
PCS 2021-2022 Exercices: MD & Structure factor Numerical Simulation

1 Discrete time Molecular Dynamics
The Verlet algorithms provide an efficient tool for solving the Newtonian equations

of motion of interacting particles. In this problem, we plan to review some qualities and
drawbacks of these methods. Let us consider a system of N identical point particles of
mass m interacting by a pairwise potential. The corresponding Hamiltonian is given by

H =
N∑
i=1

m~v2

2 + 1
2
∑
i 6=j

u(rij) (1)

where ~v is the three-dimensional velocity of particle i, u(r) the pair interaction potential
and rij the distance between particles i and j.

The Verlet velocity algorithm is given by

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+ (∆t)2

2m
~Fi(t) (2)

~vi(t+ ∆t) = ~vi(t) + ∆t
2m(~Fi(t) + ~Fi(t+ ∆t)) (3)

1. Express ~Fi(t) as a function of the interaction potential.
2. Show that the total momentum of the system is conserved along the simulation.
3. The initial configuration of a simulation is given by choosing velocities along each

axis according a Gaussian distribution. Give a method to generate random gaussian
numbers. For a finite system of N particles, give a simple method in order to start the
simulation with a zero total momentum.
In order to test the robustness of the algorithm, we now consider a one-dimensional
harmonic oscillator with the Hamiltonian

H = m

2

(
dx

dt

)2

+ k

2x
2 (4)

The continous-time expectation that the momentum is the conjugate variable to the
spatial coordinate is not satisfied by using a discrete time discretization. We illustrate
this point with the Harmonic oscillator. One denotes Ω0 =

√
k/m.

4. Write the position Verlet algorithm for the oscillator between x((n + 1)∆t), x(n∆t)
and x((n− 1)∆t)n The timestep is called ∆t.

5. Knowing that the exact solution of the equation of motion is given by x(t) = ARe(eiΩ0t),
we plan to compare the exact solution to the solution of the discretized equation. By
using the Verlet position algorithm and the ansatz x(n∆t) = ARe(eni∆tΩv) where Ωv is
the pulsation of the discrete time Verlet algorithm, show that cos(Ωv∆t) = 1− (Ω0∆t)2

2 .
6. Express the discrete velocity v(n∆t) as a function of x(n∆t). What happens for Ω0∆t =√

2
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7. Calculate the total energy of the oscillator E(n∆t) as a function of time n∆t. Show
that the total energy oscillates around a mean value Ev to be determined. Ev is a
function which depends on the exact total energy Eex, Ω0 and ∆t.

8. Can the total energy E(n∆t) reach Eex ?. Show that the total energy can be expressed
as

E = Eex(1−
(Ω0∆t)2

4 sin2(Ωv∆t)

9. Why does the discretized solution underestimate the kinetic energy ?.

2 Structure factor in different situations
In order to characterize the spatial correlations between particles, knowledge of the

structure factor is essential. One proposes to show that the structure factor is suitable for
exhibiting the specific features of particle correlations in different situations.

Consider N particles inside a box of volume V . The microscopic density is given as

ρ(r) =
N∑
i=1

δ(r− ri) (6)

where ri denotes the position of particle i. One defined the structure factor as

S(k) = < ρ̃(k)ρ̃(−k) >
N

(7)

where ρ̃(k) is the Fourier transform of the microscopic density and the brackets < ... >
denote the average over the available configurations of the system.
1. Express the structure factor S(k) as a function in terms of < e−ikrij >, where rij =

ri − rj with i 6= j.
2. Show that S(k)→ 1 when k→ +∞.
3. One considers a simulation with a cubic box with a linear dimension L and we are

using periodic boundary conditions. What is the smallest wave vectors k accessible in
simulation ?

4. Consider a lattice gas with a lattice step a. Particles occupy lattice sites, show that
it exists a ultraviolet cutoff of accessible wave vectors. By using periodic boundary
conditions, compute the number of wave vectors available in simulation.

One now considers a finite one-dimensional lattice with a step a (with periodic boun-
dary conditions, i.e. a ring). Each site is occupied by a particle.

5. Calculate ρ̃(k) and infer the structure factor associated with this configuration. Taking
the thermodynamic limit (N →∞) show that the structure factor vanishes within the
Brillouin zone (−π

a
< k < π

a
) (see Glossary).

2 / 4



PCS 2021-2022 MD & SF Numerical Simulation

Each particle is split into two particles which are identical and shifted symmetrically
from the lattice node to a distance u. The distance is chosen randomly from the pro-
bability distribution p(u). The microscopic density is given by

ρd(r) =
N∑
i=1

(δ(r− ri − ui) + δ(r− ri + ui)) (13)

and the structure factor becomes

Sd(k) = < ρ̃d(k)ρ̃d(−k) >
2N . (14)

6. Show that Sd(k) = 2 < cos(ku)2 > +2 < cos(ku) >2 (S(k)− 1).
7. Assuming that the moments < u2 > and < u4 > are finite, calculate the expansion of
Sd(k) to the order k4. Configurations corresponding to the vanishing structure factor
when k → 0, are “super-uniform” (or hyperuniform). Justify this terminology. Hint :
What is this limit for a uniform perfect gas.

8. Simulations have been performed for dense granular systems that unveils that the
structure factor goes to zero as k when k goes to zero. Why does the simulation
require a large number of particles (106 particles) in order to show this result ?
For a liquid close the critical temperature of the liquid-gas transition. The spatial
correlation function the behaves as h(r) ∼ r−(d−2+η) pour r > rc, where η is the
anomalous exponent.

9. By using the relationship between the correlation function and the structure factor,
show that the structure factor diverge at small wave vectors as k−A, where A is an
exponent to be determined

A Glossary
The three dimensional Fourier trasnsform of a function f is defined as

f̂(k) =
∫
d3rf(r)e−ikr (16)

and the inverse transform is given by

f(r) = 1
(2π)3

∫
d3kf̂(k)eikr (17)

For a Gaussian function
f(r) = e−ar2/2 (18)

the Fourier transform is
f̂(k) =

(2π
a

)3/2
e−k2/(2a) (19)
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Conversely, if
f̂(k) = e−bk

2/2 (20)

the inverse Fourier transform is

f(r) =
( 1

2πb

)3/2
e−r2/(2b) (21)

Some identities for δ(r)

δ(r) = 1
(2π)3

∫
d3keikr, 1 =

∫
d3reikrδ(r) (22)
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