{source} Theory of Quantum Many Body systems Quantum fluids and solids Ultracold atomic gases Phase transitions and quantum phases Preferred methods Quantum Monte Carlo Calculations Diagramatic Many Body Perturbation Theory Computational projects He3 at zero and low temperature Disordered Electron gas in 2 and 3 dimensions Coupled Electron-Ion Monte Carlo Quantum Monte Carlo methods: ICTP 2012 QMC methods: Introduction and Basics Variational and Projector Monte Carlo methods Variational and Projector Monte Carlo for Fermions COURS ED (Grenoble 2012) Basics of statistical mechanics and quantum mechanics Two-Body Interaction, Bose-Einstein condensation (mean-field theory) Dilute Bosons: Bogoliubov approximation Quantum Field Theory, Green's function, and Perturbation Theory {source}
PhD Thesis
-
M. Holzmann,
La transition de Bose-Einstein dans un gaz dilue,
Paris, France (2000) (in French).
pdf
Publications
-
-
J. Audretsch, R. Müller and M. Holzmann,
Relation between energy shifts and relaxation rates for a small system coupled to a reservoir,
Phys. Lett. A199, 151 (1995). -
J. Audretsch, R. Müller and M. Holzmann,
Generalized Unruh effect and Lamb shift for atoms on arbitrary stationary trajectories,
Class. Quantum Grav. 12, 2927 (1995). -
M. Holzmann and J. Audretsch,
Shaping an ultracold atomic soliton in a travelling wave laser beam,
Europhys. Lett. 40, 31 (1997"); cond-mat/9709038. -
M. Holzmann, W. Krauth, and M. Naraschewski,
Precision Monte Carlo test of the Hartree-Fock approximation for a trapped Bose gas,
Phys. Rev. A59, 2956 (1999"); cond-mat/9806201. -
M. Holzmann, P. Grüter, and F. Laloë,
Bose-Einstein condensation in interacting gases,
Eur. Phys. J. B10, 739 (1999"); cond-mat/9809356. -
M. Holzmann and Y. Castin,
Pair correlation function of an inhomogeneous interacting Bose-Einstein condensate,
Eur. Phys. J. D7, 425 (1999"); physics/9812029. -
G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, and D. Vautherin,
The Transition Temperature of the Dilute Interacting Bose Gas,
Phys. Rev. Lett. 83, 1703 (1999"); cond-mat/9905430. -
M. Holzmann and W. Krauth,
Transition Temperature of the Homogeneous, Weakly Interacting Bose Gas,
Phys. Rev. Lett. 83, 2687 (1999"); cond-mat/9905198. -
D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov,
Bose-Einstein condensation in quasi2D trapped gases,
Phys. Rev. Lett. 84, 2551 (2000"); cond-mat/9909344. -
M. Holzmann and F. Laloë,
Bogoliubov transformation for distinguishable particles,
Moroccan Journal Of Condensed Matter 3, 1 (2000"); cond-mat/9911150. -
W. J. Mullin, M. Holzmann, and F. Laloë,
Instability in a Two-Dimensional Dilute Interacting Bose System,
J. Low Temp. Phys. 121, 269 (2000"); cond-mat/0009071. -
W. J. Mullin, M. Holzmann, and F. Laloë,
Validity of the Hohenberg Theorem for a Generalized Bose-Einstein Condensation in Two Dimensions,
J. Low Temp. Phys. 121, 263 (2000"); cond-mat/0009070. -
G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, and D. Vautherin,
Bose-Einstein transition in an interacting dilute Bose gas,
Eur. Phys. J. B24, 107 (2001"); cond-mat/0107129. -
E. J. Mueller, G. Baym, and M. Holzmann,
Finite size scaling and the role of the thermodynamic ensemble in the transition temperature of a dilute Bose gas,
J. Phys. B34, 4561 (2001"); cond-mat/0105359. -
M. Holzmann, G. Baym, J.-P. Blaizot, and F. Laloë,
