Monte Carlo and Molecular Dynamics: basic methods

Pascal Viot

September 12, 2020
Challenges of the simulation methods

- To obtain thermodynamic quantities and many observables for large size of interacting systems.
Challenges of the simulation methods

- To obtain thermodynamic quantities and many observables for large size of interacting systems.
- For off-lattice systems, solve the Hamiltonian equations (or more generally the dynamical equations)
Challenges of the simulation methods

- To obtain thermodynamic quantities and many observables for large size of interacting systems.
- For off-lattice systems, solve the Hamiltonian equations (or more generally the dynamical equations)
- To investigate equilibrium properties by calculating the fluctuations and higher moments of thermodynamic quantities, ...
Challenges of the simulation methods

- To obtain thermodynamic quantities and many observables for large size of interacting systems.
- For off-lattice systems, solve the Hamiltonian equations (or more generally the dynamical equations)
- To investigate equilibrium properties by calculating the fluctuations and higher moments of thermodynamic quantities, ...
- To imagine any kind of methods for solving this problem (Monte Carlo methods, Machine Learning, ...)

Challenges of the simulation methods

- To obtain thermodynamic quantities and many observables for large size of interacting systems.
- For off-lattice systems, solve the Hamiltonian equations (or more generally the dynamical equations)
- To investigate equilibrium properties by calculating the fluctuations and higher moments of thermodynamic quantities, ...
- To imagine any kind of methods for solving this problem (Monte Carlo methods, Machine Learning,...)
- To benchmark the methods (efficiency, capabilities, resource requirement)
Markov chain for sampling an equilibrium system

Thermal average of an observable A

$$\langle A \rangle = \frac{\sum_i A_i \exp(-\beta U_i)}{Z}.$$

where i runs over configurations
Monte Carlo methods

Markov chain for sampling an equilibrium system

Thermal average of an observable A

$$
\langle A \rangle = \frac{\sum_i A_i \exp(-\beta U_i)}{Z}.
$$

where i runs over configurations

$$
p_i = \frac{\exp(-\beta U_i)}{Z}
$$

defines the probability of having the configuration i (at equilibrium).
Monte Carlo methods

Markov chain for sampling an equilibrium system

Thermal average of an observable A

$$\langle A \rangle = \frac{\sum_i A_i \exp(-\beta U_i)}{Z}.$$

where i runs over configurations

$$p_i = \frac{\exp(-\beta U_i)}{Z}$$

defines the probability of having the configuration i (at equilibrium).

$$\sum_i p_i = 1, \langle A \rangle = \sum_i A_i p_i$$
Generating non uniform random numbers

Linear congruence relation

\[x_{n+1} = (ax_n + c) \mod m \] (1)

where all variables are integers. This relation generates a sequence of pseudo-random integer numbers between 0 and \(m - 1 \). MT19937 (Mersenne Twister generator). Its period is \(10^{6000} \)! It uses 624 words and it is equidistributed in 623 dimensions!
Generating non uniform random numbers

Linear congruence relation

\[x_{n+1} = (ax_n + c) \mod m \]
\[(1) \]

where all variables are integers. This relation generates a sequence of pseudo-random integer numbers between 0 and \(m - 1 \). MT19937 (Mersenne Twister generator). Its period is \(10^{6000} \)! It uses 624 words and it is equidistributed in 623 dimensions!.

Register shift

the logical operation “exclusive or“. The Kirkpatrick and Stoll generator.

\[x_n = x_{n-103} \oplus x_{n-250} \]
\[(2) \]
Inverse transformation

If $f(x)$ denotes the probability distribution on the "interval" I, one defines the cumulative distribution F as

$$F(x) = \int_0^x f(t) dt$$
Inverse transformation

If \(f(x) \) denotes the probability distribution on the ”interval” \(I \), one defines the cumulative distribution \(F \) as

\[
F(x) = \int_{-\infty}^{x} f(t) \, dt
\]

If there exists an inverse function \(F^{-1} \), then \(u = F^{-1}(x) \) define a cumulative distribution for random numbers with a uniform distribution on the interval \([0, 1]\).
Non uniform numbers

Inverse transformation

If $f(x)$ denotes the probability distribution on the "interval" I, one defines the cumulative distribution F as

$$F(x) = \int_{x}^{\infty} f(t) dt$$

If there exists an inverse function F^{-1}, then $u = F^{-1}(x)$ define a cumulative distribution for random numbers with a uniform distribution on the interval $[0, 1]$.

