LABORATOIRE DE PHYSIQUE THEORIQUE DE LA MATIERE CONDENSEE

Nicolas Behr (IRIF Paris-Diderot et LPTMC)

Stochastic Mechanics of Graph Rewriting Systems for Physicists

Consider a statistical system evolving on a state space of graphical structures, such as e.g. a social network system. Given a set of transitions on such a system, where each transition consists of a local transformation pattern applied at random to the system's state (e.g. adding a new edge, deleting an edge,...), one may define a continuous-time Markov chain in order to study the stochastic evolution of the system. Our novel approach to this problem involves an extension of Doi's description of chemical reaction systems in terms of boson creation and annihilation operators (which later evolved into the Doi-Peliti formalism) to a general stochastic mechanics framework based on the idea of so-called rule algebras. Assuming no prior familiarity with the underlying concept of graph rewriting and related mathematics, I will give an introduction to the formalism and present a number of application examples.