|

SORBONNE
b UNIVERSITE
SORBONNE UNIVERSITE

MU4PY109
MEeNTION PHYSIQUE ET APPLICATIONS

NOTES DE COURS
ANNEE UNIVERSITAIRE 2021-2022

METHODES NUMERIQUES

Auteur :
Pascal Viot

1.0

0.8

0.6

0.4 1

0.2 1

0.0

1.0 15 2.0 2.5 3.0 3.5 4.0

2 juillet 2021

2/101

INTRODUCTION

La modélisation se divise naturellement en trois étapes : une premiere étape consiste a déterminer
les parameétres microscopiques essentiels qui interviennent pour décrire le phénomeéne puis a choisir le
modele adapté pour décrire le phénomene. La second étape consiste a établir les équations (tres souvent
différentielles) qui décrivent le phénomeéne. La troisiéme étape consiste a résoudre les équations pré-
cédemment établies afin de donner des réponses quantitatives. Ces réponses permettent de valider ou
d’invalider le modeéle, soit en comparant les prédictions avec I’expérience, soit en analysant la cohérence
interne du modéle a travers ses prédictions.

Dans la situation la plus optimiste ou il a été possible de réaliser les trois étapes précédentes, 1'ob-
tention d’un résultat numérique nécessite au moins le calcul d’une intégrale simple. Pour réaliser ce
’simple’ travail, il existe bien souvent plusieurs méthodes et la tache principale consiste a sélectionner
celle qui est la mieux adaptée pour satisfaire 'objectif. Ce principe est tres général et s’applique a I’en-
semble des probléemes numériques que nous allons aborder tout au long de ce cours. Ce cours a donc
pour objectifs de présenter quelques algorithmes associés a chacun des problémes rencontrés. Chaque
figure illustrant les concepts développés est réalisé en Python et le code associé a cette figure sera donné.
La connaissance des méthodes numériques est donc un préalable pour choisir la méthode informatique
pour résoudre un probléeme numérique le plus efficacement possible.

4/101

INTEGRATION ET SOMMES DISCRETES

Le cas typique d’une intégrale définie a évaluer est

I:J-bf(x)dx. (1.1)

Comme l’évaluation exacte de l'intégrale nécessite I’évaluation exacte de la fonction f pour une infinité
de points, il convient de choisir une méthode qui remplace le calcul de l'intégrale Eq. (1.1) par une
somme discrete avec un nombre fini de points.

N
Iv=) af(x) (1.2)
i=1

ou a; et x; sont des variables que nous allons préciser dans la suite. Pour que I’évaluation numérique soit
correcte, il est nécessaire d’imposer que toute méthode vérifie que

lim Iy =1 1.3
Au dela de la vérification de ce critére Eq. (1.3), la qualité d’'une méthode sera évaluée par la maniere
dont la convergence vers le résultat exact s’effectue. Dans la suite nous allons considérer des fonctions de
classe C,,, ou1 1 est un entier qui dépend de la méthode.! (continiment dérivable) sur le support [a,b]?.
La derniere restriction imposée a la fonction est que I'ensemble des dérivées en tout point de 'intervalle
reste finie.

If"(x)| <K Vxelab] (1.4)

ou K est une constante finie. Cela revient a supposer que la dérivée de la fonction f n’est jamais singu-
liére sur le support [a, b].

1.1 Les méthodes de Cotes

Mathématicien anglais, contemporain et collaborateur de Newton, Roger Cotes s’est intéressé a des
méthodes de calculs numériques et exacts pour l'intégration et explique que les méthodes suivantes
portent son nom.

Les méthodes les plus simples que 'on peut utiliser pour calculer une intégrale simple sont celles ou
les abscisses sont choisies de maniére régulierement espacées. Si on a N + 1 abscisses, on repere celles-ci
simplement par la relation

X; =xo+1ih (1.5)

1. On peut calculer l'intégrale d’une fonction plus générale a condition que cette fonction ait la méme mesure (mesure
définie au sens de Lebesgue) qu'une fonction de classe Cy, c’est-a-dire que les fonctions ne différent que sur un ensemble de
mesure nulle. Comme exemple simple d’ensemble de mesure nulle, citons les ensembles dénombrables.

2. Si la fonction est continiment dérivable par morceaux sur un nombre fini d’intervalles sur l'intervalle [4,b], on peut se
ramener au cas précédent sur chaque intervalle, et donc évaluer I'intégrale sur I'ensemble de I'intervalle [a, b].

CHAPITRE 1. INTEGRATION ET SOMMES DISCRETES

avec xg = a, xy = b, i est un entier allant de 0 a N et h est appelé le pas de I'intégration. Pour simplifier
les notations, on pose

fi = f(xi) (1.6)

#!/usr/bin/env python3
-»- coding: utf-8 -x-

mwmn

@author: viot
4.5 Wi
4.0 ¥ import matplotlib.pyplot as plt
35 / from matplotlib.patches import Polygon
Y/ import numpy as np
3.0 Y/ def f(x):
25 / return(x**3-3*x**2+3%x)
>20 / fig, ax = plt.subplots(1,1,figsize=(6, 6))
x=np.linspace(0,2.5,100)
15 x2=np.linspace(0,2.5,6)
1.0 - === plt.plot(x,f(x), -b",1lw="2")
o5 7z plt.plot(x2,f(x2), --r’",1lw="2")
Ry plt.xlabel(’x’,fontsize=15)
095 05 " 15 20 25 plt.ylabel('y’,fontsize=15)
X trap=[x2[3],0],[x2[3],f(x2[3])],[x2[4],f(x2[4])

—],[x2[4],0]
Figure 1.1 — Illustration de la méthode poly=Polygon(trap,facecolor="grey’)
des trapezes : la partie grisée correspond ax.add_patch(poly)

a l’aire calculée par I’équation (1.7)

plt.
.ylim(0,4.5)
plt.
plt.
plt.

plt

x1im(0,2.5)

tick_params(labelsize=15)
tight_layout()
savefig("trap.pdf")

1.1.1 Trapeze

La méthode des trapézes consiste a approximer la fonction entre deux abscisses successives par une
droite (voir Fig. (1.1)), ce qui donne.

Xi+1

FOx = 2(fi+ fien) + O0PF), (17)

Xi

Le terme d’erreur indique la qualité de ’évaluation de I'intégration et dépend de maniere cubique du pas
d’intégration; f” se référe a un point situé a l'intérieur de l'intervalle. Pour que cette méthode converge
rapidement il est nécessaire de choisir un pas h inférieur a f”. A noter que cette formule devient exacte
quand la fonction est un polynome de degré 1 sur I'intervalle [xq,x;].

Sur l'intervalle [a,b], on a

L) (1.9

b N-1 I
[ro=ny s+ b poo U=
4 i=1

ou on a utilisé que h = (b—a)/N

6/101

1.2. METHODE DE ROMBERG

1.1.2 Simpson

La méthode de Simpson consiste a remplacer la fonction par un polynéme de degré 2 sur un inter-
valle constitué de trois abscisses consécutives

Xit2

PO =h(3fi S foon + 3 fiva) + O) (19)

Xi

I1 se trouve que cette formule est exacte jusqu’a des polynomes de degré 3 ce qui implique que l'erreur
dépende de h a la puissance 5.

On peut aussi déterminer la formule a 4 points qui est aussi exacte pour les polyndmes de degré 3.
Cette formule s’appelle aussi Simpson 3/8 a cause des coefficients du développement

Xit3

Fldx=h(Zfi+ o fion+ g fiva 3 fivs)+ O F), (1.10)

Xi

Sur un intervalle complet, en choisissant un nombre de points pair, N + 1, c’est-a-dire N impair, la
méthode de Simpson donne une estimation de I'intégrale sur l'intervalle [a, b].
N-1
b h - 1
j f=31fotfn+2) (2fi1+fi) +O(m) (1.11)
a

i=1

La méthode de Simpson est donc de deux ordres de grandeur plus efficace que la méthode des tra-
pezes. Mais il est possible de mieux utiliser la méthode des trapézes. Sachant que cette derniere méthode
converge en 1/N?2, on peut évaluer I'intégrale deux fois sur le méme intervalle par la méthode des tra-
pezes; la premiere fois avec N/2 points et la seconde avec N points, puis en combinant les deux résultats
de la maniére suivante

4 1
Sn=3Tn=3Tn (1.12)

Sachant que le développement asymptotique de la méthode des trapézes est une fonction paire de 1/N?,
on en déduit que la formule (1.12) donne une estimation de I'intégrale en 1/N*, et ce résultat redonne
une évaluation analogue a la méthode de Simpson.

1.2 Meéthode de Romberg

L’idée de la méthode de Romberg s’inspire directement de la remarque faite au paragraphe précé-
dent. Si on calcule successivement par la méthode des trapezes les intégrales avec un nombres de points
N/2k N/2k=1 N, on peut rapidement avoir une estimation de 1'intégrale avec une erreur en O(l/NZk)
ou k est le nombre de fois que I'on a calculé I'intégrale. La formule itérative utilisée est la suivante

(Sk(h) = Sk (2h))

Sina ()= S0 + = 0

(1.13)

Le tableau 1.1 résume la procédure récursive employée dans la méthode de Romberg.

7/101

CHAPITRE 1. INTEGRATION ET SOMMES DISCRETES

Pas | Trapezes | Simpson | Boole | troisieme amélioration
h S1(h) Sp(h) | Ss(h) Sa(h)

2h | S1(2h) S,(2h) | S3(2h)
4h | Sy(4h) S,(4h)
8h | S1(8h)

TaBLE 1.1 — Table de Romberg

1.3 Meéthodes de Gauss

Dans les méthodes précédentes, nous avons vu qu’en changeant les coefficients de pondération des
valeurs de la fonction a intégrer aux abscisses régulierement espacées, on pouvait grandement améliorer
la convergence de la méthode. Les méthodes de Gauss ajoutent aux méthodes précédentes de pouvoir
utiliser des abscisses non régulierement espacées.

Soit W (x) une fonction strictement positive sur l'intervalle [4, b], appelée fonction de poids, on choisit
une suite de points x; telle que I'intégrale soit approchée par une somme discréte de la forme

b N
f W (x)f (x)dx = Zwifi (1.14)
a i=1

Quand les abscisses sont régulierement espacées, les coefficients inconnus sont les poids w;; cela
implique que pour N points d’intégration, on peut obtenir une évaluation exacte de I'intégrale jusqu’a
un polynome de degré N —1 si N est pair (trapezes) et N si N est impair (Simpson). Les méthodes de
Gauss utilise le fait si les abscisses et les poids sont des inconnues a déterminer; la formule d’intégration
de Gauss a N points devient exacte jusqu’a des polyndomes de degré 2N —1, ce qui augmente la précision
de I’évaluation sans qu’il soit nécessaire d’augmenter le nombre de points a calculer.

Pour déterminer ces 2N parameétres, on s’appuie sur la construction de polynomes orthogonaux. Le
principe de cette construction remonte a Gauss et Jacobi et a été largement développé par Christoffel.
Soit un intervalle (g, b), on introduit le produit scalaire de deux fonctions f et g avec la fonction de poids
W par:

b
<flg>= | Wi foglidx (1.15)

Les fonctions sont dites orthogonales si leur produit scalaire est nul. La fonction est normalisée
quand < f|f >= 1. Un ensemble orthonormé de fonctions est un ensemble de fonctions toutes normali-
sées et orthogonales deux a deux.

On peut construire de maniére systématique une suite de polynomes telle que le coefficient du mo-
nome de degré le plus élevé soit égal a un et telle qu’ils soient tous orthogonaux.

La relation de récurrence est la suivante.

p-1(x)=0 (1.16)
po(x) =1 (1.17)
pir1(x) = (x—a;)p;(x) — bipi_1(x) (1.18)

1.3. METHODES DE GAUSS

avec les coefficients a; et b; déterminés de la maniére suivante

_<xpilpi > (1.19)
©<pilpi>
b; :M (1.20)
<pi-1lpi-1>
(1.21)

Si l'on divise chaque polynéme par < p;|p; >!/2, on obtient alors des polyndmes normalisés.

Une propriété fondamentale de ces polynomes ainsi construits est la suivante : Le polyndome p; a
exactement j racines distinctes placées sur l'intervalle [a,b]. Chaque racine du polynéme p; se trouve
entre deux racines consécutives du polynome p;, .

