CNRS researcher at LPTMC, Sorbonne Université
e-mail: aurelien (dot) grabsch (at) sorbonne-universite.fr
- Joint distribution of currents in the symmetric exclusion process
Aurélien Grabsch, Pierre Rizkallah, Olivier Bénichou
arXiv:2307.02374 - Universal Correlation Profiles in Single-File Systems
Aurélien Grabsch, Théotim Berlioz, Pierre Rizkallah, Pierre Illien, Olivier Bénichou
arXiv:2306.13516 - Exact spatial correlations in single-file diffusion
Aurélien Grabsch, Pierre Rizkallah, Alexis Poncet, Pierre Illien, Olivier Bénichou
Phys. Rev. E 107, 044131 (2023)
arXiv:2302.02929
- Driven tracer in the Symmetric Exclusion Process: linear response and beyond
Aurélien Grabsch, Pierre Rizkallah, Pierre Illien, Olivier Bénichou
Phys. Rev. Lett. 130, 020402 (2023)
arXiv:2207.13079 - Duality relations in single-file diffusion
Pierre Rizkallah, Aurélien Grabsch, Pierre Illien, Olivier Bénichou
J. Stat. Mech. (2023) 013202
arXiv:2207.07549 - Exact time dependence of the cumulants of a tracer position in a dense lattice gas
Alexis Poncet, Aurélien Grabsch, Olivier Bénichou, Pierre Illien
Phys. Rev. E 105, 054139 (2022)
arXiv:2202.09278
- General truncated linear statistics for the top eigenvalues of random matrices
Aurélien Grabsch
J. Phys. A 55 124001 (2022) for the special issue Emerging Talents 2021
arXiv:2111.09004 - Exact closure and solution for spatial correlations in single-file diffusion
Aurélien Grabsch, Alexis Poncet, Pierre Rizkallah, Pierre Illien, Olivier Bénichou
Sci. Adv. 8, eabm5043 (2022)
arXiv:2110.09269 - Generalized Correlation Profiles in Single-File Systems
Alexis Poncet, Aurélien Grabsch, Pierre Illien, Olivier Bénichou
Phys. Rev. Lett. 127, 220601 (2021)
arXiv:2103.13083
- Half-integer charge injection by a Josephson junction without excess noise
F. Hassler, A. Grabsch, M.J. Pacholski, D.O. Oriekhov, O. Ovdat, I. Adagideli, C.W.J. Beenakker
Phys. Rev. B 102, 045431 (2020)
arXiv:2005.08655 - Wigner-Smith matrix, exponential functional of the matrix Brownian motion and matrix Dufresne identity
A. Grabsch, C. Texier
J. Phys. A: Math. Theor. 53 425003 (2020)
arXiv:2002.12077 - Localization landscape for Dirac fermions
G. Lemut, M. J. Pacholski, O. Ovdat, A. Grabsch, J. Tworzydło, C.W.J. Beenakker
Phys. Rev. B 101, 081405(R) (2020)
arXiv:1911.04919 - Time-resolved electrical detection of chiral edge vortex braiding
I. Adagideli, F. Hassler, A. Grabsch, M. Pacholski, C.W.J. Beenakker
SciPost Phys. 8, 013 (2020)
arXiv:1907.02422
- Distribution of the Wigner-Smith time-delay matrix for chaotic cavities with absorption and coupled Coulomb gases
Aurélien Grabsch
J. Phys. A 53(2) 025202 (2019)
arXiv:1909.01002 - Dynamical signatures of ground-state degeneracy to discriminate against Andreev levels in a Majorana fusion experiment
Aurélien Grabsch, Yevheniia Cheipesh, Carlo W.J. Beenakker
Adv. Quantum Technol. 2019, 1900110
arXiv:1909.08335 - Pfaffian formula for fermion parity fluctuations in a superconductor and application to Majorana fusion detection
Aurélien Grabsch, Yevheniia Cheipesh, Carlo W.J. Beenakker
Ann. Phys. (Berlin) 2019, 1900129
arXiv:1903.11498 - Electrical detection of the Majorana fusion rule for chiral edge vortices in a topological superconductor
Carlo W.J. Beenakker, Aurélien Grabsch, Yaroslav Herasymenko
SciPost Phys. 6, 022 (2019)
arXiv:1812.01444
- Wigner-Smith time-delay matrix in chaotic cavities with non-ideal contacts
Aurélien Grabsch, Dmitry V. Savin, Christophe Texier
J. Phys. A 51(40) 404001 (2018) (Special issue Random Matrices: the first 90 years)
arXiv:1804.09580 - Correlations of occupation numbers in the canonical ensemble and application to BEC in a 1D harmonic trap
Olivier Giraud, Aurélien Grabsch, Christophe Texier
Phys. Rev. A 97, 053615 (2018)
arXiv:1802.02555 - Fluctuations of observables for free fermions in a harmonic trap at finite temperature
Aurélien Grabsch, Satya N. Majumdar, Grégory Schehr, Christophe Texier
SciPost Phys. 4, 014 (2018)
arXiv:1711.07770 - Extremes of 2d Coulomb gas: universal intermediate deviation regime
Bertrand Lacroix-A-Chez-Toine, Aurélien Grabsch, Satya N. Majumdar, Grégory Schehr
J. Stat. Mech. (2018) 013203
arXiv:1710.06222
- Truncated linear statistics associated with the eigenvalues of random matrices II. Partial sums over proper time delays for chaotic quantum dots
Aurélien Grabsch, Satya N. Majumdar and Christophe Texier
J. Stat. Phys. 167(2) 1452–1488 (2017)
arXiv:1612.05469 - Truncated linear statistics associated with the top eigenvalues of random matrices.
