Laboratoire de Physique Théorique de la Matière Condensée


Current research interests: Statistical mechanics in and out of equilibrium,
                                           Stochastic and information thermodynamics.

Keywords: Liquid state theory, Coulomb systems, Adsorption phenomena, Porous media, Disordered spin systems, Langevin dynamics, Time-delayed stochastic differential equations, Information theory and feedback control.


 

[1] Utilisation des fonctions mémoire dans l’étude de la conductivité électrique des solutions électrolytiques diluées, J.P. Badiali et M.L. Rosinberg, C.R. Acad. Sci. 6, 825 (1973).

[2] Structural properties of ionic systems in the restricted primitive model and in a model involving ion-solvent hard core repulsion, J.P. Badiali, J.C. Lestrade and M.L. Rosinberg, Chem. Phys. Lett. 156, 34 (1975).

[3] Ion-solvent interactions and ionic motion. Application to the limiting mobility in a hard sphere liquid, J.P. Badiali, J.C. Lestrade and M.L. Rosinberg, in Protons and Ions involved in Fast Dynamic Phenomena, Elsevier, Amsterdam (1978).

[4] A model for the calculation of surface energy and surface tension of liquid metals, S. Amokrane, J.P. Badiali, M.L. Rosinberg and J. Goodisman, J. Physique C8, 783 (1980).

[5] Image potential of a point dipole in the vicinity of a non perfect charged medium, J.P. Badiali and M.L. Rosinberg, J. Electroanal. Chem. 122, 45 (1981).

[6] Effect of solvent on properties of the liquid metal surface, J.P. Badiali, M.L. Rosinberg and J. Goodisman, J. Electroanal. Chem. 130, 31 (1981).

[7] First-order model for the surface properties of liquid metals : electroneutrality condition and interionic correlations, S. Amokrane, J.P. Badiali, M.L. Rosinberg and J. Goodisman, J. Chem. Phys 76, 3264 (1982).

[8] Mean spherical approximation for charged hard spheres near a charged hard wall in a neutralizing background, J.P. Badiali and M.L. Rosinberg, J. Chem. Phys. 76, 3264 (1982).

[9] Contribution of the metal to the differential capacity of an ideally polarisable electrode, J.P. Badiali, M.L. Rosinberg and J. Goodisman, J. Electroanal. Chem. 143, 73 (1983).

[10] Surface density profile of the one-component plasma, J.P. Badiali, M.L. Rosinberg, D. Levesque and J.J. Weis, J. Phys. C. 16, 2183 (1983).

[11] The metal in the polarisable interface : coupling with the solvent phase, J.P. Badiali, M.L. Rosinberg and J. Goodisman, J. Electroanal. Chem. 150, 25 (1983).

[12] Density functional calculations for liquid metal surfaces, J. Goodisman and M.L. Rosinberg, J. Phys. C: Solid State Phys., 16, 1143 (1983).

[13] On surface properties of the one-component plasma, M.L. Rosinberg, J.P. Badiali and J. Goodisman, J. Phys. C: Solid State Phys. 16, 4487 (1983).

[14] The mean-spherical approximation for the surface density profile of the one-component plasma II, M.L. Rosinberg and J.P. Badiali, J. Chem. Phys. 78, 6325 (1983).

[15] A microscopic model for the liquid metal-ionic solution interface, J.P. Badiali, M.L. Rosinberg, F. Vericat and L. Blum, J. Electroanal. Chem. 158, 253 (1983).

[16] Structure and thermodynamics of noble liquid metals from the general pseudopotential theory, C. Regnaut, E. Fusco, M.L. Rosinberg and J.P. Badiali, J. non crystalline solids. 61, 207 (1984).

[17] Theoretical calculations on metallic surfaces : the OCP reference system, M.L. Rosinberg, V. Russier and J.P. Badiali, J. non crystalline solids. 62, 713 (1984).