Les N racines du polynome py sont choisies comme abscisses dans 1’évaluation de l'intégrale de
Gauss et les poids w; sont calculés a partir de la formule

1
_<pn-ilzglpN-1 >

wi = 7
" pn—1(x)py(xi)
_ Ay <pn-lpn-1>
dn_1 pn-1(xi)pN (x5)

(1.22)

(1.23)

ou le symbole prime désigne la dérivée du polyndome et d, le coefficient du monoéme le plus élevé du
polynome py 3.

Avec ce choix, on peut montrer en utilisant la relation de récurrence, Eq. (1.18), que < p;|p; >=0.

A titre d’exemples voici les fonctions de poids classiques que l'on utilise pour calculer une intégrale
par la méthode de Gauss

® Gauss-Legendre

La fonction de poids est W = 1 sur 'intervalle [-1,1]. La relation de récurrence pour les polynomes
de Legendre est

(i+1)Py; = (2i + 1)xP, —iP, (1.24)

Comme I'illustre la figure 1.2, la parité des polyndmes correspond a la parité de I'ordre.

3. Attention, la formule 4.5.9 de la référence[?] est incorrecte et doit étre remlacée par I’équation (1.22)

9/101

CHAPITRE 1. INTEGRATION ET SOMMES DISCRETES

1.00

0.75 A

0.50 -

0.25 -

0.00 -

—0.25 A

—0.50 -

—0.75 A

-1.00

— P5

o1

00 -0.75 -0.50 -0.25 0.00 0.25 0.50

FiGure 1.2

® Gauss-Hermite
La fonction de poids est W = exp(—x?) sur la droite réelle. La relation de récurrence pour les
polyndémes d’'Hermite est

® Gauss-Laguerre

La fonction de poids est W = x%e™

polynomes de Laguerre est

La figure 1.3 illustre les premiers polynomes de La

2.0

(i+1)

#!/usr/bin/env python3
-»- coding: utf-8 -x-

mmn

Created on Mon Jun 1 19:36:43 2020

@author: viot

mmn

from scipy.special import legendre
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-1,1,100)
plt.figure(figsize=(6,6))
for n in np.arange(0,6):

Pn = legendre(n)

y = Pn(x)

plt.plot(x, y,label="P +str(n))
plt.xlim(-1.0,1.0)
plt.ylim(-1.0,1.1)
plt.legend()
plt.savefig(’legendre.pdf’)

Hi+1 = ZXHZ' - ZiHi_l (125)

LD(

i+1 —

1.5 1

1.0

0.5 A

0.0 -

—0.5 1

—-1.01

—-1.54

-2.0

R Léli

0.

0 0.5 1.0 15 2.0 2.5 3.0

Ficure 1.3 - Polynomes de Laguerre

* sur l'intervalle [0,+oco[. La relation de récurrence pour les

=(—x+2i+a+1)L} - (i+a)Li, (1.26)

guerre L(nl).

#!/usr/bin/env python3
-x- coding: utf-8 -x-

mmn

@author: viot

mmn

from scipy.special import genlaguerre
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,4,100)
plt.figure(figsize=(6,6))
for n in np.arange(0,6):

Ln = genlaguerre(n,1)

y = Ln(x)
plt.plot(x, y,label=r’'$L~{(1)}_"+str(n)+'$’
=)

plt.x1im(0,4.0)
plt.ylim(-2.0,2)
plt.legend()
plt.savefig(’laguerre.pdf’)

10/101

1.4. METHODE DE GAUSS-KRONROD ET METHODES ADAPTATIVES

® Gauss-Jacobi

La fonction de poids est W = (1 —x)*(1 + x)? sur I'intervalle] - 1,1[. La relation de récurrence pour
les polynomes de Jacobi est

PP = (d; + ex)P! P — PP (1.27)

i+1

ou les coefficients ¢;, d;, e; et f; sont donnés par les relations

c;=20+1)i+a+p+1)2i+a+p) (
di=Q2i+a+p+1)(a’-p?) (
ei=Ri+a+p)i+ta+p+1)2i+a+p+2) (1.30
fi=2(i+a)(i+p)2i+a+p+2) (

On peut utiliser des fonctions de poids qui sont intégrables sur I'intervalle, sans étre nécessairement
bornées.

® Gauss-Chebyshev* La fonction de poids est W = (1 — x2)"1/2 sur l'intervalle [-1,1]. La relation de
récurrence pour les polynomes de Chebyshev.

Tiyy =2xT; - Tiy (1.32)

1.4 Méthode de Gauss-Kronrod et méthodes adaptatives

Pour déterminer la précision numérique d’une intégrale, il est nécessaire de faire deux évaluations
différentes et d’utiliser la formule de Romberg pour obtenir une estimation de la précision. Avec une
méthode de Cotes, dans lesquelles les abscisses sont régulierement espacés, on peut sans effort de calcul
supplémentaire (le cott provient essentiellement de 1’évaluation de la fonction aux différents abscisses)
obtenir une évaluation de I'intégrale en utilisant un point sur deux, ce qui donne une estimation pour
un pas double. Dans une méthode de Gauss, les zéros d’un polyndme ne coincident jamais avec ceux
d’un polyndome de degré plus élévé. Kronrod, mathématicien russe a montré que 'on peut choisir un
polynome de degré n + p dont n racines sont les racines du polynéome de Gauss. Notons G(p + 1,x) le
polynome de degré p + n dont les racines correspondent aux # + p abscisses de la formule d’intégration.
Un polyndme de degré n + 2p — 1 peut s’exprimer sous la forme

f(x)=G(n+p)h(x)+ g(x) (1.33)
ou
n+p-1
g =) et (1.34)
k=0
et
p-1
h(x) = Zbkxk (1.35)
k=0

On impose les poids pour la nouvelle formule telle que g(x) soit intégrée exactement. Cette condition
s’exprime de la maniere suivante

1
j G(n+p,x)h(x)dx =0 (1.36)
-1

4. Pafnuty Lvovich Chebyshev (1821-1894) a un nom dont l'orthographe varie un peu selon les langues, puisqu’il s’agit
d’une traduction phonétique. En Francais, son nom est généralement orthographié Tchebytchev.

11/101

CHAPITRE 1. INTEGRATION ET SOMMES DISCRETES

Comme tout polyndome de degré p —1 peut s’exprimer comme une combinaison linéaire de Polynome de
Legendre de degré p—1, on a le systeme d’équation

1
f G(n+p,x)P(k,x)dx =0 (1.37)
-1

aveck=0,1,...p—-1
Sip=n+1,onnote G(2n+1,x) = K(n+1,x)P(n,x). La condition Eq (7.1) est alors donnée par

1
j K(n+1,x)P(n,x)P(k,x)dx =0 (1.38)
-1

avec k =0,1,...p— 1. Considérant le cas ou n est impair, on a K(n + 1,x) qui est une fonction paire et se
décompose sur les polyndomes de Legendre comme

n+3
=
K(n+1,x)=) a;P(2i-2,x) (1.39)
i=1
Les coefficients a; sont calculés par les relations
n+3
P 1
Zaif P(2i —2,x)P(1, x)P(k, x)dx (1.40)

i=1 1

pour k =1,...n (on choisit ag = 1). Pour k pair, ces équations sont automatiquement satisfaites, les équa-
tions restantes permettent d’évaluer les coefficients a; (cette méthode s’appelle méthode de Patterson).

Les méthodes adaptatives partent du principe que 'erreur commise dans le calcul de I'intégrale dé-
pend souvent de la portion du segment ou les évaluations de fonctions sont faites. Si la fonction varie
rapidement dans un intervalle restreint de ’ensemble du domaine d’intégration, il est préférable d’aug-
menter la précision du calcul dans cette région plutdt que sur la totalité de l'intervalle. Les méthodes
adaptatives consistent donc a couper le segment en deux et évaluer chaque partie, on compare l'estima-
tion de l'erreur par rappport a la tolérance imposée et I’on procede a une nouvelle division de l'intervalle
dans les régions les plus difficiles.

1.5 Intégrales multiples

Le probleme de I’évaluation des intégrales multiples est étroitement lié a la difficulté de 1’évaluation
numérique d’un tres grand nombre de points pour la fonction considérée. Par exemple dans un espace a
trois dimensions, si on utilise 30 points dans chacune des directions, il est nécessaire de calculer la fonc-
tion pour 303 points. La situation s’aggrave trés rapidement quand la dimension de I’espace augmente!
Le calcul des intégrales multiples est néanmoins possible dans un certain nombre de cas. Si la fonction
possede une symétrie importante, par exemple la symétrie sphérique dans un espace de dimension 4, on
peut se ramener de maniere analytique a une intégrale a une dimension (Voir appendice A). De maniere
générale, en utilisant une symétrie de la fonction, on peut ramener le calcul de I'intégrale de dimension
n a celui d’une intégrale de dimension n’ << n ou les méthodes précédentes peuvent encore s’appliquer.

Dans le cas ou il n'existe pas de symétrie, la méthode la plus efficace est la méthode dite de Monte
Carlo.

12/101

INTERPOLATION DE FONCTIONS

2.1 Introduction

Pour évaluer une fonction, il est fréquent de ne disposer que de ses valeurs sur un ensemble fini de
points. Dans le cas le plus simple d’une fonction a une variable, ces points sont souvent disposés sur
un réseau régulier unidimensionnel. Il est nécessaire de pouvoir évaluer cette fonction en dehors de cet
ensemble de points. Si le point a évaluer se situe a l'intérieur d’un intervalle élémentaire constitué de
deux points consécutifs du réseau, la procédure d’approximation de la fonction par une fonction plus
simple (trés souvent un polynome) s’appelle une interpolation. Quand le point a évaluer se situe en
dehors des bornes du réseau, la procédure d’approximation s’appelle une extrapolation.

La mise en place d’une interpolation pour une fonction évaluée initialement sur un réseau consiste
a optimiser la fonction approchante en utilisant ’ensemble des données. Le probleme est de savoir si
I’ensemble des données doit étre utilisée en une seule fois pour déterminer une unique fonction sur l’en-
semble de 'intervalle ou si on doit construire une succession de fonctions approchantes en utilisant des
données locales. Nous allons voir que les réponses sont adaptées en fonction des propriétés de régularité
de la fonction que l'on veut interpoler ainsi que le type de fonctions approchantes utilisées.

Sur la base de ce qui nous avons vu dans le chapitre sur I'intégration, les polyndmes sont a priori
de bons candidats pour approximer des fonctions; nous allons voir ci-dessous que cela n’est pas aussi
simple et qu’il existe des situations ou le fait de prendre un polyndme de degré de plus en plus élevé
détériore la qualité de 'approximation. En général, une fonction dont les dérivées restent bornées peut
étre approchée avec précision avec une interpolation polynomiale de degré élevé qui nécessite de faire
intervenir les valeurs de la fonction sur une ensemble de points assez grand. Dans le cas ou la fonction
possede des discontinuités dans sa dérivée, une interpolation locale basée sur un petit nombre de points
est alors plus précise.

13

CHAPITRE 2. INTERPOLATION DE FONCTIONS

2.2 Fonctions a une variable

2.2.1 Algorithme de Neville

1.0

0.8

0.6

0.4

0.2

0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

FiGure 2.1 — Tracé de la fonction “triangle” et
des interpolations polynomiales de degrés 4, 8,
12, 16.

from scipy.interpolate import lagrange
import numpy as np
import matplotlib.pyplot as plt
def triangle(x):
return(np.heaviside(x,1)*(1-x)+np.heaviside
— (-x,1)*(1+x))

x2=np.linspace(-1,1,200)
y2=triangle(x2)
plt.plot(x2,y2)
plt.ylim(0,1)

for j in np.arange(4,20,4):
x=np.linspace(-1,1,j)
y=triangle(x)
poly=lagrange(x,y)
plt.plot(x2,poly(x2),label=str(j))
plt.legend(fontsize=15)
plt.savefig("interpolation.pdf")

Une approche simple consiste a utiliser les N points ou la fonction a été évaluée y; = f(x;) pour
i = 1,n et a interpoler par un polynome d’ordre N avec la formule de Lagrange.
(x = x5)(x = X3)-..(x1 = XN)
P(x) = +
) e))
(x— xl)(x X3)...(x1 — xN)
+...
(2= 1)z = x3) 2 =)
xX—x1)(x—x —XN—
(x —x)(x —x3)...(x1 —xN-1) - (2.1)

(xn —x1)(xN

—x3)...(XN —XN_1)

Pour construire une méthode itérative plus simple, il existe la méthode de Neville basée sur une

structure hiérarchique. Le principe est le suivant :

ii on a N points ou la fonction a été évaluée, on

considere que ces points représentent une approximation d’ordre 0 du polynome.

