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Stochastic thermodynamics

d'Q System d'W

dE

As for macroscopic systems, when the system receives heat from the reservoir
(thermal environment), it is considered as positive.
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Stochastic thermodynamics

For an infinitesimal timestep dt. The force exerced by the thermal environment is

dx

~i +&(t)

and the heat received is d’ Q@

dt

5Q = <_7% + E(t)> o dx(t)
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Stochastic thermodynamics

For an infinitesimal timestep dt. The force exerced by the thermal environment is

dx

~i +&(t)

and the heat received is d’ Q@

5Q = <_7% + §(t)> o dx(t)

| A

Underdamped motion

the heat is given by —’y% + £(t) times the displacement. Equation of motion,

dp  OU(x,)) dx
d~ ox dt +&(t)
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Stochastic thermodynamics

Underdamped motion

the heat can be written as

d'Q= (@ + M) o dx(t)

dt Ox
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Stochastic thermodynamics

Underdamped motion

the heat can be written as

i~ (dp  OU(x,\) .
dQ_(E+T) dx(t)

The work brought to the system corresponds to a change performed by the
external operator, one has

oU(x, \)

/!
W:
d O

o d)\(t)
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Stochastic thermodynamics

Underdamped motion

the heat can be written as

i~ (dp  OU(x,\) .
dQ= (Cﬂ+8)<) dx(t)

The work brought to the system corresponds to a change performed by the
external operator, one has

oU(x, \)

/!
W:
d O

o d)\(t)

First law of thermodynamics

One uses two identities: the first one

dp _dp p (P
g 08 = Gpodt=d <2m

which gives
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First law of thermodynamics

The second one

dx(t) = dU(x, \) — % o d)

oU(x, \) .
Ox
which gives

dE =d'Q+d'W

where E is the total energy of the system

E= (”2 + U(x, A))

2m
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First law of thermodynamics
The second one

oU(x, \) _ oU(x, \)
—ox° dx(t) = dU(x, \) — —n ° d\
which gives

dE =d'Q+d'W

where E is the total energy of the system

E= (”2 + U(x, A))

2m

Conservation of the energy of the system.
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Overdamped motion

Equation of motion

dx  9U(x,\)
Tk ok o)
The heat is given by
oU(x, \)
A )
d'Q= o ° dx(t)

Pascal Viot November 30, 2020 6/26



Overdamped motion

Equation of motion

dx oU(x, \)
—_——=—— t
T o &)
The heat is given by
oU(x, \)
' )
dQ = o o dx(t)
The work is given
oU(x, \)
/ _ )
dW = o o dA(t)
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Overdamped motion

Equation of motion

dx oU(x, \)
_——= ——— t
T o TE)
The heat is given by
oU(x, \)
A )
d'Q = o ° dx(t)
The work is given
oU(x, \)
/ _ 5
d'W = —n ° dA(t)

and finally
dU(x,\) =d'Q+d'W

for an overdamped motion, the mean kinetic energy stays at equilibrium and only
the internal energy is modified by work and/or heat.
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Overdamped motion

Equation of motion

dx oU(x, \)
_——= ——— t
T o TE)
The heat is given by
oU(x, \)
A )
d'Q = o ° dx(t)
The work is given
oU(x, \)
/ _ 5
d'W = —n ° dA(t)

and finally
dU(x,\) =d'Q+d'W

for an overdamped motion, the mean kinetic energy stays at equilibrium and only
the internal energy is modified by work and/or heat.

The thermodynamics quantities have been defined for a single trajectory, and it is
also interesting to calculate an ensemble average of these fluctuating observables.
It is convenient to use the Fokker-Planck and/or Kramers equations.
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Underdamped motion

For a underdamped motion, the mean heat variation can be rewritten as

// < 49Ul A)> 5 d’;(tt) P(x, p)dxdpdt (1)
/ / <:; ZIZ 8U((9):A) OCT> P(x, p)dtdxdp 2

(d'Q) = / <?§JX + gij ) dxdpdt

J= (%P(X7 p), L P(x, p)) is the flux of probability in the phase space.
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Overdamped motion

The mean heat variation can be rewritten as

//<aux A)) d);l(t) P et 3

/ / (aU(X N, d’j”) P(x, )dtdx (a)

OE
= / aJdedt
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Overdamped motion

The mean heat variation can be rewritten as

//<6Ux)\) d);l(t) P et 3

/ / (aU(X N, dff”) P(x, )dtdx (a)

OE
= / aJdedt

J'= (% P(x)) is the flux of probability in the phase space.