[18] An exactly solvable model for ideally polarisable interfaces, M.L. Rosinberg and L. Blum, Chem. Phys. Lett. 106, 48 (1984).

[19] The ideally polarisable interface : a solvable model and general sum-rules, M.L. Rosinberg and L. Blum, J. Chem. Phys. 81, 3700 (1984).

[20] The one-component plasma near a hard wall : surface tension and sum-rules, V. Russier, J.P. Badiali and M.L. Rosinberg, J. Phys. C: Solid State Phys. 18, 707 (1985).

[21] The ideally polarisable interface : the metallic boundary limit, A. Alastuey, B. Jancovici, L. Blum, P. Forrester and M.L. Rosinberg, J. Chem. Phys. 83, 2366 (1985).

[22] The ideally polarisable interface : integral equations, M.L. Rosinberg, L. Blum and J.L. Lebowitz, J. Chem. Phys. 83, 892 (1985).

[23] Potential of mean-force on a ion near a wall in presence of a molecular solvent, J.P. Badiali, M.L. Rosinberg and V. Russier, Mol. Phys. 56, 105 (1985).

[24] A solvable model for localized adsorption in a Coulomb system, M.L. Rosinberg, J.L. Lebowitz and L. Blum, J. Stat. Phys. 44, 153 (1986).

[25] Localized adsorption at solid-liquid interfaces : the sticky site-hard wall model, J.P. Badiali, L. Blum and M.L. Rosinberg, Chem. Phys. Lett.. 129, 149 (1986).

[26] Ionic solvation at the solid-electrolyte interface : a statistical mechanical approach, V. Russier, J.P. Badiali and M.L. Rosinberg, J. Electroanal. Chem. 220, 213 (1987).

[27] Modelization of the electrical double-layer : structure of the ion-dipole mixture near a wall, M.L. Rosinberg, V. Russier, J.P. Badiali and M.E. Boudh’ir, Berichte der Bunsen. fur Phys. Chem. 91, 276 (1987).

[28] Adsorption of polar molecules at a wall : Monte carlo simulation and integral equations, V. Russier, M.L. Rosinberg, J.P. Badiali, D. Levesque and J.J. Weis, J. Chem. Phys. 87, 5012 (1987).

[29] A variational calculation of the static image plane position at a charged jellium interface, V. Russier and M.L. Rosinberg, J. Phys. C: Solid State Phys. 21, L333 (1988).

[30] A theoretical study of the solid-electrolyte solution interface : Structure of a hard sphere ion-dipole mixture near an uncharged hard wall, W. Dong, M.L. Rosinberg, A. Perera and G. Patey, J. Chem. Phys. 89, 4994 (1988).

[31] Contact theorems for models of the sticky electrode, L. Blum, M.L. Rosinberg and J.P. Badiali, J. Chem. Phys. 90, 1285 (1989).

[32] Packing effects at the solid-liquid interface : Theory and computer simulation, E. Kierlik and M.L. Rosinberg, Mol. Phys. 68, 867 (1989).

[33] The role of packing effects at the liquid-solid interface : a model for a surface phase transition, E. Kierlik and M.L. Rosinberg, J. Phys. : Condensed Matter 2, 3081 (1990).

[34] Free energy density functional for the inhomogeneous hard sphere fluid : Application to interfacial adsorption, E. Kierlik and M.L. Rosinberg, Phys. Rev. A 42, 3382 (1990).

[35] Conformal invariance in one-dimension and in a two-component log-gas, P. Forrester and M.L. Rosinberg, Int. J. Modern Phys. B 4, 943 (1990).

[37] A model for a phase transition in the adsorbed film at a liquid-structured solid interface, E. Kierlik and M. L. Rosinberg, in Fundamentals of Adsorption 3, edited by A. B. Mersmann and S. E. Scholl, Engineering Foundation (1991).

The distribution of polar molecules and ions near a solid surface. The asymptotic behavior of the profile as a test of the HNC approximation, Q. Zhang, J.P. Badiali and M.L. Rosinberg, J. Molecular Liquids 48,129 (1991).

