
PCS 2021-2022 Exercices: Tempering Numerical Simulation

1 Optimizing the parallel tempering method
One considers a system of N identical point particles of mass m. The Hamiltonian is

given by

H =
N∑
i=1

~p2
i

2m + V (~xN) (1)

where V (~xN) is the interaction potential, ~pi, the momentum of particle i, and ~xN =
(~x1, ~x2, · · · , ~xN) is a short-hand notation for the particle positions. In order to study the
phase diagram, one performs a Monte Carlo simulation using the tempering method. It
consists in performing simulation with M different boxes. Each box is in contact with a
thermostat at the inverse temperature βi. The inverse temperatures βi are given by a in-
creasing sequence βi−1 < βi < βi+1. The stochastic evolution of the system is given by
two kinds of Markovian processes : single moves in each box using a Metropolis rule and
particle swaps between two nearest neighbor boxes following also a Metropolis rule.

Let us denote the configurational integral of the canonical partition function as

Q(β) =
∫
d~xN exp (−βV (~xN)) (2)

where d~xN = ∏N
i=1 d~xi.

1. Express the joint probability distribution density of the particles P (β, β′, ~xN , ~x′N) of
two boxes at the inverse temperature β and β′ as a function of Q(β) Q(β′), β, β’ V (~xi)
and V (~x′i).

2. Defining Pa(β, β′) the acceptance probability for particle swaps between neighboring
boxes at the inverse temperatures β and β′, justify that

Pa(β, β′) =
∫∫

d~xNd~x′
N
P (β, β′, ~xN , ~x′N)Min

(
1, exp

(
(β′ − β)(V (~x′N)− V (~xN))

))
(3)

3. Justify that Pa(β, β′) = Pa(β′, β)
4. For the sake of simplicity, one now assumes that β′ > β, show that

Min
(
1, exp

(
[β′ − β][V(x̃′N)− V(x̃N)]

))
= exp

(
(β′ − β)

2 (V(x̃′N)− V(x̃N))
)

exp
(
−(β′ − β)

2 |V (~x′N)− V (~xN)|
)

(4)

5. Introducing the variables R = β′

β
and β = β+β′

2 , show that

Pa(β, β′) = Q2(β)
Q(β)Q(β′)

∫∫
d~xNd~x′

N
P (β, β, ~xN , ~x′N) exp

(
−R− 1
R + 1β|V (~x′N)− V (~xN)|

)
(5)

One aims to obtain an asymptotic estimate of Pa when β′− β � 1,namely R− 1� 1.
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6. Using the thermodynamic relation Cv(β) = −β2 ∂2βF (β)
∂β2 (where F (β) is the excess free

energy of the system), show that

Q2(β)
Q(β)Q(β′) = 1−

(
R− 1
R + 1

)2
Cv(β) +O(|R− 1|3) (6)

where Cv is the specific heat of the system.
7. Show that∫∫

d~xNd~x′
N
P (β, β, ~xN , ~x′N) exp

(
−R− 1
R + 1β|V (~x′N)− V (~xN)|

)
=1− R− 1

R + 1M(β)

+
(
R− 1
R + 1

)2
Cv(β) + ...

(7)

where M(β) is expressed as a mean average of |V (~x′N)− V (~xN)|.
8. Finally, by combining the above results, show that

Pa(β, β′) = 1− R− 1
R + 1M(β) +O(|R− 1|3) (8)

9. Using the Cauchy-Schwarz inequality 〈|V (~x′N) − V (~xN)|〉2 ≤ 〈|V (~x′N) − V (~xN)|2〉,
show that M2(β) ≤ 2CV β)

10. An optimal tempering Monte-Carlo method consists in having an equal acceptance
between successive boxes. If the specific heat Cv (or M)is also constant in the range
of [βMax, βMin] show for N boxes that the inverse temperatures must be chosen as

R =
(
βmax
βmin

) 1
N−1

(9)

and
βi = Ri−1βmin (10)

11. For the study of a first-order phase transition, can one assume a constant Cv ?

2 Clogging phenomenon in a channel : the Bridge mo-
del

One considers an one-dimensional stochastic model where particles enter a channel
randomly according an exponential probability P (λ) = λe−λt, where λ is the mean incoming
flux. The time spent in the channel is the same for all particles and is denoted by τ = L/v
where L is the length of the channel. When two particles are simultaneously present, the
channel becomes blocked and no particle can enter the channel. After a finite duration τb,
the blocked channel is released because one assumes that two particles exit the channel at
the same time. Let us denote P0(t), P1(t) and P2(t), the probabilities of having a channel
at time t with 0, 1 or 2 particles respectively.
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Figure 1 – Sketch of the model : (i) the passage is open when either zero or one particle
is present. (ii) If a particle enters when another is already present, the passage is blocked
preventing the entry of new particles. After time τb both trapped particles exit the passage.

1. Show that the kinetic evolution of the system is given by the differential equations.
(Each term must be clearly explained).

dP0(t)
dt

= −λP0(t) + λe−λτP0(t− τ) + λP1(t− τb) (11)

dP1(t)
dt

= −λP1(t) + λP0(t)− λe−λτP (0, t− τ) (12)

dP2(t)
dt

= λP1(t)− λP1(t− τb) (13)

2. Show the total probability P (t) = P0(t) +P (1, t) +P (2, t) is conserved by the process.
3. Starting with the initial condition with an empty channel, show that

P̃0(u) = λ+ u

∆ (14)

P̃1(u) = λ(1− e−(λ+u)τ )
∆ (15)

where
∆ = (λ+ u)2 − λ(λ+ u)e−(λ+u)τ − λ2e−uτb(1− e−(λ+u)τ )

4. One defines the active probability of the channel as the sum of P0(t)+P1(t). Using the
above equations, obtain the active probability of the stationary state, PA(∞).

5. One considers the stationary flux of particles exiting the channel denoted J(λ). Find
the relation between J and PA(∞), and show that J(λ) is given by

J(λ) = λ
2− e−λτ

2− e−λτ (1 + λτb) + λτb
(16)
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Figure 2 – Stationary flux as a function of λ : dots correspond to simulation results and
full curve to exact result.

6. Give the leading term of the stationary flux when λ → 0 and when λ → +∞. Give a
physical interpretation of these results

7. Write a python code for this model. Fig.2 shows the stationary flux J versus λ at the
value τb = 12. τ is set to 1. Simulation results (dots) are obtained by the python code
and compared with the exact result (full curve).

Glossary
— The Laplace transform of a function f(t) is defined as

L(f(t)) = f̃(u) =
∫ ∞

0
f(t)e−utdt (17)

— Basic properties :

f̃ ′(u) = −f(0) + uf̃(u)
L(f(t− τ)) = e−uτ f̃(u)

f(∞) = lim
u→0

uf̃(u)
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