Aurélien Grabsch, Satya N. Majumdar and Christophe Texier
J. Stat. Phys. 167(2), 234-259 (2017)
arXiv:1609.08296
- Distribution of spectral linear statistics on random matrices beyond the large deviation function – Wigner time delay in multichannel disordered wires.
Aurélien Grabsch and Christophe Texier
J. Phys. A 49 465002 (2016)
arXiv:1602.03370 - Topological phase transitions in the 1D multichannel Dirac equation with random mass and a random matrix model.
Aurélien Grabsch and Christophe Texier
Europhys. Lett. 116, 17004 (2016)
arXiv:1506.05322
- Capacitance and charge relaxation resistance of chaotic cavities - Joint distribution of two linear statistics in the Laguerre ensemble of random matrices.
Aurélien Grabsch and Christophe Texier
Europhys. Lett. 109, 50004 (2015)
arXiv:1407.3302 - One-dimensional disordered quantum mechanics and Sinai diffusion with random absorbers.
Aurélien Grabsch, Christophe Texier and Yves Tourigny
J. Stat. Phys. 155(2), 237-276 (2014)
arXiv:1310.6519
Keywords: statistical physics, condensed matter theory, random matrix theory, diffusion in crowded environments, coherent quantum transport, topology in condensed matter, Majorana zero modes, disordered systems, large deviations, stochastic processes
![]() |
I am interested in the physics of single-file systems. These are systems in which particles cannot bypass each other. Following the dynamics of a tracer particle, we observe a subdiffusive behaviour, which originates from strong bath-tracer correlations. Focusing on paradigmatic models of single-file diffusion, such as the Simple Exclusion Process (SEP), I use analytical tools (master equations, large deviations, ...) to characterise the bath-tracer correlations. In turn, the knowledge of these correlations allow to fully characterise the dynamics of the tracer particle. |
![]() |
I am interested in the applications of random matrix theory (RMT) to quantum transport. The complex dynamics of chaotic cavities, like quantum dots, can be well described by a statistical approach. This consists in taking a random scattering matrix to characterize transport through the system. From this matrix can be constructed the Wigner-Smith time-delay matrix, which was shown to belong to the (inverse) Laguerre ensemble of RMT. Many relevant physical quantities (like conductance, resistance,...) take the form of linear statistics of the eigenvalues of this matrix (the proper time delays). |
![]() |
The distribution of these linear statistics is obtained by a Coulomb gas method. This consists in interpreting the eigenvalues of a random matrix as the positions of particles in a 1D gas, with logarithmic repulsion. Determining the distribution of the linear statistics reduces to finding the optimal configuration of the gas under a constraint. An interesting feature is the possibility of phase transitions driven by the constraint. |
![]() |
Topological superconductors can support Majorana zero-modes (midgap states bound to a defect). These zero modes have non-Abelian statistics: they are neither bosons nor fermions, and can be used for the realisation of topologically protected quantum computations. Topological superconductors also possess non-Abelian excitations of the chiral edge modes: the edge vortices. Unlike the Majorana zero-modes which are fixed, the edge vortices have the advantage of propagating along the chiral edge modes. I am investigating the possibility to demonstrate the non-Abelian nature of the edge vortices, and their possible use for the realisation of topologically protected quantum computations. |
![]() |
I am also interested in disordered systems. It is well known that wave functions in 1D in a random potential are localized (Anderson localization). The localization length have been computed for diverse models of disorder. However the 2D case is still out of reach. I mostly focus on models of multichannel disordered wires which describe an intermediate situation, using matrix Langevin equations. |
- PhD Thesis (defended in 2018): Random Matrix Theory in Statistical Physics: Quantum Scattering and Disordered Systems
Under the supervision of Christophe Texier and Satya Majumdar
- 2018-2020: Postdoc at the Lorentz Institute for theoretical physics (Leiden, Netherlands)
In the group of Carlo Beenakker
- 2020-2022: Postdoc at LPTMC, Sorbonne Université (Paris)
With Olivier Bénichou
Enseignements à l'Université Paris-Sud :
- Cours-TD de physique quantique (2015-2018)
- L3 physique et applications Site du cours
- TD Programmation et données numériques (2015-2017)
- M1 physique appliquée Site du cours