x))(ϕ(y)−m(y)) ∼
Rk→∞

δ(ϕ−m), (66)

where the proportionality factor analogous to
√
2π/a has been omitted since it is irrelevant for the

following. When this relation holds, the functional integral can be performed, and the previously
announced result follows trivially.

In practice, there are two cases:

• Either Rk=Λ(q) ≡ ∞, in which case ΓΛ = H,

• Or, as is most often the case, Rk=Λ(q) ≃ Λ2, in which case ΓΛ ≃ H, because although Λ is
very large compared to most scales in the problem, it is not infinite.33

To conclude this section, we highlight several points:

• The regulator RΛ indeed fulfills its intended role of freezing fluctuations of modes with q < Λ,
since for k = Λ, all (or almost all) fluctuations are frozen and the mean-field becomes exact.

• It is ΓΛ that becomes equal to H and not ΓLeg
Λ as defined in Eq. (59), which becomes H+∆HΛ,

as expected for the Legendre transform of WΛ.

• The term − 1
2

∫
q
Rk(q)m(q)m(−q) used in Eq. (60) to define the modified Legendre transform

Γk[m] serves to compensate, on average, the term ∆Hk introduced in the regularized partition
function, Eq. (58). When all fluctuations are frozen, that is, for k = Λ, these two terms
coincide, ensuring that ΓΛ = H.

• From the above, we deduce that the renormalization group flow of Γk will allow us to connect
the Hamiltonian H to the free energy Γ, since at k = Λ (the initial condition of the flow),
Γk=Λ = H, and at k = 0 (the end point of the flow), Γk=0 = Γ, because Rk=0 ≡ 0.

33Note that this is irrelevant for the calculation of universal quantities, which are independent of short-distance (i.e.,
ultraviolet) details, but it is important for the calculation of non-universal quantities that require the most accurate
possible description of the UV sector.
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3.2 The exact flow equation for Γk[m]

Let us first calculate the flow equation for Γk in the case N = 1.
First, note that

∂k|h ̸= ∂k|m (67)
because, at fixed h, m is a function of k, and conversely, at fixed m, it is h that becomes a function
of k. The relationship between the two derivatives is

∂k|m = ∂k|h +

∫
x

∂kh(x)|m
δ

δh(x)
(68)

which generalizes the usual derivative change when changing the set of variables held fixed.
We now apply this derivative to Eq.(61) and obtain:

∂k|mΓk[m] +

(
∂k|h +

∫
x

∂kh(x)|m
δ

δh(x)

)
Wk[h] =

∫
x

∂kh(x)|mm(x)− 1

2

∫
xy

∂kRk(x− y)m(x)m(y).

(69)
From the definition of Wk[h] we get

δWk[h]

δh(x)
= ⟨ϕ(x)⟩ = m(x) (70)

where the average is taken in the presence of the ∆Hk term. From Eq.(58) we also obtain:

∂k|hWk[h] =
1

Zk[h]

∫
Dϕ

(
−1

2

∫
xy

∂kRk(x− y)ϕ(x)ϕ(y)

)
e−Hk[ϕ]+

∫
x
hϕ

= −1

2

∫
xy

∂kRk(x− y)⟨ϕ(x)ϕ(y)⟩

= −1

2

∫
xy

∂kRk(x− y)
(
G

(2)
c,k[x, y;h] +m(x)m(y)

)
.

(71)

Substituting Eqs.(70) and (71) into Eq.(69), we get:

∂kΓk[m] = −1

2

∫
xy

∂kRk(x− y)G
(2)
c,k[x, y;h]. (72)

Since the functions G(2)
c,k[x, y;h] and Γ

(2),Leg
k [x, y;m] are inverses of each other, see Eq. (22), we finally

deduce the flow equation:

∂kΓk[m] = −1

2

∫
xy

∂kRk(x− y)
(
Γ
(2)
k [x, y;m] +Rk(x− y)

)−1

(73)

often called the Wetterich equation, this equation has the initial condition ΓΛ = H if RΛ(q) = ∞.
The previous equation can be easily generalized to O(N) symmetric models. In this case, it is

obviously convenient to take a term ∆Hk that respects the symmetry:

∆Hk[ϕ] =
1

2

∫
xy

Rk(x− y)ϕ(x) · ϕ(y) = 1

2

∫
xy

ϕα(x)
(
Rk(x− y)δαβ

)
ϕβ(y). (74)

Just like the cutoff function: Rk,αβ(x− y) = Rk(x− y)δαβ , the function Γ(2) is also an O(N) tensor,
as seen in Eq. (21). By repeating the derivation steps above, we unsurprisingly find for the flow
equation:

∂kΓk[m] = −1

2
Tr

∫
xy

∂kRk(x− y)
(
Γ
(2)
k [x, y;m] +Rk(x− y)

)−1

(75)

where the trace is taken over the group indices, here O(N).
More generally, if H is symmetric under a group G, we will take a term ∆Hk symmetric under

G if it exists, and the flow equation will be formally identical to the one above with the trace taken
over the indices of G.
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3.2.1 Some properties of the exact flow equation and the approximations to be im-
plemented

• The Wetterich equation (75) is an exact equation that, if solved exactly, gives Γ[m] at the end
of the flow, starting from H as the initial condition, which constitutes an exact solution of the
field theory defined from H.34

This equation, which seems simple at first glance, is actually not: it is a functional, integral,
nonlinear, and partial differential equation. It is generally not exactly solvable and therefore
requires approximations to be usable. In the following, we will see two approximation schemes:
the derivative expansion, which is by far the most popular, and the BMW (Blaizot-Méndez-
Wschebor) method, which is more powerful but also more complicated to implement.

• It may seem surprising at first that an exact equation claiming to compute the free energy of
a system depends crucially on a cutoff function Rk(q), which is arbitrary except that it must
vanish identically at k = 0 and tend to infinity as k approaches Λ. The solution to this paradox
is, of course, that Γk=0 = Γ regardless of the choice of the cutoff function, as long as it satisfies
Rk=0 ≡ 0. In other words, the details of the trajectory connecting ΓΛ = H to Γk=0 = Γ do
not matter as long as the starting and ending points are correct. See Fig. 5 for a schematic
description of the flow.

Figure 5: Different exact RG flows in the theory space corresponding to different choices of the
function Rk. In QFT, the initial condition is the action of the model, denoted S, and in statistical
mechanics, it is the Hamiltonian H. The axes schematically represent the different coupling con-
stants. They are generally infinite in number because along the renormalization flow, all couplings
(compatible with the symmetries) are generated.

But this statement is too brief. As mentioned above, RG is only of interest when approxima-
tions are used to perform actual calculations. And when this is done, the final result of the
integration of the flow generally retains an artificial dependence on the choice of the function
Rk. In other words, in the analogy to Fig. 5 in the presence of approximations, the flows do
not all lead to the same point Γk=0, meaning they show a dispersion of Γk=0.

For a long time, part of the physics community active in this research field considered this
dispersion to be a fatal flaw for the Wilsonian renormalization method, which implied two
things: (i) a physical quantity cannot depend on a non-physical choice, and (ii) this dependence

34Note that an exact equation can also be formulated for lattice theories. Of course, two theories, one in the
continuum and the other on a lattice, can belong to the same universality class. Their universal quantities will
therefore be identical, but the non-universal ones will be different. The formulation of the flow on the lattice has been
successfully implemented for calculating critical temperatures of ferromagnetic spin models with O(N) symmetry on
a three-dimensional cubic lattice with nearest-neighbor spin interactions.
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is specific to the Wilsonian method and discredits it for actual (i.e., approximate) calculations.
However, we must be very cautious with assertions (i) and (ii) above.

First of all, one can only agree with (i) if no approximation is made. But generically, and in all
areas of physics, the results of approximate calculations depend on the method of calculation.
Take, for example, the simple perturbative calculation of the frequency Ω/2π of a classical
anharmonic oscillator with Hamiltonian H = p2/2m+mω2

0x
2/2 + gx4. The standard method

for perturbatively calculating Ω consists of considering the gx4 term as a perturbation to
the harmonic oscillator with frequency ω0/2π and calculating Ω as a Taylor series in g. But
nothing prevents us from first splitting the harmonic potential term: mω2

0x
2/2 = mω2x2/2 +

m(ω2
0 − ω2)x2/2 and performing perturbation theory by considering m(ω2

0 − ω2)x2/2 + gx4

as the perturbation. One then finds, at all orders in perturbation theory, that Ω depends on
ω, which is clearly an artifact of perturbation theory.35 Thus, it is found that there is not
just one perturbation theory, but, for a given finite order, an infinity of non-equivalent ways
to construct perturbation theories. This is also true in field theory, and just because one is
chosen does not mean that the others do not exist.

