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Stochastic thermodynamics

System

Reservoir External

d'Wd'Q

dE

As for macroscopic systems, when the system receives heat from the reservoir
(thermal environment), it is considered as positive.
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Stochastic thermodynamics

For an infinitesimal timestep dt. The force exerced by the thermal environment is

−γ dx
dt

+ ξ(t)

and the heat received is d ′Q

δ′Q =

(
−γ dx

dt
+ ξ(t)

)
◦ dx(t)

Underdamped motion

the heat is given by −γ dp
dt + ξ(t) times the displacement. Equation of motion,

dp

dt
= −∂U(x , λ)

∂x
− γ dx

dt
+ ξ(t)
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Stochastic thermodynamics

Underdamped motion

the heat can be written as

d ′Q =

(
dp

dt
+
∂U(x , λ)

∂x

)
◦ dx(t)

The work brought to the system corresponds to a change performed by the
external operator, one has

d ′W =
∂U(x , λ)

∂λ
◦ dλ(t)

First law of thermodynamics

One uses two identities: the first one

dp

dt
◦ dx(t) =

dp

dt
◦ p

m
dt = d

(
p2

2m

)
which gives

dE = δ′Q + δ′W
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First law of thermodynamics

The second one

∂U(x , λ)

∂x
◦ dx(t) = dU(x , λ)− ∂U(x , λ)

∂λ
◦ dλ

which gives

dE = d ′Q + d ′W

where E is the total energy of the system

E =

(
p2

2m
+ U(x , λ)

)

Conservation of the energy of the system.
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Overdamped motion

Equation of motion

γ
dx

dt
= −∂U(x , λ)

∂x
+ ξ(t)

The heat is given by

d ′Q =
∂U(x , λ)

∂x
◦ dx(t)

The work is given

d ′W =
∂U(x , λ)

∂λ
◦ dλ(t)

and finally
dU(x , λ) = d ′Q + d ′W

for an overdamped motion, the mean kinetic energy stays at equilibrium and only
the internal energy is modified by work and/or heat.
The thermodynamics quantities have been defined for a single trajectory, and it is
also interesting to calculate an ensemble average of these fluctuating observables.
It is convenient to use the Fokker-Planck and/or Kramers equations.
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Underdamped motion

For a underdamped motion, the mean heat variation can be rewritten as

〈d ′Q〉 =

∫ ∫ (
dp

dt
+
∂U(x , λ)

∂x

)
◦ dx(t)

dt
P(x , p)dxdpdt (1)

=

∫ ∫ (
p

m
◦ dp
dt

+
∂U(x , λ)

∂x
◦ dx(t)

dt

)
P(x , p)dtdxdp (2)

〈d ′Q〉 =

∫ (
∂E

∂x
Jx +

∂E

∂p
Jp

)
dxdpdt

~J =
(

dx
dt P(x , p), dpdt P(x , p)

)
is the flux of probability in the phase space.

〈d ′Q〉 =

∫
~∇E ~Jdxdpdt
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Entropy and second law of thermodynamics

One defines a stochastic entropy coming from the particle trajectory. For an
overdamped motion

s(t) = − ln(P((x(t, λ), t))) (5)

where P((x(t, λ)), t) is is the probability provided by the Fokker-Planck equation
associated with the Langevin equation and calculated along the particle trajectory
xt .

The stochastic entropy depends both on the trajectory and on the ensemble.
Taking the time derivative of the stochastic entropy, one has

ds(t)

dt
= − 1

P(x , t)

(
∂P(x , t)

∂t
+
∂P(x , t)

∂x

dx

dt

)
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Entropy and second law of thermodynamics

The flux of the Fokker-Planck equation is given by

∂P(x , t)

∂t
= −∂J

∂x

with

J = − 1

γ

(
∂U(x , λ)

∂x
+

1

β

∂

∂x

)
P(x , t)

which gives
∂P(x , t)

∂x
= −β

(
γJ(x , t) +

∂U(x , t)

∂x
P(x , t)

)
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Entropy and second law of thermodynamics

Let us recall that the time derivative of the entropy is given by

ds(t)

dt
= − 1

P(x , t)

(
∂P(x , t)

∂t
+
∂P(x , t)

∂x

dx

dt

)

which gives

ds(t)

dt
= −∂tP(x , t)

P(x , t)
+

(
βγJ(x , t)

P(x , t)
+ β∂xU(x , λ)

)
xt

dx

dt

Entropy coming from the environment

The heat released in the environnement is equal to the opposite heat received by
the system and the entropy rate is given by

dsm(x(t))

dt
= β
−dq(x(t))

dt

By using the définition of the heat

dsm(x(t))

dt
= −β∂xU(x , λ)

dx

dt
(6)
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Entropy coming from the environment

By summing the two contributions to the total entropy, one obtains the total
entropy

dstot(t)

dt
= −∂tP(x , t)

P(x , t)
+

(
J(x , t)

DP(x , t)

)
xt

dx

dt

with D = 1/βγ

Average of the total entropy

For a given function f (x), the brackets denote

〈f (x)〉 =

∫
dxf (x)P(x , t)

Consequently, one has 〈
g(x)

dx

dt

〉
=

∫
dxg(x)J(x , t)

where J(x , t) is the flux.
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Average of the total entropy

The mean rate of the total entropy is then given by

dStot(t)

dt
=

〈
dstot(t)

dt

〉
= −

∫
dx
∂p(x , t)

∂t
+

∫
dx

J2(x , t)

Dp(x , t)
(7)

Due to the conservation of the probability, one has
∫
dx ∂p(x,t)

∂t = 0 and finally the
mean rate of the total entropy is

dStot(t)

dt
=

∫
dx

J2(x , t)

Dp(x , t)
≥ 0 (8)

because the integrand J2(x,t)
Dp(x,t) is positive.