[38] A simple model for the competitive adsorption of anions and hydrogen on the (100) orientation of a platinum surface in acid medium : the 3-state lattice-gas model, D Armand and M.L. Rosinberg, J. Electroanal. Chem. 302, 191 (1991).

[39] Density functional theory for inhomogeneous fluids : adsorption of binary mixtures, E. Kierlik and M.L. Rosinberg, Phys. Rev. A 44, 5025 (1991).

[40] A simple theoretical model for the hydrogen electrosorption on platinum in acid medium, D. Armand and M.L. Rosinberg, J. Chim. Phys.(Paris) 88, 1401 (1991).

[41] Binary vapor mixtures adsorbed on a graphite surface : a comparison of mean-field density functional theory with results from Monte Carlo simulations, E. Kierlik, M.L. Rosinberg, J. Finn and P.A. Monson, Mol. Phys. 75, 1435 (1992).

[42] The classical fluid of associating hard rods in an external field, E. Kierlik and M.L. Rosinberg, J. Stat. Phys. 68, 1037 (1992).

[43] A perturbation density functional theory for polyatomic fluids I : Rigid molecules, E. Kierlik and M.L. Rosinberg, J. Chem. Phys. 97, 9222 (1992).

[44] On the equivalence of two free-energy models for the inhomogeneous hard sphere fluid, S. Phan, E. Kierlik, M.L. Rosinberg, B. Bildstein and G. Kahl, Phys. Rev. E 48, 618 (1993).

[45] A perturbation density functional theory for polyatomic fluids II : Flexible molecules, E. Kierlik and M.L. Rosinberg, J. Chem. Phys. 99, 3950 (1993).

[46] Equations of state for hard chain molecules, S. Phan, E. Kierlik, M.L. Rosinberg, H. Yu and G. Stell, J. Chem. Phys. 99, 5326 (1993).

[47] A perturbation density functional theory for polyatomic fluids III : Adsorption of hard chain molecules in slitlike pores, E. Kierlik and M.L. Rosinberg, J. Chem. Phys. 100, 1716 (1994).

[48] Thermodynamics of fluids in quenched disordered matrices, M.L. Rosinberg, G. Tarjus and G. Stell, J. Chem. Phys. 100, 5172 (1994).

[49] Local structure and orientational correlations in fluids composed of linear triatomic molecules, A. Yethiraj, R. Dickman, G. Szamel, E. Kierlik and M.L. Rosinberg, Mol. Phys. 82, 937 (1994).

[50] An equation of state for fused hard sphere molecules, S. Phan, E. Kierlik and M.L. Rosinberg, J. Chem. Phys. 101, 7997 (1994).

[51] Integral equations for a fluid near a random substrate, W. Dong, E. Kierlik and M.L. Rosinberg, Phys. Rev. E 50, 4752 (1994).

[52] Prewetting at a liquid mixture/solid interface : a comparison of Monte Carlo simulations with mean field density functional theory, E. Kierlik, M.L. Rosinberg, Y. Fan and P.A. Monson, J. Chem. Phys. 101, 10947 (1994).

[53] Liquid-liquid equilibrium in a slitlike pore : A Monte carlo simulation and mean-field density functional theory, E. Kierlik, Y. Fan, P.A. Monson and M.L. Rosinberg, J. Chem. Phys. 102, 3172 (1995).

[54] Perturbation density functional theory and Monte Carlo simulations for the structure of hard triatomic fluids in slitlike pores, S. Phan, E. Kierlik, M.L. Rosinberg, A. Yethiraj and R. Dickman, J. Chem. Phys. 102, 2141 (1995).

[55] Critical behavior of a fluid in a disordered porous matrix. An Ornstein-Zernike approach, E. Pitard, M.L. Rosinberg, G. Tarjus and G. Stell, Phys. Rev. Lett. 74, 4361 (1995).