Non-analytic dependence of the transition temperature of the homogeneous dilute Bose gas on scattering length,
Phys. Rev. Lett. 87, 120403 (2001"); cond-mat/0103595. -
J. N. Fuchs, M. Holzmann, and F. Laloë,
Ursell operators in statistical physics of dense systems: the role of high order operators and of exchange cycles,
Eur. Phys. J. B25, 463 (2002"); cond-mat/0109265. -
M. Holzmann and G. Baym,
Condensate density and superfluid mass density of a dilute Bose gas near the condensation transition,
Phys. Rev. Lett. 90, 040402 (2003"); cond-mat/0209647. -
M. Holzmann, D.M. Ceperley, C. Pierleoni, and K. Esler,
Backflow Correlations for the Electron Gas and Metallic Hydrogen,
Phys. Rev. E68, 046707 (2003"); cond-mat/0304165. -
M. Holzmann, J.-N. Fuchs, G. Baym, J.-P. Blaizot, F. Laloë,
Bose-Einstein transition temperature in a dilute repulsive gas,
Comptes Rendus Physique 5, 21 (2004"); cond-mat/0310460. -
C. Pierleoni, D.M. Ceperley, and M. Holzmann,
Coupled Electron-Ion Monte Carlo Calculations of Dense Metallic Hydrogen,
Phys. Rev. Lett. 93, 146402 (2004"); physics/0405056. -
M. Holzmann and B. Bernu,
Optimized periodic 1/r Coulomb potential in two dimensions,
J. Comput. Phys. 206, 111 (2005"); cond-mat/0407244. -
M. Holzmann, C. Pierleoni, and D.M. Ceperley,
Coupled Electron-Ion Monte Carlo Calculations of Atomic Hydrogen,
Proceedings of the Europhysics Conference on Computational Physics 2004,
Comp. Phys. Comm. 169, 421 (2005"); cond-mat/0410530. -
M. Holzmann, G. Baym, J.-P. Blaizot, and F. Laloë,
The Kosterlitz-Thouless-Berezinskii transition of homogeneous and trapped Bose gases in two dimensions,
Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0609957104 (2007"); cond-mat/0508131. -
S. Chiesa, D.M. Ceperley, R.M. Martin, and M. Holzmann,
Finite Size Error in Many-body Simulations with Long-Range Interactions,
Phys. Rev. Lett. 97, 076404 (2006"); cond-mat/0605004. -
M. Holzmann, B. Bernu, and D.M. Ceperley,
Many-body wavefunctions for normal liquid He3,
Phys. Rev. B 74, 104510 (2006"); cond-mat/0605513. -
S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann,
Random phase approximation and the finite size errors in many body simulations,
AIP Conference Proceedings Volume 918
LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XI:
Eleventh Training Course in the Physics of Strongly Correlated Systems, p. 284-288 (2007). -
M. Holzmann and G. Baym,
Condensate superfluidity and infrared structure: the Josephson relation,
Phys. Rev. B 76, 092502 (2007"); cond-mat/0703755. -
C. Pierleoni, K. T. Delaney, M. A. Morales, D. M. Ceperley, and M. Holzmann,
Progress in Coupled Electron-Ion Monte Carlo Simulations of High-Pressure Hydrogen,
In: Advances in Quantum Many-Body Theories,
Conference proceedings: Recent Progress in Many-Body-Theory,
eds. Astrakharchik G. E., Boronat J., Mazzanti F., p. 217, (World Scientific, 2008). -
M. Holzmann and W. Krauth,
Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas,
Phys. Rev. Lett. 100,190402 (2008"); cond-mat/0710.5060. -
C. Pierleoni, K. T. Delaney, M. A. Morales, D.M. Ceperley, and M. Holzmann,
Trial wave functions for High-Pressure Metallic Hydrogen,
Comp. Phys. Comm. 179, 89 (2008"); physics/0712.0161. -
M. Holzmann, M. Chevallier, and W. Krauth,
Semiclassical theory of the quasi two-dimensional trapped Bose gas,