Note that in field theory, there are intrinsically different perturbation theories: expansion in
ϵ = 4 − d or ϵ = d − 2, expansion at fixed d in coupling constant (for example, the "massive
zero momentum scheme"), expansion in 1/N , to name just a few of the most famous. It
must be understood, however, that even for a given perturbative method, there are several
non-equivalent ways to carry out the calculations that lead to different results at finite order.
For this reason, it is said that the results obtained are dependent on the renormalization
scheme. This answers point (ii) above: choosing a cutoff function Rk in FRG is analogous
to choosing a renormalization scheme in perturbation theory, and in both cases, the physical
results obtained at a given order of approximation depend on this choice. Therefore, FRG is
not the only method to suffer from this arbitrariness, and the art, whether or not perturbative,
is to optimize the choice of the scheme, see below for the optimal selection of Rk.

Finally, note that since perturbative series are generally not convergent, they require resum-
mation (when possible, though not always) to be useful, which introduces its own arbitrariness
because the resummed results depend on the resummation methods used.36 FRG is in a better
position in this regard, see below.

• If the microscopic Hamiltonian H (and the functional measure) are symmetric under a group
G, and if there exists a cutoff function Rk such that the term ∆Hk respects this symmetry,
then Γk is symmetric under G for all k, and thus Γ = Γk=0 is also symmetric. It is then
said that the symmetry G has no anomaly: in quantum terms, the symmetry of the classical
theory, i.e., the symmetry of H, is preserved at the quantum level, that is, on Γ and thus for
all correlation functions.

It may happen that no quadratic term ∆Hk in the fields respects the symmetry G, while the
theory, i.e., Γ, remains invariant under G. This means that the symmetry is broken by ∆Hk

35It should be noted here that this dependence on ω, which may seem catastrophic, can actually be turned into
an advantage. The idea is to search for "the best harmonic oscillator" around which to perform the perturbative
calculation. Indeed, if g is large, Ω can be very different from ω0 – it turns out that this is the case – which makes
the perturbative series for large values of g very poor. The idea is to choose ω such that the difference Ωn − Ωn−1,
where Ωn is the value of Ω at the n-th order of perturbation, is as small as possible, ensuring the fastest possible
convergence of the sequence of Ωn. At any order n, this makes ω a function of g, which is entirely legitimate since ω
is arbitrary. This procedure’s result is that the convergence of these Ωn is very rapid, unlike the perturbative series in
g, which is not convergent and requires quite sophisticated resummations and large perturbative orders to achieve the
same level of precision. This method of improving perturbation theory is sometimes called "improved perturbation
theory". The optimization of the choice of non-physical parameters in FRG, the function Rk in this case, will be an
important theme of these notes.

36Note that QED avoids this issue due to the smallness of the coupling constant that orders the perturbation theory,
see footnote 11.
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for all finite k and is only restored for k = 0. This is the case for gauge symmetries in QFT,
as these symmetries impose the nullity of the mass of the gauge bosons and are therefore
incompatible with a quadratic term in the fields such as ∆Hk. This symmetry-breaking term
can be controlled by modified Ward (more precisely, Slavnov-Taylor) identities, which become,
in the limit k → 0, the true Ward identities of the gauge symmetry.
However, an additional difficulty arises once approximations are implemented, as in this case,
the final result of the flow integration retains an artificial dependence on Rk as explained
above, making it delicate to ensure the gauge invariance of the results of the flow integration,
even at k = 0. This is true beyond the example of gauge invariance and is encountered in any
situation where a quadratic cutoff term in the fields is incompatible with a symmetry or with
any other property of the model.37

• One can derive an exact RG flow equation in the presence of fermions. The trace is then
replaced by a supertrace (fermions contribute with an opposite sign to bosons).

• The equation (75) closely resembles the result at one loop, since at this order:

Γk = H +
1

2
Tr log

(
H(2) +Rk

)
. (76)

Thus, by replacing H(2) – which is Γ(2) at the mean field approximation – with the functional
Γ
(2)
k [m] and differentiating with respect to k, we turn the one-loop result into an exact result!

There is a diagrammatic representation of the Wetterich equation highlighting its one-loop
structure, see Fig. 7.

Gk q,−q′ =

�

q −q′

Figure 6: Diagrammatic representation of the full propagator G(2)
c,k[q,−q′;h] in Fourier space. It is a

function of both x and y in direct space and of two arguments q and −q′ in Fourier space because
there is no translation invariance when evaluating G(2)

c,k in a non-constant external field h(x).

Figure 7: Diagrammatic representation of the Wetterich equation (75). In this equation, the integrals
over x and y force, in Fourier space, the second argument of G(2)

c,k[q,−q′;h] to be q′ = q. The
remaining integral over q is represented by a loop. The cross corresponds to ∂kRk(q).