Exponential distribution

Example: $f(x) = \lambda e^{-\lambda x}$

$$F(x) = \int_{0}^{x} dt \lambda e^{-\lambda t} = 1 - e^{-\lambda x}$$ (3)
If $f(x) \sim e^{-x^2/2}$ then $F(x)$ is the error function which is not invertible.
Non uniform numbers

Box Müller Method

If $f(x) \sim e^{-x^2/2}$ then $F(x)$ is the error function which is not invertible. A couple of independent random variables (x, y)
Non uniform numbers

Box Müller Method

If $f(x) \sim e^{-x^2/2}$ then $F(x)$ is the error function which is not invertible. A couple of independent random variables (x, y) the joint probability distribution is $f(x, y) = \exp(-(x^2 + y^2)/2)/(2\pi)$.

\[x = \sqrt{-2 \ln(u)} \cos(2\pi v) \]
\[y = \sqrt{-2 \ln(u)} \sin(2\pi v) \]
which are independent random variables with a Gaussian distribution.
Box Müller Method

If \(f(x) \sim e^{-x^2/2} \) then \(F(x) \) is the error function which is not invertible. A couple of independent random variables \((x, y)\) the joint probability distribution is \(f(x, y) = \exp(-(x^2 + y^2)/2)/(2\pi) \). change of variables (polar coordinates)

\[
f(x, y) \, dx \, dy = f(r^2) \, r \, dr \, d\theta = \exp\left(-\frac{r^2}{2}\right) \frac{dr}{2} \frac{d\theta}{2\pi}.
\] (4)
Non uniform numbers

Box Müller Method

If \(f(x) \sim e^{-x^2/2} \) then \(F(x) \) is the error function which is not invertible. A couple of independent random variables \((x, y)\) the joint probability distribution is \(f(x, y) = \exp\left(-\frac{x^2 + y^2}{2}\right)/(2\pi) \). Change of variables (polar coordinates)

\[
f(x, y) \, dx \, dy = f(r^2) \, r \, dr \, d\theta = \exp\left(-\frac{r^2}{2}\right) \, \frac{dr^2}{2} \, \frac{d\theta}{2\pi}.
\]

\(r^2 \) is a random variable with a exponential probability \(e^{-r^2/2} \) and \(\theta \) is a random variable with a uniform probability distribution on the interval \([0, 2\pi]\).
Non uniform numbers

Box Müller Method

If \(f(x) \sim e^{-x^2/2} \) then \(F(x) \) is the error function which is not invertible. A couple of independent random variables \((x, y)\) the joint probability distribution is \(f(x, y) = \exp(-(x^2 + y^2)/2)/(2\pi) \). Change of variables (polar coordinates)

\[
f(x, y) \, dx \, dy = f(r^2) \, r \, dr \, d\theta = \exp(-\frac{r^2}{2}) \frac{dr^2}{2} \frac{d\theta}{2\pi}.
\] (4)

\(r^2 \) is a random variable with an exponential probability \(e^{-r^2/2} \) and \(\theta \) is a random variable with a uniform probability distribution on the interval \([0, 2\pi]\). If \(u \) and \(v \) are two uniform random variables on the interval \([0, 1]\), or \(U_{[0,1]} \), one has

\[
x = \sqrt{-2 \ln(u)} \cos(2\pi v)
\] (5)

\[
y = \sqrt{-2 \ln(u)} \sin(2\pi v)
\] (6)

which are independent random variables with a Gaussian distribution.
For a system with equilibrium configurations, the thermal average of A should be given by

$$\langle A \rangle \simeq \frac{1}{N_r} \sum_{i} A_i$$

where N_r is the total number of configurations where A is evaluated. In this way, the thermal average becomes an arithmetic average.
Monte Carlo methods

Markov chain for sampling an equilibrium system

- For a system with equilibrium configurations, the thermal average of A should be given by

$$\langle A \rangle \simeq \frac{1}{N_r} \sum_{i} A_i$$

where N_r is the total number of configurations where A is evaluated. In this way, the thermal average becomes an arithmetic average.