The total entropy increases with time as expected by the second law of the
thermodynamics.
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Large deviation functions

For a random variables An parameterized by n which is an increasing index, the
theory of large deviations gives that the probability P(An = a) behaves as
≈ e−I (a)n for large n. I (a) is called the rate function. In other words, the leading
behavior can be expressed as

lim
n→∞

− ln(P(An))

n
= I (a) (9)

This theory encompasses various situations occurring in statistical physics,
stochastic processes, probability theory.
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Independent and Identically Distributed variables

Let us consider a probability distribution p(x), and let us define the mean value of
n variables

Sn =
1

n

n∑
i=1

xi

where xi are random variables chosen with the probability distribution p(x).

The
probability of having Sn = s is given by

P(Sn = s) =

∫
dx1

∫
dx2 · · ·

∫
dxnp(x1)p(x2) · · · p(xn)δ(x1 + x2 + · · ·+ xn − sn)

where δ is the Dirac function.
By introducing the Laplace transform of P and the change of variable s → ns

P̃(u) =

∫ ∞
0

e−usP(s)ds

one obtains
P̃(u) = p̃n(u/n)
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Independent and Identically Distributed variables

With an exponential distribution p(x) = λ exp(−λx), one obtains

P̃(u) =
λn

(λ+ u/n)n

which gives

P(s) =
λn(ns)n

n!
e−λns

By using the Stirling formula ,n! ∼ nne−n
√

2πn, P(s) goes at large n as

P(s) ≈ exp(−I (s)n)

where I (s) is the rate function is given by

I (x) = λx − ln(λx)− 1
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Independent and Identically Distributed variables

The rate function I (x) is maximum and cancels when λx = 1, which corresponds
to the mean value λs = 1. Expanding to second-order at the maximum of the
function, one obtains

I (x) =
1

2
(λx − 1)2 (10)

This corresponds to the law of large numbers.

The rate function is a difficult task to obtain in simulations, because the large
values of the rate function corresponds to rare events.
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Gartner-Ellis theorem
For a random variable An where n is a positive integer, one defines the scaled
cumulant generating function

λ(k) = lim
n→∞

1

n
ln〈enkAn〉

If λ(k) exists and is differentiable for all real values k then the probability P(An)
is given as a large deviation function

P(a) ≈ e−nI (a)

which gives

〈enkAn〉 ≈
∫

daen(ka−I (a))

By using the saddle-point method (or Laplace’s method), one obtains that

λ(k)) = sup
a∈R

(ka− I (a)) (11)

where sup means “supremum of”.
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Gartner-Ellis theorem
The Legendre-Fenchel transform of the rate function gives the scaled cumulant
generating function. If λ(k) is a differentiable function, the inverse transform
holds and the rate function is then given by

I (a) = sup
k∈R

(ka− λ(k)) (12)

Application in Statistical Mechanics

The thermodynamic potentials satisfy a large deviation principle. The partition
functions associated with the different ensembles: for the microcanonical
ensemble, the partition function has a large deviation principle, where the rate
function is the opposite of the mean entropy per particle (or per lattice site)

Z (E ,V ,N) ≈ eNs(e,ρ) (13)

The canonical partition function has a large deviation principle

Z (V ,N,T ) ≈ e−Nβf (ρ,β) (14)

where β = 1/kBT is the inverse temperature and f is the free energy per particle.

Pascal Viot Simulation of small systems: II November 30, 2020 19 / 26



Gartner-Ellis theorem
The Legendre-Fenchel transform of the rate function gives the scaled cumulant
generating function. If λ(k) is a differentiable function, the inverse transform
holds and the rate function is then given by

I (a) = sup
k∈R

(ka− λ(k)) (12)

Application in Statistical Mechanics

The thermodynamic potentials satisfy a large deviation principle. The partition
functions associated with the different ensembles: for the microcanonical
ensemble, the partition function has a large deviation principle, where the rate
function is the opposite of the mean entropy per particle (or per lattice site)

Z (E ,V ,N) ≈ eNs(e,ρ) (13)

The canonical partition function has a large deviation principle

Z (V ,N,T ) ≈ e−Nβf (ρ,β) (14)

where β = 1/kBT is the inverse temperature and f is the free energy per particle.