L’arborescence de la construction des polynomes
ture suivante :

d’interpolation par la méthode de Neville a la struc-

P P P
Py; Py3 P3y
Py3P34

Pio34

Py

ISPEY

Pyo1 Py
Pin-1)N

(N-1)N

A partir des N polynomes constants, on construit les N — 1 polynémes de degré 1, puis les N —2
polynoémes de degré 2 et ainsi de suite jusqu’a obtenir le polynome de degré N —1. Le polyndme obtenu
a la fin est bien évidemment identique a celui décrit par la formule de Lagrange.

La formule de récurrence pour cette construction est la suivante

(% = Xim) Biis1)...(i+m-1)

(X; = X)Pis1)(i+2)...(i+m)

Bi(is1)..(i+m) =

(Xi = Xism)

(Xi = Xitm)

14/101

2.2. FONCTIONS A UNE VARIABLE

import numpy as np
import matplotlib.pyplot as plt

10 def triangle(x):

4 return(np.heaviside(x,1)*(1-x)+np.heaviside
tol g s (=x, 1) % (1+x))

12 x2=np.linspace(-1,1,200)
0.6 — 16

y2=triangle(x2)
plt.plot(x2,y2)
0-41 plt.ylim(0,1)

0.2 1 for j in np.arange(4,20,4):
x=np.linspace(-1,1,j)
y=triangle(x)

0 1 T T T T T T T Y
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

SN)

FiGure 2.2 — Tracé de la fonction “triangle” et des

interpolations par polynomes de Tchebyshev de de-
grés 4,8,12, 16.

< (x2,coeff),label=str(j))
plt.legend(fontsize=15)
plt.savefig("chebyshev.pdf")

coeff=np.polynomial.chebyshev.chebfit(x,y, j

plt.plot(x2,np.polynomial.chebyshev.chebval

2.2.2 Polynomes de Chebyshev

Dans le cas, ou la fonction a interpoler est continue, mais posséde des dérivées discontinues, la pro-
cédure de Neville ne converge pas uniformément. La figure 2.1 illustre la maniere dont des polyndémes
d’interpolation de degré croissant interpole difficilement la région ou la fonction continue a une discon-
tinuité de la dérivée. En augmentant le degré du polyndéme, on voit clairement que 'approximation est
meilleure au centre mais se détériore gravement sur les bords de l'intervalle. En utilisant un dévelop-
pement sur les polynomes de Chebyshev, on obtient une interpolation avec des polynomes de degrés
identiques, c’est-a-dire 4 et 10, les approximations qui apparaissent sur la figure 2.2. Le résultat est
spectaculaire. Notons qu’avec cette procédure 'approximation obtenue ne passe pas par tous les points
d’un réseau régulier. (voir Fig. 2.2).

2.2.3 Méthodes de lissage (“Spline”)

Comme nous l’avons vu ci-dessus, les interpolations de fonction avec l'utilisation de polyndmes de
dégré élevé peuvent conduire a des défauts trés importants situés sur les limites de I'intervalle ou la
fonction est définie. Inversement, "'approximation locale par une droite joignant deux points conécu-
tifs présente le défaut important que la dérivée de la fonction interpolante a une dérivée constante et
discontinue sur chaque intervalle et une dérivée seconde nulle presque partout.

La méthode spline minimise une sorte d’énergie élastique et consiste a imposer que la dérivée pre-
miere de la fonction interpolant soit continue et que la dérivée seconde le soit aussi sur la totalité de
I'intervalle de définition de la fonction.

Sion note (x;,y; = f(x;)) la suite de couples abscisse-ordonnée ou la fonction a été calculée, 'approxi-
mation cubique se construit de la manieére suivante

Y = A(x)y; + B(x)piy1 + C(x)y”; + D(x)y” i1 (2.3)

ou A, B, C and D sont des fonctions de x. Ces fonctions sont determinées par les contraintes suivantes :

® A et B sont déterminées par une interpolation linéaire. Ce qui donne
Xigl —X

A(x) =

Xiv1 —Xi

(2.4)

15/101

CHAPITRE 2. INTERPOLATION DE FONCTIONS

et Y —x
Xit1 = Xi
® C(x)et D(x)doivent s’annuler sur les limites de I'intervalle [x;, x;,1] et sont des polyndmes de degré
2 en x.
Il est facile de vérifier que
1
Clx) = 2 (A(x)” = AX))(xi1 = xi)%) (2:6)
et 1
D(x) = 2 (B(x)* = B(x))(xi+1 — xi)*) (2.7)
conviennent

En effet en dérivant deux fois par rapport a x, I’équation (2.3), on obtient
dzy ” ”
T A”(x)y” i +B"(x)y” i1 (2.8)
X
et donc satisfait bien les contraintes exprimées ci-dessus.

Dans le cas ou les dérivées (premiere et seconde) de la fonction ne sont pas connues, on peut estimer
ces dérivées en imposant que la dérivée de 'approximation est continue, c’est-a-dire que

dy _ yin-yi 3A(x)°*-1 3B(x)* -1

T x:ﬂ — xz' B O xX)y; + — ¢ Wi Xi)Yi (2.9)
Cela donne un systeme d’équations pour les dérivées secondes

Xi —6xi+1yi,il 4 Xird ;Xi—1yi~+ Xz'+16— Xi Y, = Vi+1 =% Vi~ Vi1 (2.10)

Xigl =Xi X — X
On a donc N inconnues pour N — 2 équations; pour lever I'indétermination, on peut imposer que la
dérivée seconde de la fonction s’annule aux extremités de I'intervalle total.
La figure 2.3 montre la comparaison entre une interpolation linéaire de la fonction cos(x?) dont 20
points sont calculés sur I'intervalle 0,5. Quand x augmente, les variations de la fonction sont de plus

en plus importantes et on voit que I'interpolation linéaire est de qualité moindre que l'interpolation
cubique

#!/usr/bin/env python3
-x- coding: utf-8 -»-

1 00 .- miram
. ., A A

0 75 ‘ _* 1 \

Y 1 H ,’\ :
'\ 1 $.) /\ i |@author: viot
0.50 A * “ ,' "‘ \ 'I' mmn
1] h
\ \ \ t [. . . .
0.25 \ ' i ! \ I |[from scipy.interpolate import interpld
\ i 1,
0.00 \ Voo \ 1! | import numpy as np
1 I 1

~0.25 A ﬂ Voo E H

. H .

\ v [Vi |x = np.linspace(0, 5, num=20)
—0.50 \ e W (W _
e data \ S ?\: *ﬂ MYy = np.cos(-xx*2)
-0759 ___ in &/ \; M i} f = interpld(x, y)
. W \ N . . , .
-1.004 ~7" cubique 8 v ¢ f2 = interpld(x, y, kind="cubic”)
0 1 2 3 a 5|xnew = np.linspace(0, 5, num=60)

import matplotlib.pyplot as plt

) i plt.plot(x, y, ‘o', xnew, f(xnew), "g--', xnew,
Ficure 2.3 — Les points représentent les < £2(xnew), ‘r--')

valeurs évaluées de la fonction cos(x?), et

plt.legend(['data’, "lin’, ’“cubique’], loc=’
les approximations linéaires et cubiques < best”)

sont tracées sur un maillage trois fois plus plt.savefig("lincubic.pdf")
petit. plt.show()

16/101

2.3. FONCTIONS DE PLUSIEURS VARIABLES

2.2.4 Approximants de Padé

Il est fréquent en Physique d’obtenir un développement perturbatif d’une fonction pour un nombre
de dérivées limité. Dans le cas ou la fonction inconnue a un développement en série dont le rayon
de convergence est fini, toute approximation polynomiale ne permet pas d’obtenir une approche de la
fonction au dela du rayon de convergence du développement en série entiere.

import numpy as np
import matplotlib.pyplot as plt

20 def gg(x):

s return(1/(1+x*x))

NoOUAWN R

def ggn(x,n):
sum=0
031 for i in range(n+1):
sum+=(-1)**ixx**(2x*1i)
return(sum)

1.0

0.0 1

~05 x=np.linspace(-2,2,200)
plt.plot(x,gg(x))
_1'072.0 15 -10 -05 00 05 10 15 2.0 for] in np. arange(1 ’ 8) :

plt.plot(x,ggn(x,j),label=str(j))

; . , |plt.legend(fontsize=15)
Figure 2.4 - Tracé de la fonction donnée plt.ylim(-1,2)

par I’équation (2.11) et des développements a | 51t . x1im(-2,2)
I'ordre 1 a 8 plt.legend()
plt.savefig("devel.pdf")

De plus, une approximation de degré de plus en plus élévé donnera une approximation de plus
en plus médiocre quand on s’approche du rayon de convergence. Ce phénomene est illustrée sur la
Figure 2.4 ou l'on considere la fonction

1

f(x):m (2.11)

et ou les polyndmes sont basés sur le développement en x a l'ordre 4, 6,18, 20 et sont tracés conjointement
avec la fonction f(x).

Pour remédier a ce type de défaut, les approximants de Padé sont basés sur une interpolation utilisant
une fraction rationnelle,
P(x)
Qn(x)

ou le polynome P,,(x) est un polyndmes de degré m et Q,(x) est un polyndome de degré n dont le coef-
ficient constant est égal a 1. Ainsi un approximation de Padé d’ordre [m, 1] est une fraction rationnelle
dont m + n + 1 coefficients sont a determiner. Quand on connait la valeur d’une fonction et ses n + m
dérivées en un point, on peut calculer n + m approximants différents.

Pa[m,n] = (2.12)

2.3 Fonctions de plusieurs variables

2.3.1 Introduction

Pour des raisons de capacité mémoire sur les ordinateurs, la plupart des fonctions de plusieurs va-
riables que 'on doit interpoler sont des fonctions a deux variables ou a trois variables au maximum. La
nécessité de procéder a une interpolation intervient par exemple dans le calcul d’équations intégrales.

17/101

CHAPITRE 2. INTERPOLATION DE FONCTIONS

2.3.2 Interpolations bilinéaire et bicubiques

Pour une fonctoin tabulée sur un réseau carré régulier, 'approximation bilinéaire consiste a utiliser
un polyndome a deux variables qui donne sur chacune des arétes d’un carré élémentaire la valeur exacte
de la fonction.

Soit x; = xo + hi avec i entier et y; = yo + hj, pour la cellule élémentaire délimité par les points

(%6, 9%, 941 %141, 1), (X111,97), on a le polynome suivant

P(x,9) =h > ((x = xi1)(9 = Yie1)fij + (X = X)) (B = 90 fijn
=X 1)© = 9i) fratj + (X = %0)(B = V) firrjo1) (2.13)

Avec cette approximation, les derivées partielles secondes de cette approximation sont toutes nulles,
ce qui peut étre insuffisant pour la qualité de 'approximation. Dans le cas ou les dérivées premieres
ainsi que la (ou les) dérivée(s) croisée(s) seconde(s) est (sont) connue(s), on peut faire une meilleure
approximation appelée approximation bicubique. En utilisant le fait que I'approximation doit donner
exactement les valeurs de la fonction ainsi que celles des dérivées premieres et des dérivées croisées
secondes, cela donne seize coefficients a déterminer. En notant

d
a_;)i = 3/,1 (214)
d
PR (2.15)
82
ngz =Y12 (2.16)
(2.17)
on doit résoudre le systeme d’équations suivant
4 4 o
Y(x1,x2) = chijtl_lu]_l (2.18)
i=1 j=1
4 4 o
valxpxg) =)) (i= 1)t Pul™! (2.19)
i=1 j=1
4 4 _ _
Yalxi,x) =)) (= Deyt ™ ul™? (2.20)
i=1 j=1
4 4 ' ‘
Yaa(xpxg) =)) (i=1)(j =)yt 2ul™? (2.21)
im1 j=1
(2.22)
ou ¢;; sont les seize coefficients a déterminer avec
po XL (2.23)
X1i+1 — X1, '
Yy X2 =X, (2.24)
X2,i+1 —X2,i

x1,; et x, ; désignent les points du réseau. Ce type de formule se généralise aisément en dimensions 3.