• This one-loop structure has a very important practical consequence: only one integral needs to
be computed, and when evaluated in a constant field, it is one-dimensional due to rotational
invariance. This is very different from perturbation theory, where l-loop diagrams require
integrals of dimension d times l. This represents a significant simplification compared to
perturbation theory.

37In out-of-equilibrium statistical mechanics, the notion of causality often plays an important role and is not strictly
speaking a symmetry. Here too, care must be taken to choose an Rk that does not violate this property.
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• The perturbative expansion can be recovered from the Wetterich equation and, for example,
the proof of the perturbative renormalizability of the ϕ4 theory in d = 4 is much simpler in
this formalism than in the diagrammatic formalism.

• Due to the term ∂kRk in the Wetterich equation (75), only the q2 moments of the order of
k2 or less contribute to the flow at the scale k (we will revisit this point in detail later).
Thus, the RG flow is regular in the ultraviolet. Regarding the infrared, the term in Rk of the
propagator: (Γ(2)+Rk)

−1 regularizes its behavior at small momenta, which is normal since the
"coarse-graining" procedure itself involves freezing the modes of long-wavelength fluctuations.
All divergences in perturbation theory are thus avoided: the RG flow is computed directly
and not first, as in perturbation theory, the relation between bare and renormalized quantities
from which the RG flow is computed in a second step.

• From what has been said above, it follows that k acts as an infrared regulator (for k ̸= 0),
somewhat similar to a finite-size box ∼ k−1. Thus, for k > 0, there is no phase transition in the
system regularized by Rk, and therefore no infrared singularity in Γk. At finite k, everything
is regular and can be expanded in series of the field and/or its derivatives. We can therefore
conclude that:

(i) Singularities of Γ build up as k decreases and are thus smoothed by k in Γk;
(ii) The precursor of the critical behavior should already appear at finite k for much larger

momenta than k. This is indeed what is observed when calculating (using the BMW
method, see below) the function Γ

(2)
k (p,m = 0): for a critical model, i.e., one whose

Hamiltonian H renders it critical, the behavior at small p: p≪ k is regular and expand-
able in a series of p2/k2, while at p≫ k it behaves as p2−η, which is the expected behavior
of Γ(2)

k=0(p) for any |p| > 0 at criticality. We thus see the critical behavior in p developing
in the region where k is negligible compared to |p|, and as k decreases, this region extends
more and more until it covers the entire p domain for k = 0. We will see that the region
p ≲ k is the region where the derivative expansion is valid, beyond which it ceases to be
valid (see below).

(iii) There is a fundamental difference between the flow of Hamiltonians as historically for-
mulated by Wilson (or the flow of Wk[h]) and the flow of Γk: in the first case, k is
an ultraviolet cutoff because the effective Wilson Hamiltonian at the scale k, obtained
after integrating over the fast modes (block-spin principle), is the Hamiltonian for the
slow modes, i.e., those that have not yet been integrated. In the second case, Γk is the
(modified) free energy for the fast modes, i.e., those that have already been integrated.
The Wilsonian Hamiltonian at scale k has no simple physical interpretation because, to
read the resulting physics, i.e., to obtain the free energy, one still needs to calculate a
functional integral, that over the slow fluctuation modes. On the other hand, Γk is a kind
of precursor to Γ, since it is a free energy, albeit strange because it corresponds to the
incomplete integration over the fluctuations, but on which one can already read part of
the physics, as explained above.

4 The Derivative Expansion
As explained earlier, the flow equation of Γk (75) cannot generally be solved, and recourse to
approximations is inevitable. The most famous of these approximations is perturbation theory.

We will now see that the formulation of field theory in the form of the Wetterich equation (75)
allows for approximations that are not based on the smallness of any parameter, whether it is the
deviation from the upper critical dimension (ϵ = 4− d) or lower critical dimension (ϵ = d− 2), the
coupling constant g0 (fixed-dimension expansion around the gaussian), or the inverse of the number
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of components of the field, 1/N (expansion around the spherical model at N = ∞). The most
famous of these approximations is the derivative expansion of Γk[m], and we will now describe it in
detail for N = 1.