(d'Q) = / VE Jdxdt
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Entropy and second law of thermodynamics

One defines a stochastic entropy coming from the particle trajectory. For an

overdamped motion
s(t) = = In(P((x(t, A), 1)))

where P((x(t,)), t) is is the probability provided by the Fokker-Planck equation
associated with the Langevin equation and calculated along the particle trajectory

Xt.

(5)
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where P((x(t,)), t) is is the probability provided by the Fokker-Planck equation
associated with the Langevin equation and calculated along the particle trajectory

Xt.
The stochastic entropy depends both on the trajectory and on the ensemble.

(5)
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Entropy and second law of thermodynamics

One defines a stochastic entropy coming from the particle trajectory. For an

overdamped motion
s(t) = = In(P((x(t, A), 1)))

where P((x(t,)), t) is is the probability provided by the Fokker-Planck equation
associated with the Langevin equation and calculated along the particle trajectory

Xt.
The stochastic entropy depends both on the trajectory and on the ensemble.
Taking the time derivative of the stochastic entropy, one has

ds(t) 1 <8P(x,t)+8P(x,t)dx>

dt P(x,t) ot Ox dt

(5)
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Entropy and second law of thermodynamics

The flux of the Fokker-Planck equation is given by

OP(x,t)  9J
ot Ox
with 1 /0U(x,2) 10
X’
J——;( Ox +,86X> P(X,t)
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Entropy and second law of thermodynamics
The flux of the Fokker-Planck equation is given by

OP(x,t)  9J
ot Ox
with 1 /0U(x,2) 10
X’
J—‘;(a—x m)”(“)
which gives
oP(x,t) oU(x, t)
L8 — —p (vt 1)+ 252D
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Entropy and second law of thermodynamics

Let us recall that the time derivative of the entropy is given by

ds(t) 1 <8P(x,t)+8P(x,t) dx)

ot ox dt

dt P(x, t)
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Entropy and second law of thermodynamics

Let us recall that the time derivative of the entropy is given by

ds(t) 1 OP(x,t)  OP(x,t) dx
d — P(x,t) ( ot ox dt)
which gives
ds(t)  0:P(x,t) Byd(x, t) dx
dt — P(xt) +< Pl g A% A)>Xt dt
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Entropy and second law of thermodynamics

Let us recall that the time derivative of the entropy is given by

ds(t) 1 OP(x,t)  OP(x,t) dx
da — P(x, t)( ot ox dt)
which gives
ds(t) O0rP(x,t) Byd(x, t) dx
=+ (Chey o0 )

| |
A

Entropy coming from the environment

The heat released in the environnement is equal to the opposite heat received by
the system and the entropy rate is given by

dsim(x(t))
dt

—dq(x(t))
dt

=P
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Entropy and second law of thermodynamics

Let us recall that the time derivative of the entropy is given by

ds(t) 1 (c’ﬁP(x, t) N OP(x, t) dx)

dt — P(x,t) ot Ox dt

which gives

ds(t) O0rP(x,t) Byd(x, t) dx
it P(x 1) +< Poc ) TPV M) dt

Entropy coming from the environment

The heat released in the environnement is equal to the opposite heat received by
the system and the entropy rate is given by

| |
A

dsm(x(t)) _ 5 —da(x(t))
dt dt
By using the définition of the heat
dsm(x(t)) dx
p” = —B0,U(x, \) o (6)
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Entropy coming from the environment
By summing the two contributions to the total entropy, one obtains the total

entropy

dsior(t)  0:P(x,t) (J(x,t)) dx

dt  P(x,t) DP(x,t) ), dt

with D = 1/p
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Entropy coming from the environment

