the mean energy $\langle E \rangle_\beta$ at the temperature $T = 1/\beta$ is obtained by calculating the integral.

$$\langle E \rangle = \int dE E P_\beta(E)$$ \hspace{1cm} (1)

where $P_\beta(E)$ is the probability distribution of finding an equilibrium configuration at the temperature T.
the mean energy $\langle E \rangle_\beta$ at the temperature $T = 1/\beta$ is obtained by calculating the integral.

$$\langle E \rangle = \int dE E P_\beta(E)$$ (1)

where $P_\beta(E)$ is the probability distribution of finding an equilibrium configuration at the temperature T.

In a simulation, after a period corresponding the relaxation time, the system evolves at equilibrium and the mean energy is obtained by taking the arithmetic average

$$\langle E \rangle = \frac{1}{N_c} \sum_{i=1}^{N_c} E_i$$ (2)

where the summation is performed over N_c configurations at equilibrium.
The mean energy $\langle E \rangle_\beta$ at the temperature $T = 1/\beta$ is obtained by calculating the integral.

$$\langle E \rangle = \int dE \, E P_\beta(E)$$ \hspace{1cm} (1)

where $P_\beta(E)$ is the probability distribution of finding an equilibrium configuration at the temperature T.

In a simulation, after a period corresponding to the relaxation time, the system evolves at equilibrium and the mean energy is obtained by taking the arithmetic average

$$\langle E \rangle = \frac{1}{N_c} \sum_{i=1}^{N_c} E_i$$ \hspace{1cm} (2)

where the summation is performed over N_c configurations at equilibrium.

C_v is given by $k_b \beta^2 (\langle E^2 \rangle - \langle E \rangle^2)$.
Time driven algorithm

\[\langle A \rangle = \frac{1}{t} \sum_{0}^{t} A(t') dt'\] (3)

One assumes an ergodicity time smaller than the simulation time.

Event-driven algorithm

\[\langle A \rangle = \frac{1}{T_{N_{c}}} \sum_{i}^{N_{c}} A_{i} t_{i}\] (4)

where \(t_{i}\) is time interval between the \(i\)th and \((i+1)\)th event (collision).
Molecular Dynamics

Time driven algorithm

\[\langle A \rangle = \frac{1}{t} \sum_{0}^{t} A(t') dt' \] \hspace{1cm} (3)

- One assumes an ergodicity time smaller than the simulation time

Event-driven algorithm

\[\langle A \rangle = \frac{1}{T} \sum_{i}^{Nc} A_i \sum_{i}^{T} dt_i \] \hspace{1cm} (4)
where \(t_i \) is time interval between the \(i \)th and \(i + 1 \)th event (collision).
Time driven algorithm

\[\langle A \rangle = \frac{1}{t} \sum_{0}^{t} A(t') dt' \] \hspace{1cm} (3)

- One assumes an ergodicity time smaller than the simulation time
- Time average corresponds to statistical average!
Molecular Dynamics

Time driven algorithm

\[\langle A \rangle = \frac{1}{t} \sum_{t'}^{t} A(t') dt' \]

- One assumes an ergodicity time smaller than the simulation time
- Time average corresponds to statistical average!

Event-driven algorithm

\[\langle A \rangle = \frac{1}{T} \sum_{i}^{N_c} A_i t_i \]

where \(t_i \) is time interval between the \(i \)th and \(i + 1 \)th event (collision).
Spatial correlation functions

- Point particle system: \(N \) identical particles
Correlation functions

Spatial correlation functions

- Point particle system: \(N \) identical particles
- Microscopic density

\[
\rho(r) = \sum_{i=1}^{N} \delta(r - r_i)
\]
Spatial correlation functions

- Point particle system: \(N \) identical particles

- Microscopic density

\[
\rho(r) = \sum_{i=1}^{N} \delta(r - r_i)
\]

- Microscopic pair density

\[
\rho(r, r') = \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \delta(r - r_i) \delta(r' - r_j)
\]
Spatial correlation functions

- Take the average over "similar" configurations \(\overline{\rho(r)} = \langle \rho(r) \rangle \)
Spatial correlation functions