18/101

2.3. FONCTIONS DE PLUSIEURS VARIABLES

Sur la figure 2.5, on compare la méthode d’interpolaire linéaire avec la méthode bicubique pour la
représentation de la fonction xye‘xz‘?z. La figure du haut est une image de la fonction évaluée sur une
grille de 100x, la figure du milieu est basée sur I'interpolation linéaire sur un ensemble de 800 points
choisis aléatoirement dans le plan et la figure du bas correspondant a une approximation bicubique des
memes points. Clairement, la meilleure approximation est la bicubique.

Original

#!/usr/bin/env python3
-*- coding: utf-8 -»-

mmn

- Lk&ar ! @author: viot

mmn

15
from scipy.interpolate import interpld
import numpy as np

1.0
0.5
0.0

x = np.linspace(0, 5, num=20)

y = np.cos(-x**2)

f = interpld(x, vy)

f2 = interpld(x, y, kind="cubic”)
1 xnew = np.linspace(0, 5, num=60)
import matplotlib.pyplot as plt

-0.5

-1.0

-1.5

-1 0
Cubic

15 plt.plot(x, y, ‘o', xnew, f(xnew), "g--", xnew,
1.0 — f2(xnew), ‘r--")
05 plt.legend([data’, "1in’, ‘cubique’], loc=’
0.0 — best’)
plt.savefig("lincubic.pdf")
-0.5
plt.show()

-1.0

-1.5

Ficure 2.5 — Interpolation linéaire et bicubique a
partir d’un ensemble de points aléatoires

19/101

CHAPITRE 2. INTERPOLATION DE FONCTIONS

20/101

RACINES D'EQUATIONS

3.1 Introduction

L'une des taches rencontrées fréquemment lors d’un calcul est la recherche de la racine d’une équa-
tion. Sans perte de généralité, on peut toujours écrire une équation ou le membre de droite est égal a
zéro,

fx)=0 (3.1)

Si x est une variable scalaire, le probléeme est unidimensionnel. Si x est une variable vectorielle (a N
dimensions) et que I'on a N équations a satisfaire, on peut formellement écrire sous une notation vecto-
rielle

f(x)=0 (3.2)

Malgré la similarité des équations (3.1) et (3.2), un systeme d’équations a N variables est considérable-
ment plus compliqué a résoudre qu’un systéeme unidimensionnel. La raison vient du fait que la méthode
générale pour la recherche de racines est liée a la capacité d’encadrer numériquement la région ou le
systeme d’équations possede une racine particuliere.

On exclut de ce chapitre le cas des systemes linéaires qui sera traité dans le chapitre de l’algebre
linéaire. Le principe dominant la recherche de racines d’équations est celui de méthodes itératives, ou
en partant d’une valeur d’essai (ou un couple de valeurs d’essai), on s’approche de plus en plus pres de
la solution exacte. Il est évident qu’une estimation de départ raisonnable associée a une fonction f qui
varie suffisamment lentement est nécessaire pour obtenir une convergence vers la solution recherchée.

Nous allons considérer le probléeme unidimensionnel pour lequel plusieurs méthodes sont dispo-
nibles afin de choisir la méthode la mieux adaptée compte tenu des informations que 'on dispose sur
la fonction f. Une derniere partie de ce chapitre sera consacrée aux méthodes plus spécifiques pour la
recherche de racines de polynomes

3.2 Dichotomie

Comme nous l’avons mentionné ci-dessus, la clé de la recherche de racines d’équations repose sur
I'existence d’un encadrement préalable de cette racine. S’il existe un couple (a,b) tel que le produit
f(a)f(b) <0 et si la fonction est continue, le théoréme de la valeur intermédiaire nous dit que fonction
s’annule au moins une fois a l'intérieur de cet intervalle.

La méthode de dichotomie est une méthode qui ne peut pas échouer, mais sa rapidité de convergence
n’est pas la meilleure en comparaison avec les autres méthodes. L'idée de cette méthode est la suivante :
soit une fonction f monotone sur un intervalle [ag, by] telle que f(ag)f(by) < 0, on sait alors qu’il existe
une et une seule racine comprise dans cet intervalle.

L'algorithme de la méthode de dichotomie est le suivante : tout d’abord, on calcule f(@).
® Si f(@)f(ao) < 0, on définit un nouvel encadrement de la racine par le couple (a1, b;) tel que
[,11 = [,ZO (3.3)

_a0+b0

by >

(3.4)

21

CHAPITRE 3. RACINES D’EQUATIONS

® Si f(@)f(ao) > 0, alors on définit un nouvel encadrement de la racine par le couple (ay,b;) tel

que
ap+ b()
- 3.5
ay b ()
bl = bo. (36)
En itérant cette méthode, on obtient une suite de couple (a,,b,,) telle que €, = b,, — a,, vérifie la relation
en
=2 3.7
€n+l b (3.7)

ou €y = (by —ap)/2 Cela signifie que si l'on se fixe la tolérance e qui représente la précision a laquelle on
souhaite obtenir la racine, on a un nombre d’itérations a effectuer égal a

n :1n2(M) (3.8)

ou la notation In, signifie le logarithme en base 2.

Le choix de la valeur de la tolérance nécessite quelques précautions. Si la racine recherchée est de
l'ordre de l'unité, on peut trés raisonnablement choisir €, de l'ordre de 107 & 107!3 selon que l'on
travaille en simple ou double précision. Par contre pour une racine dont la valeur est de l'ordre de 101?,
une précision de 107* sera la valeur maximale que I'on peut atteindre en double précision. Inversement,
pour une racine proche de zéro, la précision peut étre meilleure que 10714,

#1/usr/bin/env python3
-x- coding: utf-8 -»-

mmn

6 X0=-0.0909713533201284 Created on Tue Jun 16 09:31:44 2020
41 @author: viot
27 import numpy as np

from scipy import optimize
import matplotlib.pyplot as plt
def ff(x):
return(x**3-x**2+x+0.1)
x=np.linspace(-1.5,2,200)
plt.figure(figsize=(6,6))
plt.plot(x,ff(x), -")
x0=optimize.bisect(ff,-1,1)
plt.plot(x0,0, x’,label=r"$x_0%$={:16.15g} .
— format(x0))
plt.plot([-1.5,2],[0,0])

, . 3 plt.text(0,-2,r $f(x)=x~3-x~2+x+0.1$",fontsize
Ficure 3.1 — Tracé de la fonction f(x) = x° — < =15)

x%+x+0.1 et le point racine obtenu par la mé- plt.legend(fontsize=15)
thode de dichotomie en utilisant la bibliothe- | p1t.savefig(’dicho.pdf”)
qye scipy plt.show()

oy fix)=x3—-x2+x+0.1

-15 -1.0 -05 0.0 0.5 1.0 15 2.0

3.3 Meéthode de Ridder

3.3.1 Méthode de la position fausse

La méthode de dichotomie sous-exploite le fait que 'on peut mieux utiliser la fonction a I'intérieur
de 'encadrement effectué a chaque itération. La méthode de la position fausse approche la fonction de

22/101

3.3. METHODE DE RIDDER

maniére linéaire dans l’intervalle considéré.
Soit la droite y = cx + d passant par f(ag) et f(bg) en ag et by respectivement, on obtient facilement
que
ba) —
c= f(bo) ~ f(ao) (3.9)
bo —ag

g bof(ag) —agf(by)
bo—ao

(3.10)

La nouvelle abscisse estimée pour la racine de I’équation est donnée par y = cx+d = 0, ce qui donne

X = —% (311)
_ aof(bo) —bof(ag)
= o) f(a) 342
soit encore
_ _ fla)
#0000 = o))~ Fla) 343
_ f(bo)
= o om0)~ o) 514
On reprend a ce stade le principe de l'algorithme précédent si f(x)f(ag) > 0 alors
oy = x (3.15)
by = by (3.16)
sinon
ap =4y (317)
by =x (3.18)

3.3.2 Meéthode de Ridder

Une variante de la méthode précédente qui est tres efficace est basée sur l'algorithme suivant. On

, . . +b , , .
évalue la fonction au point x3 = 57 et on résout I’équation en z

f(ag) = 2f (x)z+ f (bo)2* = 0 (3.19)
La solution positive est donnée par
_ f(x)+sgn(f \/f ao)f (bo)
. f<bo> (3:20

En appliquant la méthode de la position fausse non pas a f(ag), f(x3) et f(bg), mais a f(ag), f(x3)z et
f(by)z?, on obtient une approximation de la racine, notée x4 et donnée par

)Sgn(f(0) - f(bo))f(x)
VF(x)2 = f(ag)f (bo)

Parmi les propriétés remarquables, notons que x4 est toujours située a l'intérieur de I'intervalle [ag, by].
Sile produit f(x3)f (x4) est négatif, on prend l'intervalle [x3, x4] comme nouvel encadrement, sinon si on
considere le produit f(ag)f(x4); si celui est négatif, le nouvel encadrement est [y, x4], sinon on prend
[x4,b]. On itére ensuite le procédé.

X4 :X3+(X3 (321)

23/101

CHAPITRE 3. RACINES D’EQUATIONS

3.4 Methode de Brent

Le principe de cette méthode est de combiner les avantages des méthodes précédemment exposées en
utilisant, le principe de 'encadrement de la racine, la dichotomie, et I'interpolation quadratique inverse.
Cela nécessite de connaitre trois valeurs de la fonction f dont la racine est a déterminer. Soit (a, f (a)),
(b, f(D)), et (c, f(c)) 1a formule d’interpolation est donnée par

(f(e)=fa))(f(c) = f(D))
L W fONE-fDa G- f@) 5.22)
(f(@) = f()(f(a)=f(c) (f(b)=f(e))(f(b)-f(a)) '
En choisissant y = 0, on peut écrire I’équation (3.22) comme
x:b+g (3.23)
ou P et Q sont donnés par
P=S[T(R-T)(c-b)-(1-R)(b—a)] (3.24)
Q=(T-1)(R-1)(S-1) (3.25)
ouR, S et T s’expriment comme
_f
R= 0 (3.26)
_fb)
S =) (3.27)
_f
T = o (3.28)

En pratique, b est une premiere estimation de la racine et g une petite correction. Quand Q — 0 la valeur

de % peut devenir trés grande et l'itération par la méthode de Brent est remplacée par une itération de
dichotomie.

24/101

3.5. NEWTON-RAPHSON

#1/usr/bin/env python3
-»- coding: utf-8 -»-

nmmn

%] X0=-0.09097135332048871 Created on Tue Jun 16 09:31:44 2020

@author: viot

import numpy as np

from scipy import optimize
import matplotlib.pyplot as plt

) fix)=x3—x2+x+0.1 def ff(x):
return(x**3-x**2+x+0.1)
4] x=np.linspace(-1.5,2,200)
plt.figure(figsize=(6,6))
61 plt.plot(x,ff(x), -")

x0=optimize.brentq(ff,-1,1)
-15 -10 -05 oo o5 10 15 20 |plt.plot(x0,0, x’,label=r’'$x 0$={:17.16q}".
<— format(x0))
plt.plot([-1.5,2],[0,0])
FiGURE 3.2 — Tracé de la fonction f(x) = plt.text(0,-2,r $f(x)=x~3-x~2+x+0.1$" ,fontsize
—x2+x+0.1etle point racine obtenu| — =15)
plt.legend(fontsize=15)

par la méthode de Brent en utilisant la bi- o !
bliothegve sci plt.savefig('brent.pdf”)
aQy py plt.show()

3.5 Newton-Raphson

Toutes les méthodes précédentes ne nécessitaient que la connaissance de la fonction en différents
points de 'intervalle encadrant la racine. Sous réserve que la variation de la fonction ne soit pas trop
rapide, seule une hypothése de continuité est nécessaire.

La méthode de Newton-Raphson nécessite de plus que la fonction f dont on cherche a déterminer
une racine, soit dérivable au voisinage de celle-ci.