By summing the two contributions to the total entropy, one obtains the total

entropy
dstot(t) _ _8t’D(X7 t) + J(x, t) %
dt P(x, t) DP(x,t)/,, dt

with D = 1/p

Average of the total entropy

For a given function f(x), the brackets denote

(f(x)) = /dxf(x)P(x7 t)

Consequently, one has

(2005 ) = [ dse a0,

where J(x, t) is the flux.

v
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Average of the total entropy

The mean rate of the total entropy is then given by

dStor(t) _ <dstot(t)>

dt dt
op(x, t) J2(x, t)
_ —/dx u +/dep(X, - )

Due to the conservation of the probability, one has [ dx% = 0 and finally the
mean rate of the total entropy is

dStot(t) J2(X, t)
= [ dx———= >
dt / “Dp(x, 1) = ° (8)
because the integrand EJ;();’?) is positive.
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Average of the total entropy

The mean rate of the total entropy is then given by

dStor(t) _ <dstot(t)>

dt dt
. op(x, t) J2(x, t)
. / Pt / s )

Due to the conservation of the probability, one has [ dx% = 0 and finally the
mean rate of the total entropy is

dStot(t) / J2(X, t)
= [ x2S
dt XDplx, 1) =" (®)
because the integrand Sxt) positive.

Dp(x,t)
The total entropy increases with time as expected by the second law of the

thermodynamics.
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Large deviation functions

For a random variables A, parameterized by n which is an increasing index, the
theory of large deviations gives that the probability P(A, = a) behaves as
~ e~ (3" for large n. I(a) is called the rate function. In other words, the leading
behavior can be expressed as

. In(P(An))

lim ————=~ =/

i, = =1 ©)
This theory encompasses various situations occurring in statistical physics,
stochastic processes, probability theory.
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Independent and ldentically Distributed variables

Let us consider a probability distribution p(x), and let us define the mean value of
n variables
1 n
Sn = E ZX,‘
i=1

where x; are random variables chosen with the probability distribution p(x).
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Independent and ldentically Distributed variables

Let us consider a probability distribution p(x), and let us define the mean value of
n variables
1 n
Sn = E ZX,‘
i=1

where x; are random variables chosen with the probability distribution p(x). The
probability of having S, = s is given by

P(S, = 5) :/dxl/dXQ-~-/dx,,p(xl)p(XQ)---p(Xn)é(xl—|—X2+"'—|—Xn—sn)

where ¢ is the Dirac function.
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Independent and ldentically Distributed variables

Let us consider a probability distribution p(x), and let us define the mean value of
n variables
1 n
Sn = E ZX,‘
i=1

where x; are random variables chosen with the probability distribution p(x). The
probability of having S, = s is given by

P(S, = 5) :/dxl/dXQ-~~/dx,,p(x1)p(X2)---p(Xn)é(xl—|—X2+"'—|—Xn—sn)

where § is the Dirac function.
By introducing the Laplace transform of P and the change of variable s — ns

B(u) = /0 " evp(s)ds

one obtains

P(u) = B"(u/n)
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Independent and Identically Distributed variables

With an exponential distribution p(x) = A exp(—Ax), one obtains

- A7
Plu)= ———
W)= F
which gives
A"(ns)" s
P(S) _ (n' ) e A

By using the Stirling formula ,n! ~ n"e~"\/2wn, P(s) goes at large n as
P(s) ~ exp(—1I(s)n)

where /(s) is the rate function is given by

I(x) = Ax —In(Ax) — 1
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Independent and |dentically Distributed variables

The rate function /(x) is maximum and cancels when Ax = 1, which corresponds
to the mean value As = 1. Expanding to second-order at the maximum of the

function, one obtains )
1(x) = 5(x = 1)? (10)

This corresponds to the law of large numbers.

v
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Independent and |dentically Distributed variables

The rate function /(x) is maximum and cancels when Ax = 1, which corresponds
to the mean value As = 1. Expanding to second-order at the maximum of the

function, one obtains )
1(x) = 5(x = 1)? (10)

This corresponds to the law of large numbers.