As explained earlier, the fluctuations of slow modes responsible for infrared singularities at crit-
icality are cut off in Γk by the regulator Rk. As a result, Γk is a regular functional of m(x), even if
the initial system, unregulated, is critical. We can therefore attempt a derivative expansion of this
functional, which, for example, for Γ

(2)
k (p,m = 0) will be an expansion in powers of p2/k2, regular

as long as k ̸= 0. For N = 1, this expansion is quite analogous to the one given in Eq. (28):

Γk[m] =

∫
x

{
Uk(m(x)) +

1

2
Zk (m(x)) (∇m(x))

2
+O(∇4)

}
. (77)

In the above equation, the k dependence is carried by the functions Uk, Zk, · · · .38 It would be
the same for N > 1 with the analogue of Eq. (29). Of course, the issue of the convergence of this
expansion is crucial to determine whether we can derive non-trivial physics from it, and, as explained
earlier, this is indeed the case for scales smaller than typically k. In the limit k → 0, we can therefore
hope to compute thermodynamic quantities reliably with this expansion, that is, those defined from
correlation functions at zero moments, such as the correlation length, susceptibility, magnetization,
specific heat, etc.

The flow equation for Γk (75), once the derivative expansion is inserted, becomes an infinite set
of coupled flow equations for the functions {Uk(m), Zk(m), · · · }. To be useful, this infinite tower of
equations must be truncated by keeping only a finite number of functions corresponding to a finite
order in the derivative expansion. The simplest truncation is to keep only the potential Uk as a
function of k. This is known as the local potential approximation (LPA), which we will now study
in detail.

4.1 The Local Potential Approximation in the Ising case
In this approximation, we replace Γk by ΓLPA

k given by

Γk[m] → ΓLPA
k [m] =

∫
x

{
Uk(m(x)) +

1

2
(∇m(x))

2

}
. (78)

Due to the Z2 symmetry, Uk(m(x)) is actually a function of ρ(x) = m2(x)/2 only, and it may
sometimes be useful to work with ρ rather than m to make the invariance under Z2 manifest in the
equations we manipulate.

Note that in the LPA, the derivative term already present in H has been retained (but with
Zk(m) replaced by 1) because otherwise the system would have no dynamics, as there would be no
coupling between the m(x) at different points.

The potential Uk is defined from Γk by:

ΩUk(m) = Γk[m]|m(x)=m
(79)

where m is constant and Ω is the volume of the system.39 From this definition, we can see that
there is no need to consider x-dependent fields m(x) to obtain the functional dependence of Uk on
m, which will greatly simplify our calculations.

The flow of Uk is obtained by applying the operator ∂k to both sides of Eq. (79), replacing ∂kΓk

with the right-hand side of the Wetterich equation, and calculating the right-hand side using the
38Recall that the function Zk(m(x)) has nothing to do with the partition function Zk[h].
39It is important to give a definition of Uk that is valid independently of the order of the derivative expansion being

considered. Thus, the only source of error in its flow equation will come from truncating the derivative expansion,
not from a definition that changes with the order considered.
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LPA ansatz, Eq. (78):

∂kUk(m) =
LPA

1

2

∫
xy

∂kRk(x− y)
(
Γ
(2),LPA
k (x− y,m) +Rk(x− y)

)−1

=
LPA

1

2

∫
q

∂kRk(q)
(
Γ
(2),LPA
k (q,m) +Rk(q)

)−1

.

(80)

The calculation of Γ(2),LPA
k (x− y,m) is straightforward:

Γ
(2),LPA
k (x− y,m) =

(
−∇2

x + U ′′
k (m)

)
δ(x− y). (81)

This gives the LPA flow for Uk:

∂kUk(m) =
1

2

∫
q

∂kRk(q)

q2 +Rk(q) + U ′′
k (m)

. (82)

It is now time to choose a cutoff function, and we will take, for example:

Rk(q) = (k2 − q2)θ(k2 − q2) (83)

where θ(x) is the Heaviside step function. This regulator has several advantages: it significantly
simplifies the LPA flow and may be optimal at the LPA for calculating critical exponents, in the
sense that it leads to results closest to the best-known results in d = 3 (though there is no rigorous
proof of this, it is an empirical observation). Using∫

ddq

(2π)d
f(q2) = 2vd

∫ ∞

0

dxxd/2−1f(x) (84)

with vd = (2d+1πd/2Γ(d/2))−1, we obtain:

∂kUk(m) =
LPA

4vd
d

kd+1

k2 + U ′′
k (m)

. (85)

This is a nonlinear partial differential equation, yet still very simple, and its numerical integration
is straightforward and without surprises, at least for d > 2 (we will come back to the case d = 2).

To integrate this equation, we need an initial condition. In our case, it is given by the "bare" ϕ4
potential, the one from the Hamiltonian of the system, Eq. (3). By fixing the value (positive) of g0,
there are several cases depending on the value of r0.