Les itérations successives de la méthode de Newton-Raphson sont basées sur le développement limité
de la fonction autour d’un point

77
i X
flx+8)=f(x)+f(x)6+ %52 +... (3.29)
Si o est suffisamment petit, on peut négliger les termes non linéaires et une estimation de la racine est
donnée par f(x+0)=0.
f(x)
=——= (3.30)
f'(x)
On voit immédiatement qu’il est nécessaire que la dérivée de la fonction ne s’annule pas dans le voi-
sinage de x, sous peine que l’estimation de o devienne treés grande et ne permette pas a la méthode de
converger.
Si les conditions précédemment énoncées sont vérifiées, on a une méthode qui converge de maniere
quadratique.
En effet, la relation de récurrence entre estimations successives est donnée par

Xiv1 = Xi —

f(x;)
Flx) (3.31)

25/101

CHAPITRE 3. RACINES D’EQUATIONS

En posant €;,1 = x;,1 — X, ou x est la racine exacte, on a
o e S
i+1 1 f/(xl)

Si on utilise un développement limité de f au deuxiéme ordre au point x; (ce qui suppose que la fonction
est deux fois dérivable au voisinage de la racine), on obtient

o f)
T)

(3.32)

(3.33)

La méthode converge donc tres rapidement par comparaison avec les méthodes précédentes.
A noter que si la dérivée de la fonction n’est pas connue analytiquement, I’évaluation numérique de
sa dérivée est possible par une formule d’accroissement

o flet AY) = f(x)
fl = B (3.34)

Dans ce cas, la méthode de Newton-Raphson se réduit a une méthode d’intersection et la convergence
de celle-ci est moins rapide que la convergence quadratique.

3.6 Racines de Polynomes

3.6.1 Reéduction polynomiale

La recherche de racines d’un polynome se construit de la maniére suivante : soit P,(x) un polynome
de degré n. Si on obtient une premiére racine, on peut écrire

Py(x) = (x = x1) Py (%) (3.35)

ou P,_;(x) est un polyndme de degré n— 1. Ainsi, théoriquement, une fois obtenue une premiére racine,
on peut recommencer la recherche d’une autre racine pour une polynome de degré strictement infé-
rieur. Successivement, on poursuit cette procédure jusqu’a 'obtention de I'ensemble des n racines du
polynéme P,(x). Rappelons que les polynomes a coefficients complexes se factorisent en un produit de
mondmes de degré 1. Cette propriété exprime le fait que les polynomes a coefficients complexes ont
I’ensemble de leurs racines dans le plan complexe,

P(x) = Jx-x) (3.36)

(C est un corps algébriquement clos).

3.6.2 Meéthode de Laguerre

Les méthodes de recherche de zéros de polyndmes sont nombreuses et une présentation détaillée
dépasse largement le cadre de ce cours. Nous avons choisi de présenter une méthode dont le principe
est assez simple. La méthode de Laguerre utilise le fait que les dérivées logarithmiques successives d’un
polyndéme divergent au voisinage d’une racine. En prenant le logarithme de 1’équation (3.36), on obtient

(P, =) Inlx—xi) (3.37)
i=1

26/101

3.6. RACINES DE POLYNOMES

En dérivant I’équation (3.37), on obtient

dIn(|P,(x)]) i 1

dx X —X;
i=1
P(x)
= 3.38
P, (338
=G (3.39)
En dérivant I’équation (3.38), il vient
_d’In(P(x)) _x- 1
dx? — (x—x;)?
_ PA(x)]Z_P,;%x)
Py(x)| Pu(x)
=H (3.40)

Soit la racine x; a déterminer, on suppose que la valeur de départ x est située a une distance a de x; et
que I'ensemble des autres racines sont situées a une distance supposée identique et qui vaut b

X—x1=4a (3.41)
xX—x;=b i€[2,n] (3.42)

En insérant les équations (3.41) et (3.42) dans les équations (3.38), (3.40), on en déduit respectivement
les relations suivantes

1 n-1
-+ =G 3.43
T (3.43)
1 n-1
a—z +) =H (344)
Apres élimination de b, la valeur de a est
a " (3.45)

B G++/(n-1)(nH - G2)

Le signe placé devant la racine du dénominateur est choisi tel que le dénominateur soit le plus grand
possible. x —a devient alors la nouvelle valeur de départ et on itere le processus. En combinant cette
méthode avec celle de la réduction polynomiale, on peut calculer I'ensemble des racines. En pratique,
comme chaque racine n’est déterminée qu’avec une précision finie, il est nécessaire d’ajouter une procé-
dure dite de lissage pour éviter les problemes d’instabilité numérique.

27/101

CHAPITRE 3. RACINES D’EQUATIONS

#!/usr/bin/env python3
-x- coding: utf-8 -»-

mmn

** @author: viot

mmn

20 A

101

—10 1

—20 1

30

40

import
[SEEN
import

numpy .polynomial.polynomial as
npoly
matplotlib.pyplot as plt

import numpy as np
sizes=[20, 40, 60]
plt.figure(figsize=(6,6))
for j in sizes:
coeffs=np.ones(j+1)
for i in range(j):
coeffs[i+1]=coeffs[i]/(i+1)
roots=npoly.polyroots(coeffs)
x=roots.real
y=roots.imag
plt.plot(x,y, *")
plt.savefig(’zeroexp.pdf’)

F1GURE 3.3 — Tracé des zéros de la série tronquée aux

ordres 20, 40 et 60 de la fonction exponentielle

On obtient que les zéros s’éloignent de plus en plus du centre du plan quand on augmente le nombre
de termes de la zéros. Cela est une conséquence du fait que la fonction exponentielle ne s’annule jamais
dans le plan complexe et donc a la limite d’'un nombre de termes qui tend vers l'infini, on n’a aucun zéro

dans le plan complexe.

Dans le deuxieme exemple, on considere le développement en série de la fonction

1
1+x2°

#1/usr/bin/env python3
-%- coding: utf-8 -x-

mmn

@author: viot
1.00 - Y *hw mnon
ﬁ** ") **ﬁ
0.75 1 Ry ** import numpy.polynomial.polynomial as
? " — npoly

e % import matplotlib.pyplot as plt

* *
0254 # % import numpy as np

" *

* *
0.009 * sizes=[20, 40, 60]

* W . . .
P * plt.figure(figsize=(6,6))

% S for j in sizes:
-0507 % # coeffs=np.zeros(j+1)

* *
e * coeffs[0]=1
—0.75 A % w
M, o for i in np.arange(0,j//2):

~1.00 *oraw er W coeffs[2+i+2]=-coeffs[2xi]

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50

FIGURE 3.4 — Tracé des zéros de la série tronquée aux

ordres 20, 40 et 60 de la fonction

Dans ce deuxieme exemple, les zéros de la série s’accumule sur le cercle de rayon unité correspondant

0.75 1.00

1
1+x2°

roots=npoly.polyroots(coeffs)

print(coeffs)

x=roots.real

y=roots.imag

plt.plot(x,y, *")
plt.savefig(poly2.pdf”)

28/101

3.6. RACINES DE POLYNOMES

au rayon de convergence de la série.

29/101

CHAPITRE 3. RACINES D’EQUATIONS

30/101

LES NOMBRES ALEATOIRES

4.1 Introduction

L'importance de générer des nombres aléatoires est en croissante continue depuis ces dernieres dé-
cennies. Une raison principale est associée a la l’existence de différentes échelles de temps dans les
phénomenes physiques, chimiques et biologiques, voire financiers. En considérant 1’échelle de temps
la plus grande, on peut justifier (avec un degré d’approximation plus ou moins bien maitrisé) que la
dynamique puisse étre décrite par une dynamique brownienne.. Un autre domaine faisant intervenir la
génération de nombres aléatoires en grande quantité est la simulation Monte Carlo qui permet d’évaluer
des intégrales de tres grande dimension.

Depuis le début des ordinateurs, la génération de nombres aléatoires est une question essentielle,
car on attend de la séquence générée qu’elle satisfasse un nombre de constraintes en nombre quasiment
illimité. Un premier groupe de constraintes est que les nombres générés suivent le plus pret possible
la distribution de probabilité que 'on souhaite reproduire. Une premieére maniere de vérifier cette pro-
priété est de calculer un nombre de moments de la distribution a partir des nombres générés. Une se-
conde constrainte non triviale a vérifier est que la correlation entre nombres aléatoires reste égale a zéro.
En d’autres termes, quand on a généré un nombre, n'importe quel autre nombre doit pouvoir apparaitre
lors d’un tirage suivant. On peut aussi analyser la correlation entre des séquences successives, etc...

Pour commencer, si on est capable de générer une distribution uniforme sur un intervalle donnée ou
sur un ensemble discret d’entiers, on peut alors générer une autre séquence de nombres satisfaisant une
autre distribution de probabilité et c’est la raison pour laquelle on retrouve dans les bibliotheques de
langage les possibilités de générer des nombres a partir d’'une distribution gaussienne, poissionnienne,
de Cauchy,...

Il existe plusieurs méthodes pour générer des séquences de nombre pseudo-aléatoires, mais la majo-
rité des générateurs reposent des relations de congruence linéaire entre entiers de la forme

Xp41 = (ax, + c)mod m (4.1)

ou a c sont des entiers premiers et m est une puissance de 2 associée a la capacité de l'ordinateur.

m définit la période maximale les nombres générés sont a nouveau la méme suite que l'on a utilisé au
commencement de la séquence généré. A 'époque historique, ou la représentation d’entiers était faire
sur un octet, la séquence de nombres était tres peu aléatoire. Méme avec des registres 32bits (nos ordina-
teurs il y a quinze ans!), cela represente quelques milliards de nombres ce qui peut se reveler insuffisant.
Aujourd’hui avec des registres de 64 bits ou 128 bits, le probléeme de la période n’est plus d’actualité.
Pour permettre de diminuer les correlations de maniere importante, il convient d’aller un peu plus loin
en utilisant des combinaisons de congruences ce qui se retrouve dans de nombreux générateurs tel que
le Mersenne.

Un dernier élément qu’il convient de connaitre est la notion de graine : quand on démarre un géné-
rateur, il doit utiliser une initialisation pour démarrer le calcul de la suite. Si on ne donne pas une valeur
initiale il en choisit une par défaut. Mais si on précise rien, quand on recommence une deuxieme le cal-
cul on repart avec la méme séquence. Si cela reste tres utile lors de la vérification d’un programme, c’est
évidemment catastrophique quand on peut faire une estimation d’une grandeur a partir de nombres
aléatoires si on réutilise toujours les mémes nombres.

31

CHAPITRE 4. LES NOMBRES ALEATOIRES

Une fois que 'on a en téte les principes de génération des nombres aléatoires, on doit alors explorer
les possibilités offertes par les bibliotheques et non pas réécrire des générateurs dérivés a partir d’une gé-
nérateur interne mal controlé. Nous allons illustrer quelques distributions classiques a partir du langage
Python, mais bien évidemment nous reviendrons en séances d’exercice pour le langage C++.

4.2 Distributions uniformes

4.2.1 Distribution discrete uniforme

Pour générer des nombres aléatoires entre 1 et 6 avec une distribution uniforme, on fait appel a la
bibliotheque numpy qui permet de générer en une fois une grande liste de nombres aléatoires. Pour 500
nombres, on compare sur la figure 4.1 le résultat de la simulation avec la probabilité correspondant a la
limite d’'un nombre de tirages infini.

#!/usr/bin/env python3
-x- coding: utf-8 -x-

mmn

0.15 @author: viot

mwmn

import numpy as np
0.101 import matplotlib.pyplot as plt

P(n)

x=np.random.randint(low=1,high=7,size
0.05 < =5000)

bin = [x1 + 0.5 for x1 in range(0, 7)]
plt.hist(x,bins=bin,density="True’,rwidth
0.00- < = 0.5)
plt.xlabel('n’,fontsize=15)
plt.ylabel('P(n)’,fontsize=15)
plt.tick_params(labelsize=15)

Ficure 4.1 — Comparaison d’un histogramme de plt.plot([0.5,6.5],[1/6,1/6])
nombres aléatoires issus d’une distribution uni- |plt.tight layout()

forme et de la probabilité d’'un nombre infini de ti- |plt.savefig("discrete.pdf")

rages. plt.show()

4.2.2 Distribution continue uniforme

Pour générer des nombres aléatoires dans l'intervalle [0,1) avec une distribution uniforme, on fait
appel a la bibliotheque numpy qui permet de générer en une fois une grande liste de nombres aléa-
toires. Pour 5000 nombres, on compare sur la figure 4.2 le résultat de la simulation avec la probabilité
correspondant a la limite d’'un nombre de tirages infini.

32/101

4.3. DISTRIBUTION NON UNIFORMES

Ficure 4.2 — Comparaison d’un histogramme de
nombres aléatoires d’une distribution uniforme et
de la probabilité d’'un nombre infini de tirages.