- Metropolis, Rosenbluth and Teller in 1953 introduces a stochastic Markovian process between successive configurations, converging towards the equilibrium distribution p_{eq}.
Markov chain for sampling an equilibrium system

- Stochastic Marlovian Process

\[
p(i, t + dt) = p(i, t) + \sum_j (W(j \rightarrow i)p(j, t) - W(i \rightarrow j)p(i, t)) \, dt
\]

i.e

\[
\frac{dp(i, t)}{dt} = \sum_j W(j \rightarrow i)p(j, t) - \sum_j W(i \rightarrow j)p(i, t)
\]

- \(dt\) corresponds to a timestep for a modification of the configuration denoted by \(i\)
- \(W\) transition matrix.
- At equilibrium, no further evolution of the probability distribution

\[
\sum_j W(j \rightarrow i)p_j = \sum_j W(i \rightarrow j)p_i
\]
Monte Carlo method

Markov chain for sampling an equilibrium system

- At equilibrium
 \[p_i = \frac{e^{-\beta E_i}}{Z} \]

- Balance equation
 \[\sum_j W(j \rightarrow i)e^{-\beta E_j} = \sum_j W(i \rightarrow j)e^{-\beta E_i} \]

1. Infinite number of equations!
Monte Carlo method

Markov chain for sampling an equilibrium system

- At equilibrium
 \[p_i = \frac{e^{-\beta E_i}}{Z} \]

- Balance equation
 \[\sum_j W(j \rightarrow i) e^{-\beta E_j} = \sum_j W(i \rightarrow j) e^{-\beta E_i} \]

1. Infinite number of equations!
2. Infinite number of solutions!
Monte Carlo method

Markov chain for sampling an equilibrium system

- At equilibrium
 \[p_i = \frac{e^{-\beta E_i}}{Z} \]

- Balance equation
 \[\sum_j W(j \rightarrow i) e^{-\beta E_j} = \sum_j W(i \rightarrow j) e^{-\beta E_i} \]

1. Infinite number of equations!
2. Infinite number of solutions!
3. At least, how to find one solution
Metropolis, Rosenbuth and Teller solution

- Detailed balance equation

\[W(j \rightarrow i)e^{-\beta E_j} = W(i \rightarrow j)e^{-\beta E_i} \]
Metropolis, Rosenbuth and Teller solution

- Detailed balance equation

\[W(j \rightarrow i)e^{-\beta E_j} = W(i \rightarrow j)e^{-\beta E_i} \]

- Detailed balance equation yields balance equation

\[W(i \rightarrow j) \] is the probability of changing a configuration from \(i \) to \(j \). In practice, \(W(i \rightarrow j) \) is uniform.
Metropolis, Rosenbuth and Teller solution

- Detailed balance equation
 \[W(j \rightarrow i)e^{-\beta E_j} = W(i \rightarrow j)e^{-\beta E_i} \]

- Detailed balance equation yields balance equation

- Still a very large number of solutions!
Basic methods

Metropolis, Rosenbuth and Teller solution

- Detailed balance equation
 \[W(j \rightarrow i)e^{-\beta E_j} = W(i \rightarrow j)e^{-\beta E_i} \]

- Detailed balance equation yields balance equation
- Still a very large number of solutions!
- Split the transition matrix element as
 \[W(i \rightarrow j) = \alpha(i \rightarrow j)\Pi(i \rightarrow j) \]

where \(\alpha(i \rightarrow j) \) is the probability of changing a configuration \(i \) to \(j \). In practice, \(\alpha \) is uniform.
The choice introduced by Metropolis et al. is

\[
\Pi(i \rightarrow j) = \begin{cases}
\exp(-\beta(E(j) - E(i))) & \text{if } E(j) > E(i) \\
1 & \text{if } E(j) \leq E(i)
\end{cases}
\]
The choice introduced by Metropolis et al. is

\[
\Pi(i \rightarrow j) = \begin{cases}
\exp(-\beta(E(j) - E(i))) & \text{if } E(j) > E(i) \\
1 & \text{if } E(j) \leq E(i)
\end{cases}
\]

In a concise manner

\[
\Pi(i \rightarrow j) = \text{Min}(1, \exp(-\beta(E(j) - E(i))))
\]
Implemention method

- Periodic boundary conditions:

Compared to open boundaries, suppress the surface effect. For 10^3 particles in three dimensions, 600 particles are located on boundaries. How to build an infinite system: Replicate the box in d directions. If the range of interaction is less than the box linear size, the minimum image convention can be used. It not (Coulombic or gravitational forces), Ewald sums.