- Take the average over "similar" configurations $\overline{\rho(r)} = \langle \rho(r) \rangle$
- At equilibrium

$$\overline{\rho(r)} = N \int \cdots \int \exp(-\beta V(r^N)) dr^{N-1} \overline{Z_N(V, T)}$$
Correlation functions

Spatial correlation functions

- Take the average over "similar" configurations \(\overline{\rho(r)} = \langle \rho(r) \rangle \)
- At equilibrium
 \[
 \overline{\rho(r)} = N \int \cdots \int \frac{\exp(-\beta V(r^N))}{Z_N(V, T)} dr^{N-1}
 \]
- For the Microscopic pair density
 \[
 \overline{\rho(r, r')} = N(N - 1) \int \cdots \int \frac{\exp(-\beta V(r^N))}{Z_N(V, T)} dr^{N-2}
 \]
Correlation functions

Spatial correlation functions

- Take the average over "similar" configurations $\overline{\rho(r)} = \langle \rho(r) \rangle$
- At equilibrium
 $$\overline{\rho(r)} = N \int \ldots \int \exp(-\beta V(r^N)) dr^{N-1} \frac{1}{Z_N(V, T)}$$
- For the Microscopic pair density
 $$\overline{\rho(r, r')} = N(N - 1) \int \ldots \int \exp(-\beta V(r^N)) dr^{N-2} \frac{1}{Z_N(V, T)}$$
- Sum rules
 $$\int \overline{\rho(r)} dr = N$$
 $$\int \overline{\rho(r, r')} dr dr' = N(N - 1)$$
Spatial correlation functions

- The pair distribution function is defined as (I remove the overline notation)

\[g(r, r') = \frac{\rho(r, r')}{\rho(r)\rho(r')} \]
Spatial correlation functions

- The pair distribution function is defined as (I remove the overline notation)

\[g(r, r') = \frac{\rho(r, r')}{\rho(r)\rho(r')} \]

- For an homogeneous system \(\rho(r) = \rho \) which gives

\[g(r, r') = g(r - r') \]
The pair distribution function is defined as (I remove the overline notation)

\[g(r, r') = \frac{\rho(r, r')}{\rho(r)\rho(r')} \]

For an homogeneous system \(\rho(r) = \rho \) which gives

\[g(r, r') = g(r - r') \]

For an isotropic and homogeneous system,

\[g(r, r) = g(|r - r'|) \]
Implementation in a simulation.

- When the distance $|r - r'|$ is large, the radial distribution function goes to $1 - \frac{1}{N}$.
When the distance \(|r - r'|\) is large, the radial distribution function goes to \(1 - \frac{1}{N}\).

For an homogeneous system and homogeneous system,

\[
\rho^2 g(|r - r'|) = \langle \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \delta(r - r_i) \delta(r' - r_j) \rangle
\]
Correlation functions

Implementation in a simulation.

- When the distance $|r - r'|$ is large, the radial distribution function goes to $1 - \frac{1}{N}$.
- For an homogeneous system and homogeneous system,

$$
\rho^2 g(|r - r'|) = \langle \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \delta(r - r_i) \delta(r' - r_j) \rangle
$$

Using the change of variable $r, r' \rightarrow r, s = r' - r$ and integrating over r

$$
\rho g(s) = \frac{1}{N} \langle \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \delta(s - r_i + r_j) \rangle
$$
Implementation in a simulation.

- In a simulation box in 3D, space discretization of \(g(r) \)

\[
\rho g(\Delta r(j + 0.5)) = \frac{1}{N(V_{j+1} - V_j)} 2N_p(r),
\]

where \(N_p(r) \) is the number of distinct pairs whose center to center distances are between \(j\Delta r \) and \((j + 1)\Delta r \) and where \(V_j = \frac{4\pi}{3}((j + 1)\Delta r)^3 \).
Implementation in a simulation.

- In a simulation box in 3D, space discretization of $g(r)$

$$
\rho g(\Delta r(j + 0.5)) = \frac{1}{N(V_{j+1} - V_j)} 2N_p(r),
$$

where $N_p(r)$ is the number of distinct pairs whose center to center distances are between $j\Delta r$ and $(j + 1)\Delta r$ and where $V_j = \frac{4\pi}{3} ((j + 1)\Delta r)^3$.