4.3 Distribution non uniformes

4.3.1 Distribution gaussienne

#!/usr/bin/env python3
-x- coding: utf-8 -x-

mmn

@author: viot

import numpy as np

import matplotlib.pyplot as plt
x=np.random.uniform(1,2,size=50000)
plt.hist(x,bins=100,density="True")
plt.xlabel('x’,fontsize=15)
plt.ylabel('P(x)’,fontsize=15)
plt.tick_params(labelsize=15)
plt.plot([1,2],[1,1])
plt.tight_layout()
plt.savefig("uniform.pdf")
plt.show()

Pour intégrer une équation différentielle stochastique, il est nécessaire de générer des nombres aléa-
toires indépendants comme d’habitude et dont la distribution de probabilité est une distribution gaus-
sienne. A nouveau on peut comparer sur la figure suivante I’histogramme d’un nombre fini de points

avec la distribution gaussienne exacte.

0.4 1 /N
il
0.3 A /
0.2 1
0.14
0.0 . | | l'
-4 -2 0 2

Ficure 4.3 - Comparaison d’un histogramme de
nombres aléatoires d’une distribution gaussienne et
de la probabilité d’un nombre infini de tirages.

4.3.2 Distribution de Cauchy

La distribution de Cauchy est donnée par la loi

P(x;x0,7) =

#1/usr/bin/env python3
-»- coding: utf-8 -»-

mmn

@author: viot

import numpy as np

import matplotlib.pyplot as plt
x=np.random.uniform(1,2,size=50000)
plt.hist(x,bins=100,density="True")
plt.xlabel('x’,fontsize=15)
plt.ylabel('P(x)",fontsize=15)
plt.tick_params(labelsize=15)
plt.plot([1,2],[1,1])
plt.tight_layout()
plt.savefig("uniform.pdf")
plt.show()

1

7(7/[1 +(x_yx°)2]

(4.2)

33/101

CHAPITRE 4. LES NOMBRES ALEATOIRES

Cette loi de probabilité dont le support peut aller sur I'ensemble de la droite réelle ou une demi-droite
réelle a une moyenne moyenne ainsi que I’ensemble des moments supérieurs de la distribution qui ne
sont pas définis. Cela signifie que pour un nombre fini de valeurs la valeur moyenne est globalement
controlé par la plus grande valeur du tirage. Il est possible de générer des valeurs aléatoires simplement
a partir d’une instruction d’une bibliotheque.

#!/usr/bin/env python3
-x- coding: utf-8 -*-

mmn

Created on Tue Jun 16 09:31:44 2020

0.30
@author: viot
0.25 o
020 import numpy as np
import matplotlib.pyplot as plt
0.15 - def cauchy(x,mean=0.,x0=0.,gamma=1):
return(1/(np.pi*gammax*(1+((x-x0)/gamma)
0.10 — xx2)))
0.05
x1=np.linspace(-25,25,200)

0.00 . : - : x=np.random.standard_cauchy(5000)
-20 -10 0 10 20 x = x[(x>-25) & (x<25)] #on tronque les
< valeurs extremes pour tracer 1’
Figure 4.4 — Comparaison d’un histogramme de = (LSTORrETe .)
nombres aléatoires d’une distribution de Cauchy |P't-Nist(x,bins=50,density=True,color=
, e . s 1) < green’,rwidth=0.7)
centrée sur lorigine et de la probabilité d’un

RO > plt.plot(x1,cauchy(x1),1w=3)
nombre infini de tirages. plt.savefig("cauchy.pdf")

plt.show()

4.4 Conclusion

La liste de distribution de probabilité disponible dans une bibliotheque dépasse ces premiers exemples.
Nous reverrons en séances des propriétés supplémentaires ainsi que quelques méthodes pour générer
des distributions non standards. Notons qu’en Python, par défaut, la graine est changées entre deux si-
mulations consécutives, ce qui n’est pas le cas en général pour les langages compilés sauf pour la STL en
C++.

34/101

EQUATIONS DIFFERENTIELLES

5.1 Introduction

La résolution numérique d’équations différentielles est trés souvent nécessaire, faute de I’existence de
solutions analytiques. Le but de ce chapitre est de montrer que la meilleure méthode, ou la plus efficace a
utiliser pour obtenir une solution, nécessite de connaitre la nature de I’équation différentielle a résoudre.
Les méthodes les plus standards que nous allons présenter sont largement présentes dans les logiciels de
calcul comme Maple, Matlab, Scilab, Octave, ou Mathematica, et surtout dans les bibliotheques pour la
programmation (boost, GSL) et bien entendu python. Il est donc préférable d’utiliser ces bibliotheques
plutot que de réécrire un code peu performant et probablement faux dans un premier temps.

5.2 Deéfinitions

Soit une fonction numérique notée y(x) définie sur un intervalle de R et de classe C, (continiment
dérivable d’ordre p). On appelle équation différentielle d’ordre p une équation de la forme

F(x,9,9,y",..9")=0 (5.1)

ou y’ représente la dérivée premiere par rapport a x, y” la dérivée seconde, etc... Plus généralement, on
appelle systeme différentiel un ensemble d’équations différentielles reliant une variable x et un certain
nombre de fonction y;(x) ainsi que leurs dérivées. Lordre du systéme différentiel correspond a 'ordre de
dérivation le plus élevé parmi I’ensemble des fonsctions.

On appelle solution de I’équation différentielle (5.1) toute fonction y(x) de classe C, qui vérifie
I’équation (5.1).

On appelle forme canonique d’une équation différentielle une expression du type

v = f(x,9,9,9",...9%) (5.2)

Seul ce type d’équations sera considéré dans ce chapitre.

Il est facile de vérifier que toute équation différentielle canonique peut étre écrite comme un systeme
d’équations différentielles du premier ordre.

Si on introduit p — 1 fonctions définies comme

1=Y
V=Y

g, =y (5.3)

on peut exprimer ’équation (5.2) sous la forme

Y1 =92
Y2 =793

vy = (69,9192 9p) (5.4)

35

CHAPITRE 5. EQUATIONS DIFFERENTIELLES

5.3 Equations différentielles “spéciales”

5.3.1 Introduction

Une classe restreinte, mais importante, d’équations différentielles ont des solutions mathématiques
sous la forme de fonctions transcendantes ou de fonctions spéciales en général. Nous allons donc donner
un rapide apercu de ces équations différentielles particulieres qui contiennent en autres quelques équa-
tions différentielles non-linéaires, dont 'immense majorité ne peut étre résolue que numériquement.

5.3.2 Equations du premier ordre
Equation a coefficients constants

Les équations différentielles a coefficients constants de forme générale

d
ad—i + by(x) = c(x)

ont pour solution générale

y(x) = g b/ax (J dt?eb/”t + cste

Equation linéaire
Une équation différentielle linéaire a pour forme générale
d
T+ flxy(x) = g

ou f(x) et g(x) sont des fonctions arbitraires. La solution de cette équation différentielle est

y(x):efxf(”)d”((jdtg ef flwdu Cote

Equation de Bernouilli

L’équation de Bernouilli a pour forme générale

d
L+ Flxp(x) + g0y = 0
ou f(x) et g(x) sont des fonctions arbitraires. En introduisant le changement de fonction

1
y(x) = u(x)t
I’équation différentielle devient une équation différentielle du premier ordre

du

= = ([@= D (u)f(x)+gx)

qui s’intégre alors comme une équation différentielle linéaire.

(5.6)

(5.7)

(5.9)

(5.10)

(5.11)

36/101

5.3. EQUATIONS DIFFERENTIELLES “SPECIALES”

Equation de Clairaut

Une équation de Clairaut est une équation de la forme

_ dy [dy
y(x) =x- +g(%) (5.12)

Ce type d’équation différentielle admet une solution linéaire de la forme
y(x)=Cx+g(C) (5.13)

ou C est une constante arbitraire. On peut aussi exprimer la solution de I’équation sous forme paramé-
trique
x(s) = —g'(5) (5.14)
y(s) = g(s) —sg’(s) (5.15)

Equation de Riccatti

La forme d’une équation de Riccatti est donnée par ’expression suivante

dy

dx
ou f(x), g(x) et h(x) sont des fonctions arbitraires. Il n’y a pas de solutions générales pour 'équation
de Riccatti. Quand h(x) = 0, on retrouve la forme d’une équation de Bernouilli dont la solution a été
donnée plus haut. La forme dite spéciale de ’équation de Riccatti est définie par I’équation différentielle
suivante

(x)p(x)? ~g(x)y(x) —h(x) = 0 (5.16)

dy 2 c
z_ —bx¢ = 1
P ay(x)*—bx" =0 (5.17)
Si de plus c est de la forme
—4xi
c=— (5.18)
2i—-1

avec i entier relatif, on peut obtenir une expression analytique de I’équation différentielle de Riccati.

5.3.3 Equation différentielles du second ordre
Equations différentielles a coefficients constants

Les équations différentielles a coefficients constants de forme générale

a%+b§—z+cy(x):d(x) (5.19)
ont pour solution complete
= (LA
(x) = ;’e”’x(Ci+Jdtﬁe g (5.20)
ou
Upp = %:_4% (5.21)
sont les solutions de I’équation caractéristique
au’ +bu+c=0 (5.22)

37/101

CHAPITRE 5. EQUATIONS DIFFERENTIELLES

5.3.4 Equation de Bessel

Les équations différentielles de Bessel sont définies par les équations suivantes

d? d
xzd—£+x£+(x2—n2)y(x):0 (5.23)
et 5
d d
xzd—;;+xd—§—(x2—n2)y(x): 0 (5.24)

ce qui donne respectivement pour solutions les équations de Bessel] et Y pour la premiére et les équa-
tions de Bessel modifiées I et K pour la seconde.
5.3.5 Equation différentielle erreur

On appelle equation différentielle erreur I’équation suivante

—+2xd—x—2ny(x) =0 (5.25)
ou n est un entier. Pour n = 0 la solution est de la forme
y(x) =c+derf(x) (5.26)
ou c et d sont des constantes arbitraires. Dans le cas ou ou n = 1, la solution est de la forme
y(x)=cx+ d(e_"2 +Vrer f(x)x) (5.27)

De maniere générale, la solution est une combinaison générale de fonction de WhittakerM.

5.3.6 Equation différentielle d’Hermite

L’équation différentielle d’Hermite est trés proche de I’équation différentielle précédente, puisque
ona

d’y dy
W—2x%+2ny(x) =0 (5.28)

De maniere générale, la solution est aussi une combinaison générale de fonction de WhittakerM.

5.4 Meéthodes d’intégration a pas séparé

5.4.1 Introduction

Soit I’équation différentielle définie par les équations (5.4). On suppose que la fonction f satisfait
une condition de Lipschitz afin d’étre certain que la solution existe, est unique et que le probleme est
bien posé.

On cherche a calculer une approximation de la solution y(x) en un certain nombre de points x, x5,... xy
de I'intervalle [a, b], appelé maillage de l'intervalle, avec xg =a et xy = b

Nous supposons que la suite des points est choisie de maniere a ce que la distance entre deux points
consécutifs soit constante et on pose

(5.29)

ce qui donne
X =a+kh (5.30)

38/101

5.4, METHODES D’INTEGRATION A PAS SEPARE

aveck=0,1,...,N
On appelle méthode d’intégration a pas séparé toute formule de récurrence de la forme

Vk+1 = Yk + hop(xp, yi, 1)
k=0,1,...N avec yy donné (5.31)

la fonction ¢ est supposée continue par rapport aux trois variables x,y, h.
On appelle méthode a pas multiples les méthodes telles que yi,; dépend de plusieurs valeurs précé-

dentes vx, Vk_1,... Vk—r-

5.4.2 Meéthode d’Euler

Cette méthode est définie par
Vo1 = Yi+ 1 f (9r, xx) (5.32)
avec yy donné.

Cette méthode revient a approximer la solution au voisinage de x; par sa tangente et nous allons voir
qu’elle est d’ordre 1. En effet, si la solution est suffisamment dérivable, on peut écrire

’ h2 1
Y+ h) =y () + hy () + =97 (x + Oh) (5.33)
avec 0 <0 < 1. ce qui donne
h2 77
Y0+ h) =y(xi) + 1f (9 xi) + =97 (xe + Oh) (5.34)
D’apres la définition de la méthode
1 X +h)—p(x
L 9+)= () - bl)) = LT LZIOR) g (5.3
h h
ot 1 (xi + Oh)
X +
(9 1) = p(e0) = Blvi k) i) = B (5.36)

2
Si la dérivée seconde de y est bornée par une constante K dans 'intervalle d’intégration [a, b], on aura

maXII%(V(xk +h) = y(xi) = Pk (xx), xi, 1))l < Kh (5.37)

ce qui montre que la méthode est d’ordre un.