The thermodynamic quantities keep a finite size dependence, but not related to surface effects! Two regimes: the warm up regime and the equilibrium regime.
Periodic boundary conditions:

Compared to open boundaries, suppress the surface effect. For 10^3 particles in three dimensions, 600 particles are located on boundaries.
Metropolis, Rosenbuth and Teller solution: examples

Implementation method

- Periodic boundary conditions:
 1. Compared to open boundaries, suppress the surface effect. For 10^3 particles in three dimensions, 600 particles are located on boundaries.
 2. How to build an infinite system: Replicate the box in d directions. If the range of interaction is less than the box linear size, the minimum image convention can be used. It not (Coulombic or gravitational forces), Ewald sums.
Implementation method

- Periodic boundary conditions:
 1. Compared to open boundaries, suppress the surface effect. For 10^3 particles in three dimensions, 600 particles are located on boundaries.
 2. How to build an infinite system: Replicate the box in d directions: If the range of interaction is less than the box linear size, the minimum image convention can be used. If not (Coulombic or gravitational forces), Ewald sums.
 3. The thermodynamic quantities keep a finite size dependence, but not related to surface effects!
Metropolis, Rosenbuth and Teller solution: examples

Implementation method

- Periodic boundary conditions:
 1. Compared to open boundaries, suppress the surface effect. For 10^3 particles in three dimensions, 600 particles are located on boundaries.
 2. How to build an infinite system: Replicate the box in d directions: If the range of interaction is less than the box linear size, the minimum image convention can be used. If not (Coulombic or gravitational forces), Ewald sums.
 3. The thermodynamic quantities keep a finite size dependence, but not related to surface effects!

- Two regimes: the warm up regime and the equilibrium regime.
Ising model

- **Lattice model**: Hamiltonian

\[
H = -J \sum_{\langle i,j \rangle} S_i S_j
\]
Ising model

- Lattice model: Hamiltonian

\[H = -J \sum_{\langle i,j \rangle} S_i S_j \]

1. Select a site is selected by choosing at random an integer \(i \) between 1 and \(N \) (\(\alpha(i \rightarrow j) = 1/N \)).
2. Compute the energy difference between the trial configuration (in which the spin \(i \) is flipped) and the old configuration.
3. If the trial configuration has a lower energy, the trial configuration is accepted. Otherwise, a uniform random number is chosen between 0 and 1 and if this number is less than \(\exp(-\beta(E(j) - E(i))) \), the trial configuration is accepted. If not, the old configuration is kept and the configuration is counted again.

(9x252) Metropolis, Rosenbuth and Teller solution: examples

Pascal Viot

Monte Carlo and Molecular Dynamics: basic

September 12, 2020 13 / 17
Ising model

- Lattice model: Hamiltonian

\[
H = -J \sum_{\langle i,j \rangle} S_i S_j
\]

1. Select a site is selected by choosing at random an integer \(i\) between 1 and \(N\) \(\alpha(i \to j) = 1/N\).
2. Compute the energy difference between the trial configuration (in which the spin \(i\) is flipped) and the old configuration.
3. If the trial configuration has a lower energy, the trial configuration is accepted. Otherwise, a uniform random number is chosen between 0 and 1 and if this number is less than \(\exp(-\beta(E(j) - E(i)))\), the trial configuration is accepted. If not, the old configuration is kept and the configuration is counted again.

- Two regimes: the warmup regime and the equilibrium regime.
Ising model

- How to estimate the warm up regime. Determine the relaxation time (roughly!)
Metropolis, Rosenbuth and Teller solution: examples

Ising model

- How to estimate the warm up regime. Determine the relaxation time (roughly!)
- Thermodynamic quantities: energy, specific heat, magnetization "On the fly" method:

\[\langle A \rangle \simeq \frac{1}{N_r} \sum_i A_i \]

\[C_v \sim \langle E^2 \rangle - \langle E \rangle^2 \]
Ising model

- How to estimate the warm up regime. Determine the relaxation time (roughly!)