- The maximum distance of $g(r)$ is the half of the linear size of the simulation box.
Structure factor

Definition

\[S(k) = \frac{1}{N} \langle \rho_k \rho_{-k} \rangle \]

where \(\rho_k \) is the Fourier transform of the microscopic density \(\rho(r) \).
Structure factor

- **Definition**

\[S(k) = \frac{1}{N} \langle \rho_k \rho_{-k} \rangle \]

where \(\rho_k \) is the Fourier transform of the microscopic density \(\rho(r) \).

- Due to the periodic boundary conditions, the wavelengths are discretized \(k = \pm n \pi / L \) where \(n \) is an integer.
Structure factor

- **Definition**

\[
S(k) = \frac{1}{N} \langle \rho_k \rho_{-k} \rangle
\]

where \(\rho_k \) is the Fourier transform of the microscopic density \(\rho(r) \).

- Due to the periodic boundary conditions, the wavelengths are discretized \(k = \pm n\pi/L \) where \(n \) is an integer.

\[
S(k) = 1 + \frac{1}{N} \left\langle \int \int \exp(-ik(r - r')) \sum_{i=1}^{N} \sum_{j=1,\, i \neq j} \delta(r - r_i)\delta(r - r_j) \, dr \, dr' \right\rangle
\]

which gives

\[
S(k) = 1 + \frac{1}{N} \int \int \exp(-ik(r - r')) \rho(r, r') \, dr \, dr'.
\]
For an isotropic and uniform fluid

\[S(k) = 1 + \frac{\rho^2}{N} \int \int \exp(-ik(r-r')) g(r,r') dr dr' \]

The radial distribution function only depends on \(|r-r'|\). One then obtains

\[S(k) = 1 + \rho \int \exp(-ikr) g(r) dr. \]
For an isotropic and uniform fluid

\[S(k) = 1 + \frac{\rho^2}{N} \int \int \exp(-ik(r - r'))g(r, r')drdr' \]

The radial distribution function only depends on \(|r - r'|\). One then obtains

\[S(k) = 1 + \rho \int \exp(-ikr)g(r)dr. \]

The Fourier transform only depends on the modulus \(|k|

\[S(k) = 1 + 2\pi\rho \int r^2 g(r) \int_0^\pi \exp(-ikr \cos(\theta)) \sin(\theta) d\theta dr \]

\[S(k) = 1 + 4\pi\rho \int_0^\infty r^2 g(r) \frac{\sin(kr)}{kr} dr. \]
For the Ising model, one defines the spin-spin time correlation function

\[C(t) = \frac{1}{N} \sum_{i=1}^{N} \langle S_i(0)S_i(t) \rangle \]
For the Ising model, one defines the spin-spin time correlation function

\[C(t) = \frac{1}{N} \sum_{i=1}^{N} \langle S_i(0)S_i(t) \rangle \]

For a simple liquid made of point particles, the density autocorrelation function is

\[C(t) = \frac{1}{V} \int dr \langle \delta \rho(r, t)\delta \rho(r, 0) \rangle \] (5)

where \(\delta \rho(r, t) \) denotes the local density fluctuation. This autocorrelation function
Time average of a correlation function (or others quantities) at equilibrium uses a fundamental property of equilibrium systems, namely, time translational invariance. In other words, if one calculates $\langle S_i(t')S_i(t' + t) \rangle$, the result is independent of t'. Define a timestep for $C(t)$, define a matrix of N_c columns and N rows (N is the total number of spins), and once equilibrated, one defines a real vector of N_c components for $C(t)$.
Time correlation functions

Implementation

- Time average of a correlation function (or others quantities) at equilibrium uses a fundamental property of equilibrium systems, namely, time translational invariance.

- In other words, if one calculates $\langle S_i(t')S_i(t' + t) \rangle$, the result is independent of t'.

\[
C(t) = \frac{1}{NM} \sum_{j=1}^{M} \sum_{i=1}^{N} S_i(t_j)S_i(t_j + t).
\]

- Define a timestep for $C(t)$.

- Define a matrix of N_c columns and N raws (N is the total number of spins) and once equilibrated, one defines a real vector of N_c components for $C(t)$.

Time correlation functions

Implementation

- Time average of a correlation function (or others quantities) at equilibrium uses a fundamental property of equilibrium systems, namely, time translational invariance.