Europhys. Lett. 82, 30001 (2008"); cond-mat/0801.2758. -
B. Bernu, F. Delyon, M. Duneau, and M. Holzmann,
Metal-insulator transition in the Hartree-Fock phase diagram of the fully polarized homogeneous electron gas in two dimensions,
cond-mat/0804.1025 (2008). -
F. Delyon, M. Duneau, B. Bernu, and M. Holzmann,
Existence of a metallic phase and upper bounds of the Hartree-Fock energy in the homogeneous electron gas,
cond-mat/0807.0770 (2008). -
M. Holzmann, B. Bernu, V. Olevano, R.M. Martin, and D.M. Ceperley,
Renormalization factor and effective mass of the two-dimensional electron gas,
Phys. Rev. B 79, 041308(R) (2009"); cond-mat/0810.2450. -
B. Bernu, F. Delyon, M. Duneau, and M. Holzmann,
Metal-insulator transition in the Hartree-Fock phase diagram of the fully polarized homogeneous electron gas in two dimensions,
Phys. Rev. B 78, 245110 (2008"); cond-mat/0810.3559. -
P.E. Trevisanutto, M. Holzmann, M. Cote, and V. Olevano,
Ab initio high-energy excitonic effects in graphite and graphene,
Phys. Rev. B 81, 121405(R) (2010"); cond-mat/0909.1682. -
M. Holzmann, M. Chevallier, and W. Krauth,
Universal correlations and coherence in quasi-two-dimensional trapped Bose gases,
Phys. Rev. A 81, 043622 (2010"); cond-mat/0911.1704. -
S.P. Rath, T. Yefsah, K.J. Günter, M. Cheneau, R. Desbuquois, M. Holzmann, W. Krauth, and J. Dalibard,
The equilibrium state of a trapped two-dimensional Bose gas,
Phys. Rev. A 82, 013609 (2010"); cond-mat/1003.4545. -
S. Huotari, J. A. Soininen, T. Pylkkänen, A. Titov, A. Issolah, K. Hämäläinen, J. McMinis, J. Kim, K. Esler, D.M. Ceperley, M. Holzmann, and V. Olevano
Momentum distribution and renormalization factor in sodium and the electron gas,
Phys. Rev. Lett. 105, 086403 (2010"); cond-mat/1006.5591. -
B. Bernu, F. Delyon, and M. Holzmann,
Quasi-two-dimensional electron gas at metallic densities,
Phys. Rev. B 82, 245116 (2010"); cond-mat/1009.3789. -
M. Cazzaniga, H. Cercellier, M. Holzmann, C. Monney, P. Aebi, G. Onida, and V. Olevano,
Ab initio many-body effects in TiSe2: A possible excitonic insulator scenario from GW band-shape renormalization ,
Phys. Rev. B 85, 195111 (2012"); cond-mat/1103.2104. -
M. Holzmann, B. Bernu, C. Pierleoni, J. McMinis, D. M. Ceperley, V. Olevano, and L. Delle Site,
The momentum distribution of the homogeneous electron gas,
Phys. Rev. Lett. 107, 110402 (2011"); cond-mat/1105.2338. -
M. Holzmann, B. Bernu, and D. M. Ceperley,
Finite-size analysis of the Fermi liquid properties of the homogeneous electron gas,
J. Phys.: Conf. Ser. 321 012020 (2011), cond-mat/1105.2964. -
B. Bernu, F. Delyon, M. Holzmann, and L. Baguet,
The Hartree-Fock phase diagram of the two-dimensional electron gas,
Phys. Rev. B 84, 115115 (2011"); cond-mat/1106.2939. -
R. P. Smith, N. Tammuz, R. L. D. Campbell, M. Holzmann, and Z. Hadzibabic,
Condensed Fraction of an Atomic Bose Gas Induced by Critical Correlations,
Phys. Rev. Lett. 107, 190403 (2011"); cond-mat/1106.6295. -
T. Plisson, B. Allard, M. Holzmann, G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel,
Coherence properties of a 2D trapped Bose gas around the superfluid transition,
Phys. Rev. A 84, 061606(R) (2011"); cond-mat/1110.3201. -
B. Allard, T. Plisson, M. Holzmann, G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel,
Effect of disorder close to the superfluid transition in a two-dimensional Bose gas,