To qualitatively understand what happens when integrating the flow of Uk, we recall that fluc-
tuations tend to disorganize the system, so the value of the critical temperature for a model like
Ising is smaller than its mean-field value: Tc < TMF

c . For the ϕ4 theory, the situation is the same:
the value of r0 for which the model is critical is smaller than the mean-field value (which is zero):
r0,c < rMF

0,c = 0. Therefore, there are three possibilities, described qualitatively below and confirmed
by the numerical integration of the flow given by Eq. (85).

(i) Let rk=Λ = r0 > 0. Even at the mean-field level, the system is in the disordered phase and
the initial potential is convex, U-shaped. Since fluctuations can only accentuate this, the potential
remains convex throughout the flow, deforming slightly due to fluctuations, mainly Gaussian, since
the system is deeply in the high-temperature phase and its correlation length is consequently small.

(ii) Let 0 = rMF
0,c > rk=Λ = r0 > r0,c. The system has a bare potential, i.e., a mean-field

potential, with a double well since r0 < 0. It therefore has two minima at ±
√
−6r0/g0. However, it

is in the high-temperature phase, so its spontaneous magnetization is zero, and the effective potential
U = Uk=0 must have only one minimum at the origin. We deduce that the potential Uk(m) must
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Figure 8: Typical flow of the potential Uk in the ordered phase (r0 > r0,c). The position of
the potential minimum, marked by a dot, varies with the scale k and approaches the origin as k
decreases, as might be expected since fluctuations tend to disorganize the system and thus reduce
the spontaneous magnetization compared with the mean field. At a finite scale k0, the minima reach
the origin. This scale is typically the inverse of the correlation length ξ. For k < k0, the minimum
remains at the origin and the potential then deforms relatively little.

deform during the flow such that its minima (dependent on k) approach the origin until they meet
at the origin for a value k0 > 0, see Fig. 8. For the remainder of the flow, i.e., for k < k0, the
flow is quite similar to case (i): the potential continues to deform slightly but remains convex, U-
shaped, until k = 0. We can easily guess the value of k0: in the high-temperature phase, when the
correlation length is large and finite, ξ ≫ a = Λ−1, we realize that ξ < ∞ only for length scales
larger than or of the order of the correlation length: for much smaller length scales, it behaves as
though the correlation length were infinite. Consequently, as long as k ≫ ξ−1, the potential evolves
significantly with the flow and its minima approach the origin, and when k becomes of the order of
ξ−1, the system no longer appears critical, its high-temperature phase becomes manifest, and the
only remaining minimum is at the origin. We conclude that k0 ≃ ξ−1.
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Figure 9: Typical flow of Uk in the broken phase (r0 < r0,c). The position of the potential minimum,
marked by a dot, varies with scale k and decreases as k decreases. For k ≃ ξ−1, the position of the
minimum has almost reached its value at k = 0, which is that of spontaneous magnetization, since
for k < ξ−1 fluctuations are so small that the value of this minimum remains practically unchanged.
On the other hand, the potential continues to flatten between minima since Rk=0(q) ≡ 0 so that
U = Uk=0 is obtained by a true Legendre transform and is therefore convex.

(iii) Let rk=Λ = r0 < r0,c. At the end of the flow, the potential must exhibit minima at the
spontaneous magnetization ±msp.. In other words, the minima of the potential Uk(m) evolve with
k until they reach a non-zero value at k = 0, which gives the spontaneous magnetization, see Fig. 9.
Notice that Uk is not necessarily convex since it originates from a Legendre transform to which a
quadratic term has been subtracted to give Γk. However, at k = 0, this quadratic term vanishes,
and thus U = Uk=0 must be convex. Of course, the convexity property could be broken by the
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LPA, and this is indeed what happens for certain choices of regulator. This is not the case for the
regulator given in Eq. (83). In fact, by numerically integrating the flow, we find that the minima of
Uk stabilize at (approximately) ±msp. for a value k ≃ ξ−1, where Uk is still far from being convex,
and during the remainder of the flow, the position of the minima changes very little, but the inner
part of the potential, located between the two minima, flattens until it becomes entirely flat at
k = 0. Notice that since U ′

k=0(m) = h, the two minima at ±msp. are reached at the limits h→ 0±,
and there is thus a discontinuity in the magnetization at h = 0 in the broken symmetry phase. A
consequence is that the flat part of the potential located between ±msp. is not thermodynamically
accessible, i.e., not accessible by changing a parameter such as temperature or magnetic field.
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Figure 10: Typical flow of Uk at criticality (r0 = r0,c). The position of the minimum, marked by a
dot, varies with the scale k and approaches the origin as k decreases, as in previous cases. However,
being exactly at criticality, it is only at k = 0 that the two minima reach the origin. After a transient
regime where k ≲ Λ, the flow is self-similar, as no scale is relevant to the flow: Λ is much greater
than k and therefore no longer plays a role, and the inverse of the correlation length is zero. We then
enter the scale-invariant regime. In this k ≪ Λ regime, the potential deforms but remains identical
to itself up to a rescaling of the two axes.