- In other words, if one calculates $\langle S_i(t')S_i(t' + t) \rangle$, the results is independent of t'.

- Define a timestep for $C(t)$

- Define a matrix of N_c columns and N raws (N is the total number of spins) and once equilibrated, one defines a real vector of N_c components for $C(t)$

$$C(t) = \frac{1}{NM} \sum_{j=1}^{M} \sum_{i=1}^{N} S_i(t_j)S_i(t_j + t).$$

- $\tau_{eq} \ll N_c \Delta t_c \ll T_{sim}$ (6)
Consider a system at equilibrium described by the Hamiltonian \mathcal{H}_0. At time $t = 0$, an external force $F(t)$ is applied and the additional Hamiltonian \mathcal{H}' is given by

$$\mathcal{H}' = -A(r^N) F(t)$$

where $A(r^N)$ is the conjugate variable.
Consider a system at equilibrium described by the Hamiltonian H_0. At time $t = 0$, an external force $F(t)$ is applied and the additional Hamiltonian H' is given by

$$H' = -A(r^N)F(t)$$

where $A(r^N)$ is the conjugate variable.

$F(t) \to 0$ when $t \to \infty$

The time evolution of the system is described by the Liouville equation

$$\frac{\partial f^{(N)}(r^N, p^N, t)}{\partial t} = -i\mathcal{L}f^{(N)}(r^N, p^N, t)$$

$$= \{H_0 + H', f^{(N)}(r^N, p^N, t)\}$$

$$= - i\mathcal{L}_0 f^{(N)}(r^N, p^N, t) - \{A, f^{(N)}(r^N, p^N, t)\}F(t)$$
Implementation

Because the system was initially at equilibrium, one has

\[f^{(N)}(r^N, p^N, 0) = C \exp(-\beta \mathcal{H}_0(r^N, p^N)), \]
Because the system was initially at equilibrium, one has

\[f^{(N)}(r^N, p^N, 0) = C \exp(-\beta \mathcal{H}_0(r^N, p^N)), \]

Since the external force is weak, one performs a perturbative expansion of \(f^{(N)}(r^N) \) around equilibrium. One writes

\[f^{(N)}(r^N, p^N, t) = f_0^{(N)}(r^N, p^N) + f_1^{(N)}(r^N, p^N, t) \]

\[f_1^{(N)}(r^N, p^N, t) = -\int_{-\infty}^{t} \exp(-i(t - s)\mathcal{L}_0)\{A, f_0^{(N)}\} F(s) ds. \]
Therefore, the variable $\langle \Delta B(t) \rangle = \langle B(t) \rangle - \langle B(-\infty) \rangle$ evolves as

$$\langle \Delta B(t) \rangle = \int \int dr^N dp^N \left(f^{(N)}(r^N, p^N, t) - f_0^{(N)}(r^N, p^N) \right) B(r^N) dr^N dp^N.$$
Therefore, the variable $\langle \Delta B(t) \rangle = \langle B(t) \rangle - \langle B(-\infty) \rangle$ evolves as

$$\langle \Delta B(t) \rangle = \int \int dr^N dp^N \left(f^{(N)}(r^N, p^N, t) - f_0^{(N)}(r^N, p^N) \right) B(r^N) dr^N dp^N.$$

$$\langle \Delta B(t) \rangle = - \int \int dr^N dp^N \int_{-\infty}^{t} \exp(-i(t - s)\mathcal{L}_0) \{ A, f_0^{(N)} \} B(r^N) F(s) ds$$

$$= - \int \int dr^N dp^N \int_{-\infty}^{t} \{ A, f_0^{(N)} \} \exp(i(t - s)\mathcal{L}_0) B(r^N) F(s) ds$$
Calculating the Poisson bracket, one obtains that

\[
\{ A, f_0^{(N)} \} = \sum_{i=1}^{N} \left(\frac{\partial A}{\partial r_i} \frac{\partial f_0^{(N)}}{dp_i} - \frac{\partial A}{\partial p_i} \frac{\partial f_0^{(N)}}{dr_i} \right)
\]

\[
= -\beta \sum_{i=1}^{N} \left(\frac{\partial A}{\partial r_i} \frac{\partial H_0^{(N)}}{dp_i} - \frac{\partial A}{\partial p_i} \frac{\partial H_0^{(N)}}{dr_i} \right) f_0^{(N)}
\]