La méthode d’Euler est une méthode numérique peu colteuse numériquement, mais peu précise
quand on intégre sur plusieurs pas de temps. Des améliorations sont possibles dés que I'on considere des
points intermédiaires, ce que nous allons voir ci-dessous en considérant des méthodes dites de Runge-
Kutta

5.4.3 Meéthode RK explicites a un point

h
Vi1 =Yk + gf(xk:yk)

h
Va1 = Ykt h(L—a)f(xp, y) + af (xi + zr?m)
1o donné

avec a un nombre réel compris entre 0 et 1. Les valeurs de @ couramment utilisées sont a =1, a = 1/2
et @ = 3/4. Ces méthodes sont d’ordre 2.

39/101

CHAPITRE 5. EQUATIONS DIFFERENTIELLES

5.4.4 Meéthodes RK implicites a un point

La formule de récurrence est définie par la relation

Vi1 = Vi +H[(1=0)f (xi, vx) + O f (Xpes 1, V1) (5.38)

ou O est un nombre réel appartenant a l'intervalle]0,1] (si 6 = 0, on retrouve la méthode d’Euler). Si
6 =1/2, la méthode est d’ordre 2 et s’appelle la méthode des trapezes. Si 6 = 1/2, la méthode est d’ordre
1.

5.4.5 Meéthodes RK explicites a 2 points intermédiaires

Ces méthodes sont définies par les relations
h
Vi1 =Vt 5/ (%% 9k)
2h h
Ye2 =Pkt 5 f | Xkt 300k
h 2h
Vet =Yt 7 (S0 yi) +3f X+ 579k (5.39)
ou par
h
Vi1 = Vet - f (X0 3k)
h
Yk2 = Yk + h(f(xkfyk) +2f (xk 5 Yk))

h h
Ykt =Ykt (f(xkryk) +4f (Xk + 50k) +f (xk+1:yk,2)) (5.40)

Ces deux méthodes sont d’ordre 3. La premiere est parfois appelée méthode de Heun.

5.4.6 Meéthodes RK explicites a 3 points intermédiaires

La méthode suivante est de loin la plus connue et utilisée. Les relations de récurrence sont les sui-
vantes.

h
Vi1 =Ykt _f(xk;yk

Vk2 = Vk + f(xk+ ;}’k1)
Vk3 =Yk + f(

Xt ;ykz)
h h
Ves1 =Ykt ¢ (f(xk,})k +2f(xk+ lyk1)+2f(xk+ ,yk2)+f(xk+1;yk 3)) (5.41)

Cette méthode est d’ordre 4.

40/101

5.5. METHODES D’INTEGRATION A PAS VARIABLE

5.4.7 Formule générale des méthodes RK explicites
Les méthodes de Runge Kutta s’écrivent de maniere générale

Ky =hlf(xx+01h v + a1 Ky + a1 ,Ky +... + ay ,K,,)]
Ky = hlf (xx + O2h, v + @91 Ky + a2 Ky +... + @y ,K,y)]

Kn = h[f(xk + th:yk + an,lKl + an,2K2 +...t an,nKn)]
Vke1 = Yk +h[y1 Ky + 92K+ v, K] (5.42)

Les coefficients sont déterminés afin que l'ordre soit le plus élevé possible. On note A la matrice de
coefficients (a; ;), I' le vecteur des coefficients y; et © le vecteur des coefficients 0;.

Quand la matrice A est triangulaire inférieure stricte, a;; = 0 pour j > i, on dit que la méthode
est explicite. Si seule la partie triangulaire supérieure est nulle, @;; = 0 pour j > i, la méthode est dite
implicite; sinon elle est totalement implicite.

Une représentation en forme de tableau des équations (5.42) donne

‘ 4! \ V2 \ ‘ Vn
91 CKL] al’z e alrn
92 0(2’1 0(2’2 e 0(2’,1
671 an,l an,Z vee an,n

Avec cette représentation, la méthode Runge-Kutta explicite a deux points qui est d’ordre 4 est re-
présentée par le tableau suivant

| 1/6 | 1/3 | 1/3 | 1/6
ojlofof]o]o
1/2(1/2) 0 | 0 | 0
/21 0 |1/2| 0 | ©
1 oo] 1]o0

5.5 Méthodes d’intégration a pas variable

5.5.1 Introduction

Un intégrateur “intelligent” posseéde une procédure de controle de la méthode de convergence, c’est
a dire un moyen d’estimer l’erreur commise par le calcul sur un pas d’intégration et la possibilité de
choisir en conséquence un nouveau pas si le systeme différentiel aborde une région ou la fonction prend
des valeurs plus importantes. Le calcul de cette estimation entraine un surcott de calcul, qu’il convient
de bien gérer afin de minimiser cet effort supplémentaire.

L’idée la plus simple pour estimer cette erreur consiste a calculer la solution donnée par un algo-
rithme (de Runge-Kutta d’ordre 4 par exemple) pour deux pas d’intégration différents, h et 2h. Soit
y(x + 2h) la solution exacte a x + 2h et y(x + h) la solution exacte a x + h, on a

p(x+2h) = v, + (2h)°p + O(h) (5.43)
v(x+2h) = v, + 2(h°)p + O(h) (5.44)
ol ¢ est une fonction qui reste constante sur l'intervalle x,x + 2/ a l'ordre h°. La premiére équation

correspond a une intégration avec un pas égal a 2h tandis que la seconde correspond a deux intégrations
successives avec un pas de h. La différence

A=pr-9 (5.45)

41/101

CHAPITRE 5. EQUATIONS DIFFERENTIELLES

fournit une estimation de I’erreur commise avec un pas d’intégration h.

5.6 Meéthodes de Runge-Kutta “embarquées”

Une autre méthode pour estimer l'erreur commise par l'utilisation d’un pas h est due a Fehlberg. Il
utilise le fait qu’en choisissant des valeurs particulieres de y; (voir section 5.4.7), on peut changer l'ordre
de I’évaluation de la solution pour un pas de temps h donné.

6

y1=y(x)+) yiKi+0(h%) (5.46)
i=1
6

v2=y(0)+) yiKi+0(h) (5.47)

ce qui conduit a une estimation de l’erreur

6
A=) (ri=7DK; (5.48)

=1

Pour déterminer la valeur du pas la plus adaptée, on note tout d’abord que A est calculé a 'ordre °. Si
on a un pas h; qui donne une erreur Ay, le pas hy donné pour une erreur A fixée a ’avance, est donné
par la relation

AO 1/5

Ay
Il est donc possible, pour une valeur de |Ay| donnée a ’avance de diminuer h(pour obtenir une erreur
plus faible ou d’augmenter /iy de maniere raisonnable si A; est inférieur en valeur absolue a |Ag|.

Une difficulté apparait pour ce type de méthode quand on considére un systeme différentiel a plu-
sieurs variables. L'estimation de ’erreur est alors donnée a priori par un vecteur. La généralisation de la
procédure ébauchée reste possible, mais nous ne détaillerons pas ce type de subtilité dans ce chapitre.

ho = hy (5.49)

5.6.1 Exemples

Nous allon tester les méthodes précédentes sur quelques équations différenielles : le premier test
consiste a évaluer la différence entre la solution exacte pour une équation différentielle quand elle existe
et le second test a controler cette différence en testant I’évolution d’une grandeur conservée associée a
I’éqution différentielle, ce qui est le cas de I’évolution d’une systéme Hamiltonien pour lequel 1’éner-
gie totale est une grandeur conservée. Les deux méthodes de RK implémentées dans Python sont des
méthodes ou l'on controle la précision par deux evaluations différentes d’un pas d’intégration. RK23
signifie que ’évaluation se fait avec un développement a 'ordre 2 et un a l'ordre 3. De maniere similaire
pour la méthode RK45. Dans les deux figures qui suivent, on laisse par défaut les valeurs de tolérances
pour faire I'intégration de I’équation différentielle.

La premiere equation que 1’'on considere est celle d’un oscillateur harmonique amorti.

v +2y+2y=0 (5.50)

avec les conditions initiales suivantes y(0) = 1 et y’(0) = 0. Pour étre calculée numériquement, on réécrit
cette équation sous la forme suivante

Y] = -2Y; - 2Y, (5.52)

42/101

5.6. METHODES DE RUNGE-KUTTA “EMBARQUEES”

#1/usr/bin/env python3
-»- coding: utf-8 -»-

nmmn

@author: viot

nmmn

import numpy as np

1.0 from scipy.integrate import solve_ivp
0.8 import matplotlib.pyplot as plt
0.6 1
7041 def solex(t):
021 return(np.exp(-ts)*(np.sin(t)+np.cos(t)))
0.0 def dY_dt(t,Y):
t x,v=Y

0.0008 return [v, -2xv - 2*x |

0.0006

0.0004 -

0.0002 sol = solve_ivp(dY_dt,[0, 10], [1, O],
0.0000 { < dense_output=True,method="RK23")
~0.0002 sol2 = solve_ivp(dY_dt,[0, 10], [1, O],

T < dense_output=True,method="RK45")

0.00015 -

ts = np.linspace(0, 10, 100)
0.00010 1 ys = sol.sol(ts)
. 0:00005 1 ys4 = so0l2.so0l(ts)
0.00000 fig,ax = plt.subplots(3,1,figsize=(4,8),sharex=
~0.00005 | < True)
—0.00010
A té 5 D ax[0].plot(ts, ys.T[:,0])

ax[0].plot(ts, solex(ts))
Ficure 5.1 — (Figure du haut) Résolutions numé@x[0].set_xlabel(t)

. Iy : . ors . ax[0].set_ylabel("y")
riques de 1’équation différentielle par Runge Kutta ax[1].plot(ts, ys.T[:,0]-solex(ts))
d’ordre 2 et d’ordre 4. Figure du milieu : écart entre ax[1] 'zet xlat’)exll(e) ’
la solution exacte et la solution RK2.Figure du bas { ;5[1].set_ylabel("y")
écart entre la solution exacte et la solution RK4. ax[2].plot(ts, ys4.T[:,0]-solex(ts))
ax[2].set_xlabel("t")
ax[2].set_ylabel("y")# plt.xlabel("t")

plt.tight_layout()
plt.savefig(’'RK2345.pdf")

On voit que la solution numérique est de meilleure précision avec la méthode Runge-Kutta d’ordre
4 qu’avec celle d’ordre 2.

Dans le deuxieme exemple, I’équation différentielle est celle d’un oscillateur anharmonique. L'éner-
gie mécanique doit étre conservée au cours du temps. Un calcul rapide montre que I’énergie totale de ce
systeme avec la condition initiale y(0) = 1 et 9’(0) = 0, donne une valeur de 3/4.

