Laboratoire de Physique Théorique

de la Matière Condensée

A tale of Pfaffian persistence tails told by a Painlevé VI transcendent

 

Ivan Dornic (SPEC CEA Saclay)

 

We identify the persistence probability for the zero-temperature non-equilibrium Glauber dynamics of the half-space Ising chain as a particular Painlevé VI transcendent, with monodromy exponents (1/2,1/2,0,0). Among other things, this characterization a la Tracy-Widom permits to relate our specific Bonnet-Painlevé VI to the one found by Jimbo & Miwa and characterizing the lattice diagonal correlation functions at all temperatures for the planar static Ising model. In particular, in terms of the standard critical exponents eta=1/4 and beta=1/8 for the latter, this implies that the probability that the limiting Gaussian real Kac's polynomial has no real root decays with an exponent 4(eta+beta)=3/4.