[56] Pressure of a fluid in a porous matrix, E. Kierlik, P.A. Monson, M.L. Rosinberg and G. Tarjus, J. Chem. Phys. 103, 4256 (1995).

[57] Density functional theory for non-uniform polyatomic fluids, E. Kierlik, S. Phan and M.L. Rosinberg, in Chemical Applications of Density Functional Theory, edited by B.B. Laird, R.B. Ross and T. Ziegler, ACS Symposium Series 629 (1996).

[58] Thermodynamic of fluids in disordered porous materials, E. Pitard, M.L. Rosinberg and G. Tarjus, Molecular Simulation. 17, 339 (1996).

[59] Phase diagrams of a fluid confined in a disordered porous material, E. Kierlik, M.L. Rosinberg, G. Tarjus and P.A. Monson, J. Phys. : Condensed Matter 8, 9621 (1996).

[60] Phase diagrams of single-component fluids in disordered porous materials : predictions from integral-equation theory, E. Kierlik, M.L. Rosinberg, G. Tarjus and P.A. Monson, J. Chem. Phys. 106, 264 (1997).

[61] A self-consistent Ornstein-Zernike approximation for the site-diluted Ising model, E. Kierlik, M.L. Rosinberg and G. Tarjus, J. Stat. Phys. 89, 215 (1997).

[63] Mean spherical approximation for a lattice model of a fluid in disordered matrix, E. Kierlik, M.L. Rosinberg, G. Tarjus and E. Pitard, Mol. Phys. 95, 341 (1998).

Applications of modern statistical mechanics to adsorption in heterogeneous porous materials, E. Kierlik, M.L. Rosinberg, G. Tarjus, and P. A. Monson in Fundamentals of Adsorption 6, edited by F. Meunier, Elsevier, Paris (1998)

[64] A self-consistent Ornstein-Zernike approximation for the random field Ising model, E. Kierlik, M.L. Rosinberg and G. Tarjus, J. Stat. Phys. 94, 805 (1999).

[65] Liquid-state methods for disordered systems, M.L. Rosinberg, in New approaches to problems in liquid state theory, edited by C. Caccamo, J. P. Hansen and G. Stell, NATO-ASI series C, vol. 529, Kluwer (1999).

[66] A self-consistent Ornstein-Zernike approximation for the Edwards-Anderson spin glass model, E. Kierlik, M.L. Rosinberg and G. Tarjus, J. Stat. Phys. 100, 423 (2000).

[67] A thermodynamically self-consistent theory for the Blume-Capel model, S. Grollau, E. Kierlik, M.L. Rosinberg and G. Tarjus, Phys. Rev. E 63, 041111 (2001).

[68] Equilibrium and out-of-equilibrium (hysteretic) behavior of fluids in disordered porous materials: theoretical predictions, E. Kierlik, M.L. Rosinberg, G. Tarjus, and P. Viot, Physical Chemistry Chemical Physics, 3, 1201 (2001).

[69] The ferromagnetic q-state Potts model on three-dimensional lattices: a study for real values of q, S. Grollau, M.L. Rosinberg and G. Tarjus, Physica A 296, 460 (2001).

[70] Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior, E. Kierlik, P.A. Monson, M.L. Rosinberg, S. Sarkisov and G. Tarjus, Phys. Rev. Lett. 87, 055701 (2001).

[71] Adsorption of a fluid in an aerogel: integral equation approach, V. Krakoviack, E. Kierlik, M.L. Rosinberg, and G. Tarjus, J. Chem. Phys. 115, 11289 (2001).

[72] Lattice models of fluids confined in disordered porous media, E. Kierlik, P.A. Monson, M.L. Rosinberg, S. Sarkisov and G. Tarjus, in Fundamentals of Adsorption 7, edited by K. Kaneko, H. Kanoh, and Y. Hanzawa, IK International, (2002).