\[
= -\beta i L_0 A f_0^{(N)}
\]

\[
= -\beta \frac{dA(0)}{dt} f_0^{(N)}
\]
Calculating the Poisson bracket, one obtains that

\[
\{A, f_0^{(N)}\} = \sum_{i=1}^{N} \left(\frac{\partial A}{\partial r_i} \frac{\partial f_0^{(N)}}{dp_i} - \frac{\partial A}{\partial p_i} \frac{\partial f_0^{(N)}}{dr_i} \right)
\]

\[
= - \beta \sum_{i=1}^{N} \left(\frac{\partial A}{\partial r_i} \frac{\partial H_0^{(N)}}{dp_i} - \frac{\partial A}{\partial p_i} \frac{\partial H_0^{(N)}}{dr_i} \right) f_0^{(N)}
\]

\[
= - \beta i \mathcal{L}_0 A f_0^{(N)}
\]

\[
= - \beta \frac{dA(0)}{dt} f_0^{(N)}
\]

Using

\[
B(r^N(t)) = \exp(it\mathcal{L}_0)B(r^N(0))
\]

\[
\langle \Delta B(t) \rangle = \beta \int_{-\infty}^{t} ds \left\langle \frac{dA(0)}{dt} B(t - s) \right\rangle F(s)
\]
\[\langle \Delta B(t) \rangle = \int_{-\infty}^{\infty} ds \chi(t, s)F(s) + O(F^2) \]

where \(\chi(t, s) \) is the response function.
Linear response theory: results and transport coefficients

\[\langle \Delta B(t) \rangle = \int_{-\infty}^{\infty} ds \chi(t, s) F(s) + \mathcal{O}(F^2) \]

where \(\chi(t, s) \) is the response function

\[
\chi(t) = \begin{cases}
-\beta \frac{d}{dt} \langle A(0) B(t) \rangle & t > 0 \\
0 & t < 0
\end{cases}
\]

1. A system cannot respond to a perturbation before it is applied. This property is a consequence of the causality.

2. \(\chi(t, s) = 0, \quad t - s \leq 0 \)

3. The equilibrium response function is translationally invariant in time

\[\chi(t, s) = \chi(t - s) \]
When $A = B$, the autocorrelation function is

$$C_A(t) = \langle A(0)A(t) \rangle,$$

and we have

$$\chi(t) = \begin{cases}
-\beta \frac{dC_A(t)}{dt} & t > 0 \\
0 & t < 0
\end{cases}$$
When \(A = B \), the autocorrelation function is

\[
C_A(t) = \langle A(0)A(t) \rangle,
\]

and we have

\[
\chi(t) = \begin{cases}
-\beta \frac{dC_A(t)}{dt} & t > 0 \\
0 & t < 0
\end{cases}
\]

By defining the linear integrated response as

\[
R(t) = \int_0^t \chi(s)ds
\]

The fluctuation-dissipation theorem is expressed as

\[
R(t) = \begin{cases}
\beta(C_A(0) - C_A(t)) & t > 0 \\
0 & t < 0
\end{cases}
\]
Van Hove function

\[\rho G(r, r'; t) = \langle \rho(r' + r, t) \rho(r', 0) \rangle \]
Space-time correlation functions

Van Hove function

\[\rho G(r, r'; t) = \langle \rho(r' + r, t)\rho(r', 0) \rangle \]

This function can be expressed from the microscopic densities as

\[\rho G(r, r'; t) = \left\langle \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(r' + r - r_i(t))\delta(r - r_j(0)) \right\rangle \]
Van Hove function

\[
\rho G(r, r'; t) = \langle \rho(r' + r, t) \rho(r', 0) \rangle
\]

This function can be expressed from the microscopic densities as

\[
\rho G(r, r'; t) = \left\langle \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(r' + r - r_i(t)) \delta(r - r_j(0)) \right\rangle
\]

For a homogeneous system, \(G(r, r'; t) \) only depends on the relative distance. Integrating over volume, one obtains

\[
G(r, t) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(r - r_i(t) + r_j(0)) \right\rangle
\]
Van Hove function

