TASEP

1) \(\frac{d<z(t)>}{dt} = \text{flux (moving)} - \text{flux (exit)} \)
 \(= <z(t-1) - (t-2)> - <z(t-1) - (t-2)> \)

2) Select a particle randomly (and uniformly)
 loop
 if the right side is empty move the particle
 if not the particle stays on the site
 update time

3) Stationary flux [all sites are equivalent]
 \(z(t) = N \) once chosen \(1 - z(t) = 1 - \frac{N-1}{L-1} \)
 when \(N \to \infty \) (L \to \infty) \(\frac{N}{L} (1 - \frac{N-1}{L-1}) = \rho_0 (1 - \rho_0) \)

4) Insert the following instructions in the loop
 if the site \(t \) and the site \(t+1 \) are empty
 move the particle if a uniform random number \(\eta < r \)

5) \(f = \rho_0 (1 - \rho_0) \)

6) Because the acceptance for a move is equal to \(r \)
 \(1 < z(t-1) \) \(\Rightarrow f = \rho_0 (1 - \rho_0) \)

7) \(f = \rho_0 (1 - \rho_0) \)
 since \(\rho_1 = 1 - \rho_0 \) \(\Rightarrow \rho_1 = \frac{r}{1+r} \) and \(\rho_0 = \frac{1}{1+r} \)

8) \(\rho_0 = 0.3 \)
 Sum over results \(\rho_0 = 0.70 \)
 \(\rho_1 = 0.26 \)
 \(\rho_1 = 0.30 \)
 The mean field approach underestimates the high density and overestimates the lowest density.

9) The mean density \(\rho_0 = \frac{1}{2} \)
 \(\rho_0 = \rho_0 (1 - z(t)) + \rho_1 (z(t)) \frac{1}{L} \)
 where \(x \) in the formula
 \(\frac{2}{L} = \left(\frac{1}{2} \rho_0 \right)^{\frac{1}{L}} = \frac{1}{2} \)
\[p_o = \frac{1}{r+h} + 2 \left(\frac{r+1}{r+h} \right) \Rightarrow \left| p_o - \frac{1}{2} \right| = \frac{1-r}{2(1+r)} \left(2 - \frac{2}{L} \right) \Rightarrow \left| p_o - \frac{1}{2} \right| \leq \frac{1-r}{2(1+r)} \]