Phys. Rev. A 85, 033602 (2012"); cond-mat/1112.0985. -
V. Olevano, A. Titov, M. Ladisa, K. Hämäläinen, S. Huotari, and M. Holzmannn,
Momentum distribution and Compton profile by the ab initio GW approximation,
Phys. Rev. B 86, 195123 (2012"); cond-mat/1210.7195. -
G. Carleo, G. Boeris, M.Holzmann, and L.Sanchez-Palencia,
Universal Superfluid Transition and Transport Properties of Two-Dimensional Dirty Bosons,
Phys. Rev. Lett. 111, cond-mat/1305.3032. -
E.W. Brown, J.L. DuBois, M. Holzmann, and D.M. Ceperley,
Exchange-correlation energy for the 3D homogeneous electron gas at arbitrary temperature,
Phys. Rev. B 88, 081102(R) (2013"); cond-mat/1306.1863. -
S. Thiele, R. Vincent, M. Holzmann, S. Klyatskaya, M. Ruben, F. Balestro, and W. Wernsdorfer,
Electrical Readout of Individual Nuclear Spin Trajectories in a Single-Molecule Magnet Spin Transistor,
Phys. Rev. Lett. 111, 037203 (2013"); Supplementary Material. -
L. Baguet, F. Delyon, B. Bernu, and M. Holzmann,
Hartree-Fock Ground State Phase Diagram of Jellium,
Phys. Rev. Lett. 111, 166402 (2013"); cond-mat/1307.3081. Supplementary Material.
-
J. Audretsch, R. Müller and M. Holzmann,
-
-
{source}
<?php user_name("markus");?>
-
Physique quantique a N corps
-
Apres un bref introduction en physique statistique et des liquides classiques je presente des models de base en physique quantique a N corps en matiere condensee comme la condensation de Bose-Einstein et le gaz d'electron.
-
Je vais discuter les approches theoriques varies pour attaquer ces problemes, comme des methodes variationelles, le champ moyen, des approches perturbatives (diagramatiques), et la theorie de Landau pour des liquides de Fermi. Des methodes numeriques, notamment la fonctionelle de la densite et des methodes de Monte Carlo quantiques, seront discutes.
Plan du cours
-
- Basics of statistical mechanics and quantum mechanics
- Classical fluids, Monte Carlo, and Quantum Monte Carlo
-
Quantum liquids: Bose-Einstein condensation, electron gas
- Bose gases: scattering theory, variational methods, mean-field theory
- Diagramatic Approaches: Quantum Field Theory, Green's function, and Perturbation Theory
- The physical content of the Green's function
- Fermi Liquid Theory
- Electron gas: Random Phase Approximation
- Density functional theory
- Quantum Monte Carlo methods
-
-
Bibliographie
- R.P. Feynman, Statistical Mechanics
- L.P. Kadanoff, Statistical Mechanics
- M. Plischke and B. Bergersen, Equilibrium Statistical Physics
- W. Krauth, Statistical Mechanics: Algorithms and Computations
- M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids
- D. Frenkel and B. Smit, Understanding Molecular Simulation
- J.P. Hansen and I.R. McDonald, Theory of Simple Liquids
- E. Feenberg, Theory of Quantum Fluids
- A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics
- L. P. Kadanoff and G. Baym, Green's Function Methods in Equilibrium and Nonequilibrium Problems
- J.W. Negele and H. Orland, Quantum Many-Particle Systems
- A. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems
-
Cours a l'ecole doctoral de physique a Grenoble en 2007/2008 et 2009/2010.
-
-
Apres un bref introduction en physique statistique et des liquides classiques je presente des models de base en physique quantique a N corps en matiere condensee comme la condensation de Bose-Einstein et le gaz d'electron.