[73] Adsorption hysteresis and capillary condensation in disordered porous solids, E. Kierlik, P. A. Monson, M.L. Rosinberg, and G. Tarjus, J. Phys.: Condens. Matter. 14, 9295 (2002)

[74] Percolation, depinning, and avalanches in capillary condensation of gases in disordered porous solids, M.L. Rosinberg, E. Kierlik, and G. Tarjus, Europhys. Lett. 62 , 377 (2003).

[75] Local mean-field study of capillary condensation in silica aerogels, F. Detcheverry, E. Kierlik, M.L. Rosinberg, and G. Tarjus, Phys. Rev. E 68 , 061504 (2003).

[76] Hysteresis in capillary condensation of gases in disordered porous solids, F. Detcheverry, E. Kierlik, M.L. Rosinberg, and G. Tarjus, Physica B 343, 303 (2004).

[77] Mechanisms for gas adsorption and desorption in silica aerogels: the effect of temperature, F. Detcheverry, E. Kierlik, M.L. Rosinberg, and G. Tarjus, Langmuir 20, 8006 (2004).

[78] The physics of capillary condensation in disordered mesoporous materials: a unifying theoretical description, F. Detcheverry, E. Kierlik, M.L. Rosinberg, and G. Tarjus, Adsorption 11, 115 (2005).

[79] Hysteresis and avalanches in the T=0 random-field Ising model with 2-spin-flip dynamics, E. Vives, M.L. Rosinberg, and G. Tarjus, Phys. Rev. B 71, 134424 (2005).

[80] Metastable states and T=0 hysteresis in the random-field Ising model on random graphs, F. Detcheverry, M.L. Rosinberg, and G. Tarjus, Eur. Phys. J. B 44, 327 (2005).

[81] Helium condensation in aerogel: avalanches and disorder-induced phase transition, F. Detcheverry, E. Kierlik, M.L. Rosinberg, and G. Tarjus, Phys. Rev. E 72, 051506 (2005).

[82] Gas adsorption/desorption in silica aerogels: a theoretical study of scattering properties, F. Detcheverry, E. Kierlik, M.L. Rosinberg, and G. Tarjus, Phys. Rev. E 73, 041511 (2006).

[83] Influence of the driving mechanism on the response of systems with athermal dynamics: the exemple of the random-field Ising model, X. Illa, M.L. Rosinberg, and E. Vives, Phys. Rev. B 74, 224403 (2006).

[84] The magnetization-driven random-field Ising model at T=0, X. Illa, M.L. Rosinberg, P. Shukla and E. Vives, Phys. Rev. B 74, 224404 (2006).

[85] Hysteresis behavior of the random-field Ising model with 2-spin-flip dynamics: Exact results on a Bethe Lattice, X. Illa, M.L. Rosinberg, and G. Tarjus, Eur. Phys. J. B 54, 355 (2006).

[86] Numerical study of metastable states in the T=0 RFIM, F.J. Perez-Reche, M.L. Rosinberg, and G. Tarjus , Phys. Rev. B 77, 064422 (2008).

[87] Stable, metastable and unstable states in the mean-field RFIM at T=0, M.L. Rosinberg, G. Tarjus, and F. J. Perez-Reche, J. Stat. Mech. P10004 (2008).

[88] The T=0 random-field Ising model on a Bethe lattice with large coordination number: hysteresis and metastable states, M.L. Rosinberg, G. Tarjus, and F.J. Perez-Reche, J. Stat. Mech. P03003 (2009).

[89] Hysteresis and complexity in the zero-temperature mean-field RFIM: the soft-spin version, M.L. Rosinberg and T. Munakata, Phys. Rev. B 79, 174207 (2009)..

[90] Hysteresis in the T=0 RFIM: beyond metastable dynamics,  F. Salvat-Pujol, E. Vives, and M.L. Rosinberg, Phys. Rev. E 79, 061116 (2009).

[91] A statistical mechanical description of metastable states and hysteresis in the 3D soft-spin random-field model at T=0, M.L. Rosinberg and G. Tarjus, J. Stat. Mech P12011 (2010).