~In(P/n

The rate function is a difficult task to obtain in simulations, because the large
values of the rate function corresponds to rare events.
v
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Gartner-Ellis theorem

For a random variable A, where n is a positive integer, one defines the scaled
cumulant generating function

AMk) = lim = In{e™ A

n—oco n

If A(k) exists and is differentiable for all real values k then the probability P(A,)

is given as a large deviation function
P(a) ~ e~

which gives
<enkAn> m/daen(ka—l(a))

v
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Gartner-Ellis theorem

For a random variable A, where n is a positive integer, one defines the scaled
cumulant generating function

AMk) = lim = In{e™ A

n—oco n

If A(k) exists and is differentiable for all real values k then the probability P(A,)
is given as a large deviation function

P(a) ~ e~ "

which gives
<enkAn> m/daen(ka—l(a))

By using the saddle-point method (or Laplace’s method), one obtains that

MK) = sup(ka ~ 1(2)) (11)

where sup means “supremum of”.

v
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Gartner-Ellis theorem

The Legendre-Fenchel transform of the rate function gives the scaled cumulant
generating function. If A(k) is a differentiable function, the inverse transform
holds and the rate function is then given by

1(2) = sup(ka — A(K)) (12)
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Gartner-Ellis theorem
The Legendre-Fenchel transform of the rate function gives the scaled cumulant
generating function. If A(k) is a differentiable function, the inverse transform
holds and the rate function is then given by

I1(a) = sup(ka — A(k)) (12)
kER

Application in Statistical Mechanics

The thermodynamic potentials satisfy a large deviation principle. The partition
functions associated with the different ensembles: for the microcanonical
ensemble, the partition function has a large deviation principle, where the rate
function is the opposite of the mean entropy per particle (or per lattice site)

Z(E,V,N) = elste:r) (13)
The canonical partition function has a large deviation principle

Z(V,N,T)~ e NOf(r8) (14)

where 8 = 1/kgT is the inverse temperature and f is the free energy per particle.
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Application in Statistical Mechanics

For concave entropy, the free energy can be obtained from a Legendre-Fenchel
transform

B(f(p,B) = :gg(ﬁe —s(e, p)) (15)

Conversely, if the free energy is differentiable for all temperatures, one can obtain
the entropy as

slenpl = ol (e = ble B (16)

where inf is the “infimum of”.
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Application in Statistical Mechanics

For concave entropy, the free energy can be obtained from a Legendre-Fenchel
transform

B(f(p,B) = :gg(ﬁe —s(e, p)) (15)

Conversely, if the free energy is differentiable for all temperatures, one can obtain
the entropy as

slenpl = ol (e = ble B (16)

where inf is the “infimum of”.

Fluctuation theorems

The different fluctuation theorems express the universal properties of the
probability distribution of the thermodynamic quantities. This corresponds to a
generalisation of thermodynamics by including the fluctuations. Three classes of
properties have been proved under specific assumptions. Let us introduce a
variable A(x, t) which depends on x and t.
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Integral fluctuation theorem

If A(x,t) is a non dimensional functional, one says that A obeys the integral
fluctuation theorem iff
(exp(~N)) = [ dhp() esp(~1) = 1 (17)
where p(A) is the distribution probability.
Many conséquences:
°
(N >0
Because exp(—x) < 1 — x, one has
—(N) <0
November 30, 2020 21/26
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Integral fluctuation theorem

If A(x,t) is a non dimensional functional, one says that A obeys the integral
fluctuation theorem iff

(exp(—A)) = / dAp(A) exp(—A) = 1

where p(A) is the distribution probability.
Many conséquences:

(]
(N) >0

Because exp(—x) < 1 — x, one has
—(A) <0

@ The integral being equal to 1, there are trajectories where A is negative.
apparent violation of the second law of thermodynamics?.