Criticality corresponds to the intermediate situation between cases (ii) and (iii), which is con-
firmed by the qualitative argument given in (ii) leading to k0 ≃ ξ−1. This qualitative argument also
tells us that at criticality, the potential Uk has two minima throughout the flow, and it is only at
the end of the flow, at k = 0, that these minima (and the local maximum located between the two
minima) reach the origin, see Fig. 10. We must remember that at criticality, scale invariance is an
emerging symmetry, at least for length scales much larger than the lattice spacing a ∼ Λ−1. This
tells us that after a transient, non-scale-invariant regime where k ≲ Λ, any scale has disappeared in
the system, and therefore in the flow for k ≪ Λ, except for k: the system being critical and, at large
scales, appearing scale-invariant since ξ = ∞, only k remains as the relevant scale in the regularized
system.

To understand what happens, let us ask the following question: what is a scale-invariant system
in which we have introduced a reference length l ∼ k−1? This question, however trivial it may
seem, has its subtleties. Let us imagine that we are in a spaceship far from any galaxy and that our
world is scale-invariant (which it is not in reality). In this world, we can make a ruler that serves
as our reference length to measure all the lengths in our world. Now let us imagine that we are
communicating by radio with an extraterrestrial being at the other end of the universe. We could
not tell them the direction in which our spaceship is pointing because all directions are equivalent in
a universe devoid of matter (rotational invariance), nor could we tell them our position (translational
invariance). We could not even tell them the size of our reference ruler, since by assumption our
world is scale-invariant: for any experimental protocol A, aiming to communicate the size of our
ruler, we could imagine another protocol B, where all lengths are scaled by a common factor, and
it would lead to the same physical conclusions. Whether our size is one Angström or one light-
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year is therefore an uncommunicable, and thus physically irrelevant, quantity, just like our absolute
orientation or absolute position in space.40

What is important to understand is that from our explanations, our extraterrestrial could re-
produce a spaceship B exactly like our spaceship A, except for its size, as it would be built using a
length standard lB , which he cannot compare absolutely with our length standard lA. However, all
proportions of spaceship B would be preserved, i.e., all ratios between lengths: if the length of the
table in spaceship A is 2 lA, then the table in spaceship B will be 2 lB . This leads to the somewhat
puzzling conclusion that the two tables in our previous example have both different absolute lengths
and identical relative lengths.41 More generally, any equation that is true in A and contains only
lengths measured in A in units of lA would also be valid in B, provided that the lengths there are
measured in units of lB . Put another way, equations written in A and B would not be identical in
general if they involved lengths, but they would become so if they were written in terms of length
ratios, i.e. in terms of lengths rendered dimensionless in A because measured in units of lA and
rendered dimensionless in B because measured in units of lB .42

This lengthy preamble was meant to prepare the reader for what follows: the notion of dimen-
sionless quantities in terms of k and the notion of a fixed point when scale invariance emerges.

First, note that unlike the discussion above, by changing H to Hk = H+∆Hk, we have not only
introduced a length scale k−1 but also affected the scale invariance of H: if H is the Hamiltonian of a
critical system, this is not the case for Hk when k > 0, and scale invariance is lost in the regularized
theory. But just like in our example above, only the scale k has been introduced into Hk. Thus,
while it is true that the flow equation (85) explicitly depends on k, and therefore it is not the same
at different scales k and k′, this should no longer be the case for the flow equation of quantities
rendered dimensionless using scale k. We thus introduce the following dimensionless quantities:

x̃ = k x

p̃ = p/k

m̃(x̃) = k−
d−2
2 m(x)

Ũk(m̃(x̃)) = k−dUk(m(x))

(86)

where the first two equations are trivial, and the next two follow from Eq. (78) and the fact that
Γk[m] is dimensionless. In fact, it is more coherent and convenient for the following to introduce a
"renormalization time", also dimensionless, defined by t = log(k/Λ), rather than continuing to work
with k, which has a dimension. We will therefore define:

Ũt(m̃(x̃)) = k−dUk(m(x)). (87)

We can rewrite ΓLPA
k [m] in terms of these variables:

ΓLPA
t [m̃] =

∫
x̃

{
Ũt(m̃(x̃)) +

1

2

(
∇̃m̃(x̃)

)2}
(88)

40Of course, our universe is not scale-invariant because we are made of atoms, which indeed have fixed sizes. As far
as we know, we cannot invent an experiment B where, for example, the Bohr radius would be modified at will: the
mass of the electron seems to be the same everywhere in the universe. It is the mass of elementary particles which is
at the origin of the non-invariance by dilation of our universe because from this mass, from ℏ and from the speed of
light we can build a length scale, the Compton wavelength ℏ/(mc) which is universal. However, the Ising model does
not care about the mass of elementary particles, and at criticality, it indeed appears scale-invariant, at least at length
scales much larger than the lattice spacing.

41This is puzzling but general to any symmetry. For rotational invariance for instance, the two spaceships would be
oriented differently in space but the relative positions of all the internal elements of the spaceships would be identical.

42The above answers a potential question from the reader: lA is a symbol representing a length; but what exactly
is the value of this length if we wanted to replace the symbol with its numerical value? At first glance, the question
seems unanswered, as to give a numerical value to lA, we would need to measure the length of the reference ruler,
but by assumption, there is no reference length other than the ruler itself. However, the solution to this paradox is
simple: lA is 1... in units of lA.
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and repeat the derivation of the flow equation for the potential at LPA. However, it is just as simple
to perform the change of variables directly on Eq. (85) and compute ∂tŨt(m̃) = k ∂kŨt(m̃). As usual
when performing such a change of variables, one must be careful that ∂k|m ̸= ∂k|m̃ . We have:

∂t|m̃ = k ∂k|m̃
= k ∂k|m + k ∂km|m̃

∂

∂m
= k ∂k|m +

d− 2

2
m̃

∂

∂m̃
(89)

and thus,(
∂t|m̃ − d− 2

2
m̃

∂

∂m̃

)
Ũt(m̃) = k ∂k|m

(
k−dUk(m)

)
= −d Ũt(m̃) + k1−d ∂k|mUk(m) (90)

or, (
∂t + d− d− 2

2
m̃

∂

∂m̃

)
Ũt(m̃) = k−dk ∂kUk(m) (91)

where it is understood that the operators ∂t and ∂k must be computed in each case while keeping
m̃ and m fixed, respectively. The right-hand side must be rewritten in terms of Ũt(m̃) so that
the equation only involves this quantity on both sides. Using Eq. (85), we finally obtain the flow
equation for the dimensionless potential at the LPA when the regulator in Eq. (83) is used:

∂tŨt(m̃) = −d Ũt(m̃) +
d− 2

2
m̃ Ũ ′

t(m̃) +
4vd

d

1

1 + Ũ ′′
t (m̃)

. (92)

As announced in the long discussion above, any explicit dependence on k has disappeared from this
equation. It has been transformed into terms that take into account the dimensions of the different
quantities involved: d for the potential and d−2

2 for the field.43
In situations where the initial potential defines a critical theory and where, consequently, scale

invariance will emerge at large distances, that is, as t → −∞, we expect that the evolution of the
potential Uk becomes self-similar at small k, meaning it no longer distorts under the coarse-graining
operation except in accordance with its dimension. In other words, once measured in units of k, the
potential, Ũt, should no longer evolve at all as a function of the scale: ∂tŨt(m̃) = 0. The solution
to this equation, denoted Ũ∗, is called the fixed point potential of the renormalization group (at the
LPA).

We have thus replaced the criticality condition with the scale invariance condition (at large
distances), and this in turn with the fixed point condition of the theory regularized by Rk.44 This is
very clever from a practical point of view because, as we will see, it allows a very fine characterization
of the critical point.

43Note that by redefining Ũt and m̃, we can make the 4vd/d factor completely disappear from the previous equation.
It is even advisable to do so in the search for a solution to this equation, especially when the dimension is varied
between 4 and 2, as this avoids the appearance of large numbers that can disrupt numerical analysis.

44In technical terms, scale invariance is translated into the Ward identity for dilatation on Γ. The fixed point
condition on Γk, the cancellation of the right-hand side of Eq. (92) in the case of the LPA, is the Ward identity
of scale invariance on Γk, modified by the presence of the regulator, and which becomes the true Ward identity for
dilatation when the regulator vanishes, i.e., for k = 0.
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