[92] Stochastic dynamics of N bistable elements with global time-delayed interactions: towards an exact solution of the master equations for finite N, M. Kimizuka, T. Munakata, and M. L. Rosinberg, Phys. Rev. E 82, 041129 (2010).

[93] Recent topics in hysteresis and avalanches, M. L. Rosinberg and E. Vives,  in Disorder and Strain-induced Complexity in Functional Materials, Eds. T. Kakeshita, T. Fukuda, A. Saxena, and A. Planes (Springer Series in Materials Science, Vol. 148, 2011).

[94] Spontaneous imbibition in a slit pore: a lattice-gas dynamic mean-field study, E. Kierlik, F. Leoni, M. L Rosinberg, and G. Tarjus, Mol. Phys. 109, 1143 (2011).

[95] Spontaneous imbibition in disordered porous solids: a theoretical study of helium in silica aerogels, F. Leoni, E. Kierlik, M. L. Rosinberg, and G. Tarjus, Langmuir 27, 8160 (2011).

[96] The T=0 RFIM on a Bethe lattice: correlation functions along the hysteresis loop, X. Illa and M. L. Rosinberg, Phys. Rev. B 84, 064443 (2011).

[97] Hierachical Reference Theory of critical fluids in disordered porous media, G. Tarjus, M. L. Rosinberg, E. Kierlik, and M. Tissier, Mol. Phys. 109, 2863 (2011).

[98]  Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited, T. Munakata and M.L. Rosinberg, J. Stat. Mech. P05010 (2012).

[99] Morphology transitions at depinning in a solvable model of interface growth in a random medium, H. Ohta, M.L. Rosinberg, and G. Tarjus, Euro. Phys. Lett. 104, 16003 (2013)

[100] Feedback cooling, measurement errors, and  entropy production, T. Munakata and M.L. Rosinberg, J. Stat. Mech. P06014 (2013).

[101] Entropy production and fluctuation theorems for Langevin processes under continuous non-Markovian feeddback control, T. Munakata and M.L. Rosinberg, Phys. Rev. Lett. 112, 180601 (2014)

[102] Stochastic thermodynamics of Langevin systems under time-delayed feedback control: 1. Second-law-like inequalities, M.L. Rosinberg, T. Munakata, and G. Tarjus, Phys. Rev. E 91, 042114 (2015).

[103]  Heat fluctuations for underdamped Langevin dynamics, M.L. Rosinberg, G. Tarjus, and T. Munakata, Euro. Phys. Lett.  113, 10007 (2016).

[104] Continuous information flow fluctuations, M.L. Rosinberg and J. Horowitz, Euro. Phys. Lett.  116, 10007 (2016).

[105] Stochastic thermodynamics of Langevin systems under time-delayed feedback control: 2. Non-equilibrium steady-state fluctuations, M.L. Rosinberg, T. Munakata, and G. Tarjus, Phys. Rev. E 95, 022123 (2017).

[106] Information-theoretic analysis of the directional influence between cellular processes, S. Lahiri, P. Nghe, S. J. Tans, M. L. Rosinberg, and D. Lacoste, PLoS ONE 12(11): e0187431 (2017).


[107] Influence of time delay on information exchanges between coupled linear stochastic systems, M. L. Rosinberg, G. Tarjus, and T. Munakata, Phys. Rev. E 98, 032130 (2018).

[108] Comment on Thermodynamic uncertainty relation for time-delayed Langevin systems, M.L. Rosinberg and G. Tarjus, arXiv:1810.12467 (2018).

[109]  Information thermodynamics for interacting stochastic systems without bipartite structure, R. Chétrite, M.L. Rosinberg, T. Sagawa, and G. Tarjus, J. Stat. Mech. 114002 (2019).

[110]  Non-Markovian feedback control and acausality: an experimental study, M. Debiossac, M.L. Rosinberg, E. Lutz, and N. Kiesel, Phys. Rev. Lett. 128, 200601  (2022).