In fact, this corresponds to fluctuations which can lead to negative values of

A.

(17)

v

Pascal Viot November 30, 2020

21/26



Integral fluctuation theorem

DY
P(A < -)) < / dAp(N)e N < e

To prove the inequality, one writes

P(A < —2) = /  ane()

—00

-
< / dhp(A)e >

oo
< / dAp(A)e e

—00

<e?
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ntegral fluctuation theorem

@ IFT imposes a constraint between the variance and the mean of A when the
distribution p(A) is gaussian

if p(A) = \/2170 exp(—gl\_z—g\z>L22 with o2 = ((A — (A))?) one has

Pascal Viot November 30, 2020 23/26



Detailed fluctuation theorem

The detailed fluctuation theorem provides a relationship between the probability
of obtaining the quantity A and the opposite —A:
p(=N)
= exp(—A 18
=R (18)
When a quantity A satisfies this relation, the IFT is also satisfied.
/d/\exp(—/\)p(/\) = /d/\p(—/\) (19)
= /d/\p(/\) =1 (20)
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Detailed fluctuation theorem

The detailed fluctuation theorem provides a relationship between the probability
of obtaining the quantity A and the opposite —A:

"rﬁ(‘AA)) — exp(—A) (18)

When a quantity A satisfies this relation, the IFT is also satisfied.

[ dnexo(-np(n) = [ dnp(-n) (19)

Generalized Crooks fluctuation theorem

Comparing the probability distribution function p(A) with the probability pf(A) of
the same quantity A for a “conjugate” process (generally one considers a
time-reversed process)

T
Pp((A)“) — exp(—N) (21)

Pascal Viot November 30, 2020 24 /26
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Work fluctuation theorems

We first consider work fluctuations when the initial configuration is in equilibrium
whereas the final configuration is not necessarily in equilibrium. The system
evolves between the two states due to a driving force.
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Work fluctuation theorems

We first consider work fluctuations when the initial configuration is in equilibrium
whereas the final configuration is not necessarily in equilibrium. The system
evolves between the two states due to a driving force.

Jarzynski relation

Jarzynski showed the work which allows to drive the system from the initial
equilibrium state by using a time-dependent potential U(x, A) for a time t

satisfies the relation
(o0 (-2)) =0 () @

where AF is the difference of the free energy between the final state where the
control parameter is equal to A; and the initial state with a control parameter \q.
This can be viewed as a IFT relation for the dimensionless dissipated work.

w— AF

Wq = T

(23)

v
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Jarzynski relation

Therefore, experimentally and/or in simulation, it becomes possible to obtain the
free energy difference AF = F(X:) — F(Xo), namely a equilibrium property, from
non equilibrium measurements.
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Jarzynski relation

Therefore, experimentally and/or in simulation, it becomes possible to obtain the
free energy difference AF = F(X:) — F(Xo), namely a equilibrium property, from
non equilibrium measurements.

Crooks fluctuation theorem

The Crooks fluctuation theorem states that the probability distribution p(w) for
work spent in the process is related to the probability distribution p for work in
the reverse process. The control parameter of the reversed process is given by
X(7) = A(t — 7) and the initial state of the reversed process is an equilibrium
state where A(0) = A(t).

Kx) — exp (WTAJT> (24)

Note that for a system where the Crooks relation holds, the Jarzynski theorem is
satisfied. Indeed, knowing that p(w) is normalized, one immediately infers that
the JR holds. )
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Jarzynski relation

Therefore, experimentally and/or in simulation, it becomes possible to obtain the
free energy difference AF = F(A:) — F(Xo), namely a equilibrium property, from
non equilibrium measurements.

Entropy production

The entropy production along a trajectory is the sum of two terms as previously
seen

Asior = As,, + As (25)

with
As = —In(p(x¢, At)) + In(p(x0, No)) (26)
The total entropy obeys the IFT

(exp (—Asior)) =1 (27)

By using the convexity of the exponential function, one infers that (As;,:) > 0
wich shows that the entropy production is obviously compatible with the second
law of thermodynamics.

v
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