Pascal Viot Simulation of small systems: II November 30, 2020 19 / 26



Application in Statistical Mechanics

For concave entropy, the free energy can be obtained from a Legendre-Fenchel
transform

β(f (ρ, β) = sup
e∈R

(βe − s(e, ρ)) (15)

Conversely, if the free energy is differentiable for all temperatures, one can obtain
the entropy as

s(e, ρ) = inf
β∈R+

(βe − f (ρ, β)) (16)

where inf is the “infimum of”.

Fluctuation theorems
The different fluctuation theorems express the universal properties of the
probability distribution of the thermodynamic quantities. This corresponds to a
generalisation of thermodynamics by including the fluctuations. Three classes of
properties have been proved under specific assumptions. Let us introduce a
variable Λ(x , t) which depends on x and t.
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Integral fluctuation theorem

If Λ(x , t) is a non dimensional functional, one says that Λ obeys the integral
fluctuation theorem iff

〈exp(−Λ)〉 =

∫
dΛp(Λ) exp(−Λ) = 1 (17)

where p(Λ) is the distribution probability.
Many conséquences:

〈Λ〉 ≥ 0

Because exp(−x) < 1− x , one has

−〈Λ〉 ≤ 0

The integral being equal to 1, there are trajectories where Λ is negative.
apparent violation of the second law of thermodynamics?.

In fact, this corresponds to fluctuations which can lead to negative values of
Λ.
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Integral fluctuation theorem

P(Λ < −λ) ≤
∫ −λ
−∞

dΛp(Λ)e−λ−Λ ≤ e−λ

To prove the inequality, one writes

P(Λ < −λ) =

∫ −λ
−∞

dΛp(Λ)

≤
∫ −λ
−∞

dΛp(Λ)e−λ−Λ

≤
∫ ∞
−∞

dΛp(Λ)e−λe−Λ

≤ e−λ
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Integral fluctuation theorem

IFT imposes a constraint between the variance and the mean of Λ when the
distribution p(Λ) is gaussian

〈(Λ− 〈Λ〉)2〉 = 2〈Λ〉

if p(Λ) = 1√
2πσ

exp(− (Λ−〈Λ〉)2)
2σ2 with σ2 = 〈(Λ− 〈Λ〉)2〉 one has∫

e−Λp(Λ) = eσ
2/2−〈Λ〉
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Detailed fluctuation theorem
The detailed fluctuation theorem provides a relationship between the probability
of obtaining the quantity Λ and the opposite −Λ:

p(−Λ)

p(Λ)
= exp(−Λ) (18)

When a quantity Λ satisfies this relation, the IFT is also satisfied.∫
dΛ exp(−Λ)p(Λ) =

∫
dΛp(−Λ) (19)

=

∫
dΛp(Λ) = 1 (20)

Generalized Crooks fluctuation theorem

Comparing the probability distribution function p(Λ) with the probability p†(Λ) of
the same quantity Λ for a “conjugate” process (generally one considers a
time-reversed process)

p†(−Λ)

p(Λ)
= exp(−Λ) (21)
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Work fluctuation theorems
We first consider work fluctuations when the initial configuration is in equilibrium
whereas the final configuration is not necessarily in equilibrium. The system
evolves between the two states due to a driving force.

Jarzynski relation

Jarzynski showed the work which allows to drive the system from the initial
equilibrium state by using a time-dependent potential U(x , λ) for a time t
satisfies the relation 〈

exp
(
−w

T

)〉
= exp

(
−∆F

T

)
(22)

where ∆F is the difference of the free energy between the final state where the
control parameter is equal to λt and the initial state with a control parameter λ0.
This can be viewed as a IFT relation for the dimensionless dissipated work.

wd =
w −∆F

T
(23)
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Jarzynski relation

Therefore, experimentally and/or in simulation, it becomes possible to obtain the
free energy difference ∆F = F(λt)−F(λ0), namely a equilibrium property, from
non equilibrium measurements.

Crooks fluctuation theorem

The Crooks fluctuation theorem states that the probability distribution p(w) for
work spent in the process is related to the probability distribution p̃ for work in
the reverse process. The control parameter of the reversed process is given by
λ̃(τ) = λ(t − τ) and the initial state of the reversed process is an equilibrium
state where λ̃(0) = λ(t).

p̃(w)

p(w)
= exp

(
−w −∆F

T

)
(24)

Note that for a system where the Crooks relation holds, the Jarzynski theorem is
satisfied. Indeed, knowing that p̃(w) is normalized, one immediately infers that
the JR holds.
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Jarzynski relation

Therefore, experimentally and/or in simulation, it becomes possible to obtain the
free energy difference ∆F = F(λt)−F(λ0), namely a equilibrium property, from
non equilibrium measurements.

Entropy production

The entropy production along a trajectory is the sum of two terms as previously
seen

∆stot = ∆sm + ∆s (25)

with
∆s = − ln(p(xt , λt)) + ln(p(x0, λ0)) (26)

The total entropy obeys the IFT

〈exp (−∆stot)〉 = 1 (27)

By using the convexity of the exponential function, one infers that 〈∆stot〉 ≥ 0
wich shows that the entropy production is obviously compatible with the second
law of thermodynamics.
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