At $t = 0$, the Van Hove function $G(r, t)$ is simplified and one obtains

$$G(r, 0) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(r + r_i(0) - r_j(0)) \right\rangle$$

$$= \delta(r) + \rho g(r)$$
Space-time correlation functions

Van Hove function

Function splitting

\[G(r, t) = G_s(r, t) + G_d(r, t) \]

with

\[G_s(r, t) = \frac{1}{N} \langle \sum_{i=1}^{N} \delta((r + r_{i}(0) - r_{i}(t))) \rangle \]

and

\[G_d(r, t) = \frac{1}{N} \langle \sum_{i \neq j} \delta(r + r_{j}(0) - r_{i}(t)) \rangle \]
Van Hove function

- Function splitting

\[G(r, t) = G_s(r, t) + G_d(r, t) \]

- with

\[G_s(r, t) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \delta((r + r_i(0) - r_i(t))) \right\rangle \]
Van Hove function

- Function splitting

\[G(r, t) = G_s(r, t) + G_d(r, t) \]

- with

\[G_s(r, t) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \delta((r + r_i(0) - r_i(t)) \right\rangle \]

- and

\[G_d(r, t) = \frac{1}{N} \left\langle \sum_{i \neq j}^{N} \delta(r + r_j(0) - r_i(t)) \right\rangle \]
Van Hove function

Function splitting

\[G(r, t) = G_s(r, t) + G_d(r, t) \]

with

\[G_s(r, t) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \delta((r + r_i(0) - r_i(t))) \right\rangle \]

and

\[G_d(r, t) = \frac{1}{N} \left\langle \sum_{i \neq j}^{N} \delta(r + r_j(0) - r_i(t)) \right\rangle \]

Physical interpretation
Van Hove function

- Normalization rules

\[\int d\mathbf{r} G_s(\mathbf{r}, t) = 1 \]

In the long time limit, the system loses memory of the initial configuration and the correlation functions becomes independent of the distance \(r \).

\[\lim_{r \to \infty} G_s(\mathbf{r}, t) = \lim_{t \to \infty} G_s(\mathbf{r}, t) \approx 1 \]

\[\lim_{r \to \infty} G_d(\mathbf{r}, t) = \lim_{t \to \infty} G_s(\mathbf{r}, t) \approx N - 1 \]
Space-time correlation functions

Van Hove function

- Normalization rules

\[\int dr G_s(r, t) = 1 \]

\[\int dr G_d(r, t) = N - 1 \]
Van Hove function

- Normalization rules
 \[\int dr G_s(r, t) = 1 \]
 \[\int dr G_d(r, t) = N - 1 \]

- In the long time limit, the system loses memory of the initial configuration and the correlation functions become independent of the distance \(r \).
 \[\lim_{r \to \infty} G_s(r, t) = \lim_{t \to \infty} G_s(r, t) \simeq \frac{1}{V} \simeq 0 \]
 \[\lim_{r \to \infty} G_d(r, t) = \lim_{t \to \infty} G_s(r, t) \simeq \frac{N - 1}{V} \simeq \rho \]
Intermediate scattering function

\[F(k, t) = \int dk G(r, t) e^{-ik \cdot rt} \]
Space-time correlation functions

Intermediate scattering function

\[F(k, t) = \int d^3k G(r, t) e^{-i k \cdot r} \]

self part of the function

\[F_s(k, t) = \int d^3k G_s(r, t) e^{-i k \cdot r} \]
Intermediate scattering function

\[F(k, t) = \int dkG(r, t)e^{-ik.r}t \]

- self part of the function

\[F_s(k, t) = \int dkG_s(r, t)e^{-ikrt} \]

- distinct part of the function

\[F_d(k, t) = \int dkG_d(r, t)e^{-ikrt} \]
Space-time correlation functions

Dynamic structure factor

\[S(k, \omega) = \int dt F(k, t) e^{i\omega t} \]
Space-time correlation functions

Dynamic structure factor

\[S(k, \omega) = \int dt F(k, t) e^{i \omega t} \]

- Evident sum rule

\[\int d\omega S(k, \omega) = S(k) \]
Dynamic structure factor

\[S(k, \omega) = \int dt F(k, t) e^{i\omega t} \]

- Evident sum rule

\[\int d\omega S(k, \omega) = S(k) \]

- To be continued... 4—point correlation function, point-to-set function...