- Thermodynamic quantities: energy, specific heat, magnetization "On the fly" method:

 \[\langle A \rangle \approx \frac{1}{N_r} \sum_i A_i \]

 \[C_v \sim \langle E^2 \rangle - \langle E \rangle^2 \]

- Histogram method

 \[\langle A \rangle \approx \sum_i A_i H(i) \]
Simple Liquids

- Hamiltonian

\[H = \sum_i \frac{p_i^2}{2m} + \frac{1}{2} \sum_{i \neq j} v(r_{ij}) \]
Simple Liquids

- Hamiltonian

\[H = \sum_i \frac{p_i^2}{2m} + \frac{1}{2} \sum_{i \neq j} v(r_{ij}) \]

- Lennard-Jones potential

\[v(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right] \]

with \(\epsilon \) energy scale and \(\sigma \) effective diameter of particle
Simple Liquids

- Hamiltonian

\[H = \sum_i \frac{p_i^2}{2m} + \frac{1}{2} \sum_{i \neq j} v(r_{ij}) \]

- Lennard-Jones potential

\[v(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \]

with \(\epsilon \) energy scale and \(\sigma \) effective diameter of particle
Simple Liquids

- In a three-dimensional space a trial move is given by

\[x'_i \rightarrow x_i + \Delta (rand - 0.5) \]
\[y'_i \rightarrow y_i + \Delta (rand - 0.5) \]
\[z'_i \rightarrow z_i + \Delta (rand - 0.5) \]

with the condition that \((x'_i - x_i)^2 + (y'_i - y_i)^2 + (z'_i - z_i)^2 \leq \Delta^2/4\) (this condition corresponds to considering isotropic moves)
Simple Liquids

- In a three-dimensional space a trial move is given by

 \[x'_i \rightarrow x_i + \Delta (\text{rand} - 0.5) \]
 \[y'_i \rightarrow y_i + \Delta (\text{rand} - 0.5) \]
 \[z'_i \rightarrow z_i + \Delta (\text{rand} - 0.5) \]

 with the condition that \((x'_i - x_i)^2 + (y'_i - y_i)^2 + (z'_i - z_i)^2 \leq \Delta^2 / 4\) (this condition corresponds to considering isotropic moves)

- Compute the energy difference \(\Delta E \sim N\)
In a three-dimensional space a trial move is given by

\[x'_i \rightarrow x_i + \Delta (\text{rand} - 0.5) \]
\[y'_i \rightarrow y_i + \Delta (\text{rand} - 0.5) \]
\[z'_i \rightarrow z_i + \Delta (\text{rand} - 0.5) \]

with the condition that \((x'_i - x_i)^2 + (y'_i - y_i)^2 + (z'_i - z_i)^2 \leq \Delta^2 / 4 \) (this condition corresponds to considering isotropic moves)

Compute the energy difference \(\Delta E \sim N \)

Truncated Lennard-Jones potential

\[v^{\text{trunc}}(r) = \begin{cases}
 v(r) - v(r_c) & r \leq r_c, \\
 0 & r > r_c.
\end{cases} \]
Simple Liquids

- Trial move of a particle chosen randomly

Compute the energy difference ΔE. If $\Delta E < 0$ accept the move. If $\Delta E > 0$, select a random number between 0 and 1. If

$$\eta < \exp(-\beta \Delta E)$$

accept the move. If $\eta > \exp(-\beta \Delta E)$, do not move the particle, but the weight of the configuration increases.
Simple Liquids

- Trial move of a particle chosen randomly
- Compute the energy difference ΔE
Simple Liquids

- Trial move of a particle chosen randomly
- Compute the energy difference ΔE
- If $\Delta E < 0$ accept the move
Simple Liquids

- Trial move of a particle chosen randomly
- Compute the energy difference ΔE
- If $\Delta E < 0$ accept the move
- If $\Delta E > 0$, select a random number between 0 and 1.

 1. If $\eta < \exp(-\beta \Delta E)$, accept the move
 2. If $\eta > \exp(-\beta \Delta E)$, do not move the particle, but the weight of the configuration increases.