43/101

CHAPITRE 5. EQUATIONS DIFFERENTIELLES

1.00 - 1.00 -
0.75 + 0.75 - 0
0.50 - 0.50
0.25 - 0.25 1
+~ 0.00 - = 0.007
—0.25 - -0.25 A
~0.50 1 —0.50 1
~0.75 1 U —0.757
~1.00 1 —1.009 : : .
5 10 15 20 25 30 0 10 y 20 30
y
0.00 1 0.0000 -
-0.01 A
—0.0002 A
—-0.02 A
- ., —0.0004 -
~0.03 A
—0.04 - —0.0006 A
—0.051 ~0.0008
5 10 15 20 25 30 0 10 20 30
y y
le-5
4
0.002
3 -
0.000
2 -
—~0.002 -
—0.004 1 11
—0.006 - 0 1
—0.008 - T T T T T T T T T T T
5 10 15 20 25 30 0 10 20 30

Ficure 5.2 - figure
(Figure du haut)Résolutions numériques de I’équation différentielle par Runge Kutta d’ordre 2 et d’ordre
4. Figure du milieu : écart entre ’énergie numérique RK2 et la valeur exacte.Figure du bas : écart entre
la I’énergie numérique RK4 et la valeur exacte. Les trois figures de gauche correpondent a une précision
relative de 1073 et celles de droite a une précision relative de 107>

44/101

5.6. METHODES DE RUNGE-KUTTA “EMBARQUEES”

#!/usr/bin/env python3
#!/usr/bin/env python3 # -»- coding: utf-8 -»-
-x- coding: utf-8 -x- e

mmn

@author: viot @author: viot

mmn mmn

import numpy as np

import numpy as np from scipy.integrate import solve_ivp
from scipy.integrate import solve_ivp import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
def solex(t): def solex(t):
return(np.exp(-ts)*(np.sin(t)+np.cos(t) return(np.exp(-ts)*(np.sin(t)+np.cos(t)
=)) =))
def dY_dt(t,Y): def dY_dt(t,Y):
x,v=Y x,v=Y
return [v, - x -x*x3] return [v, - x -xx*x*3]
sol = solve_ivp(dY_dt,[0, 30], [1, O], sol = solve_ivp(dY_dt,[0, 30], [1, O],
< dense_output=True,method="RK23") < dense_output=True,method="RK23",
sol2 = solve_ivp(dY_dt,[0, 30], [1, O], < rtol=1e-5)
< dense_output=True,method="RK45") sol2 = solve_ivp(dY_dt,[0, 30], [1, O],
ts = np.linspace(0, 30, 100) < dense_output=True,method="RK45",
ys = sol.sol(ts) — rtol=1e-5)
ys4 = sol2.so0l(ts) ts = np.linspace(0, 30, 100)
Et=0.5%ys.T[:,0]*ys.T[:,0]+0.25%ys.T ys = sol.sol(ts)
< [:,0]*%4+0.5%ys. . T[:,1]%%2 ys4d = sol2.sol(ts)
Et2=0.5%xys4.T[:,0]*ys4.T[:,0]+0.25xys4.T Et=0.5*ys.T[:,0]*ys.T[:,0]+0.25%ys.T
< [:,0]**4+0.5%ys4 . T[:,1]*%2 < [:,0]*%4+0.5x%ys.T[:,1]*%2

fig,ax= plt.subplots(3,1,figsize=(4,10)) Et2=0.5%ys4.T[:,0]*ys4.T[:,0]+0.25+ys4.T
< [:,0]**4+0.5%ys4 . T[:,1]*%2

ax[0].plot(ts,ys.T[:,0]) fig,ax= plt.subplots(3,1,figsize=(4,10))
ax[0].plot(ts,ys4.T[:,0],color="blue”) ax[0].plot(ts,ys.T[:,0])
ax[0].set_xlabel("y") ax[0].plot(ts,ys4.T[:,0],color="blue’)
ax[0].set_ylabel("t") ax[0].set_xlabel("y")

ax[1].plot(ts, Et-3/4) ax[0].set_ylabel("t")
ax[1].set_xlabel("y") ax[1].plot(ts, Et-3/4)
ax[1].set_ylabel("t") ax[1].set_xlabel("y")

ax[2].plot(ts, Et2-3/4) ax[1].set_ylabel("t")

plt.tight_layout() ax[2].plot(ts, Et2-3/4)

plt.savefig(EnergieRK.pdf") plt.tight_layout()

plt.savefig('EnergieRKprecis.pdf’)

Si on reprend le meme exemple et que 'on abaisse par deux ordres de grandeur la valeur de la
tolérance relative, on obtient une amélioration de la précision particulierement dans le cas de la méthode
RK45. C’est bien entendu au prix d’un calcul supplémentaire, mais dans ce cas simple, il reste tres peu
perceptible.

On voit clairement sur cette exemple que si les solutions numériques données par les deux méthodes
semblent trés proches apres un temps de l'ordre de 6 périodes d’oscillation, une analyse plus fine qui
calcule I'énergie totale pour chacune de ces méthodes montre dans les deux cas I'apparition d’un biais
systematique ou le systéeme ne conserve pas I’énergie. Dans le cas de la simulation numérique d’un grand
nombre de particules et pour des temps considérablement plus long, cela entraine une non conservation
de I’énergie mécanique et des résultats qui font évoluer le systeme vers des régions non physiques. Nous
verrons que pour satisfaire cette constrainte essentielle de la conservation de I’énergie, il est nécessaire
d’utiliser des algorithmiques symplectiques.

45/101

CHAPITRE 5. EQUATIONS DIFFERENTIELLES

46/101

EQUATIONS DIFFERENTIELLES STOCHASTIQUES

6.1 Introduction

Depuis les observations de Robert Brown sur le déplacement des grains de pollen en solution et les
travaux d’Einstein et de Smoluchowski qui ont proposé une description de ce phénomene, on s’est rendu
compte que de nombreux situations pouvaient étre décrites en faisant intervenir des “forces aléatoires” :
la dynamique des particules colloidales en solution est bien décrite par une dynamique Brownienne,
(voir le cours de simulation numérique en Physique Statistique), la cinétique d’une réaction chimique
peut étre décrite de maniere plus réaliste en incorporant des fluctuations liées a l’environnement par
I'addition d’un bruit aléatoire, les évolutions des marchés financiers ont été depuis ces trente dernieres
années l'objet d’une intense recherche par des modélisations faisant intervenir des forces aléatoires,...

Le propos de ce chapitre est de donner des principes de bases pour la résolution des équations diffé-
rentielles stochastiques. Sur un sujet tres vaste et en évolution rapide, nous serons tres loin de ’exhaus-
tivité. Nous allons donc rappeler les définitions et propriétés fondamentales concernant les processus
stochastiques ainsi que ceux des équations différentielles stochastiques, et nous renvoyons le lecteur a
plusieurs ouvrages de base concernant les processus stochastiques.

6.2 Variables aléatoires et processus stochastiques

Pour définir une variable aléatoire X, il est nécessaire d’avoir a la fois un ensemble de valeurs que
peut prendre la variable aléatoire X et une loi de probabilité définissant la maniere dont les valeurs de
cette variable aléatoire peuvent apparaitre.

Compte tenu du fait que la variable aléatoire X prend des valeurs successives a chaque nouveau
tirage, on associe a chacun de ces tirages un écoulement du temps, et les instants successifs sont notés
ST 2T

Un processus stochastique est défini comme une dynamique dont les évévements successifs sont
donnés par une loi de probabilité. Trois définitions sont particulierement importantes pour classifier le
type de processus stochastique que l'on étudie. Si on note xq,x,,...x,, la séquence de la variable X, on
définit la probabilité jointe de ces n valeurs successives

p(xlltl;xZJ tZ;---xn;tn); (61)

comme la probabilité de voir réaliser la séquence de valeurs de X constituant des valeurs (dans l'ordre)
de x; a x,, aux instants de £ a t,,.

On définit alors la probabilité conditionnelle de la séquence x;, x;, 1, ...x,, arrivant aux instants t;, t;,1,...t,
sachant la séquence xq,x5,...,x;_; a eu lieu aux instants ¢y, t,,...,t;_1 comme

p(x1; £15%2, 195X, t1)

(6.2)
p(x1, t5x0, 5. X1, 1),

P(Xis tis Xig1, tig 15 Xps Bl X1, E15 X0, b5 Xy, Eig) =

On définit la probabilité marginale p(x,,t;) d“une probabilité jointe p(x,, t;x1,t;) comme la somme
sur tous les événements x; qui sont apparus a I'instant #;

p(xat) = dem(xz, bixit) (6.3)

47

CHAPITRE 6. EQUATIONS DIFFERENTIELLES STOCHASTIQUES

de maniere similaire, on peut généraliser ce type d’équation pour la probabilité d’avoir un événements
X3 a t3 sachant que l'on a eu un évévement x; a l'instant ¢#;.

p(x3,t3lxy, 1) = Jdsz(Xs, t3; X0, tolx, t1) (6.4)

= dezp(xs; t3lop, to, X1, t1)p (%2, tolxy, t) (6.5)

Une classe particulerement importante de processus stochastiques a été plus particulierement étu-
diée; il s’agit de dynamiques pour lesquelles la probabilité conditionannelle ne dépend pas de I'histoire
du parcours de la “particule”, mais uniquement de l'instant présent. En d’autres termes, les processus
Markoviens sont définis par une loi de probabilité conditionnelle qui est indépendente des évévements
antérieurs a I'instant présent. En termes de probabilités, la probabilité conditionnelle que I’événement
x; apparaisse a I'instant t; est donnée par ’équation

p(xi, tilxi1,tiis.. X0, t; x1, 1) = p(xg, tilxi—1, tioq) (6.6)

Ainsi un Processus Markovien ne garde la mémoire que de la valeur d’ou la variable est partie. Cette
classe de processus stochastique n’est pas restrictive car elle contient de trés nombreux exemples phy-
siques comme la diffusion de particules, la simulation Monte Carlo, et aussi les modélisations des mar-
chés financiers...

Pour un processus Markovien, I’équation (6.4) se simplifie compte tenu de la propriété, Eq. (6.8), et
on obtient I’équation dite de Chapman-Kolmogorov

p(x3, t3lxy, t) = jdxzp(x3, tslxo, t2)p(x2, talxy, £y) (6.7)

Elle traduit le fait que les probabilités conditionnelles sont reliées entre elles et ne font pas intervenit
des probabilités jointes, contrairement aux processus stochastiques en général.

Le raisonnement précédent correspondant aux processus a événements et temps discrets peut étre
généralisé a des espaces d’évévements continus ainsi qu’une évolution a temps continu. L’équation de
Chapman Kolmogorov peut-étre aussi généralisée et apres calculs on obtient (dans le cas ou espace et
temps sont continus)

(v, tlx, t’ J , s ,
PO 2 A pty 0+ 5 5 (B)
[A=W ola 0, pty, e)= Wl G 1,) (6.8)

ou les fonctions A(x, t), B(x,t) et W(z|x, t) sont définis de maniére suivante :

1
A(x,t)= lim — dy(y —x)p(y, t + Atlx, t), (6.9)
At—0 At [x—pl<e y Py
1
B(x,t) = lim —J dy(v—x)’p(v, t + Atlx, t), (6.10)
At—0 At [x—y|<e >y Py
et]
Wi(x|z,t) = Al}go A—tp(x,t+At|z,t). (6.11)

Dans le cas ou I'espace est discret et le temps continu, 1’équation de Chapman-Kolmogorov prend
alors la forme suivante

48/101

6.3. PROCESSUS DE WIENER, BRUIT BLANC

7 4/
W = Z(W(nlm, t),p(m, tln’,t")| = W (mln, t)p(n, tjn’, ")) (6.12)
m
Cette derniere équation correspond par exemple a la dynamique Monte-Carlo dans le cas d’'un modele
d’Ising. Pour les différentes équations de Chapman-Kolmogorov, il existe une infinité de solutions qui
satisfont ces équations et il est nécessaire de spécifier plus précisement la dynamique pour obtenir une
solution unique. Nous allons voir maitenant des processus Markoviens tres utiles.

6.3 Processus de Wiener, bruit blanc

6.3.1 Equation de diffusion

Quand un processus de Markov a espace et temps continus Eq. (6.13), est tel que W(x|z,t) = 0 pour
tout temps t et x, z ainsi que A(x,t) = 0, et B(x,t) = 1 on obtient un processus de Wiener avec une équation
d‘évolution de la probabilité donnée par

dp(w, tlwy, t 1 02
p(a|t o-to) _ anzp(wxﬂwm to) (6.13)

ce qui correspond a une équation de diffusion. La solution de cette equation est bien entendu exacte et
donnée par une Gaussienne

(w—wp)?
(w, tlwg, ty) = ex (— (6.14
P o-o) =g T\ 2(t—t))
Cela donne pour la valeur moyenne
< W(t) >=w (6.15)
et la variance
< (W(t)—wp)? >=t—t, (6.16)

Un processus de Wiener est aussi appelé mouvement Brownien puisque I’équation d’évolution de sa
probabilité est identique a celle obtenue par Einstein pour la description du comportement erratique
des particules en solution.

Trois propriétés essentielles caractérisent un processus de Wiener : (i) la trajectoire est continue
(quand l'intervalle de temps tend vers zéro, les valeurs possibles de la position de la particule a I'instant
t + At reste au voisinage de la position de la particule a I'instant ¢. (ii) On peut montrer que la valeur
de la vitesse en tout point est infinie ce qui correspond au fait que la trajectoire n’est pas différentiable
(iii) Partant d‘une méme condition initiale, si on génere plusieurs dynamiques de Wiener, on obtient
des trajectoires dont la valeur moyenne est la méme, mais dont la dispersion augmente avec le temps,
car la variance croit linéairement avec le temps (voir Fig. (6.2)), (iv) la derniére propriété importante
concernant les processus de Wiener est liée a I'indépendance statistique des incréments successifs de la
variable W.

6.3.2 Equation de Langevin

L’équation stochastique différentielle que 'on cherche a résoudre est I’équation de type Langevin

définie comme suit p
= = alx, 1)+ bx,)E (1) (6.17)

49/101

CHAPITRE 6. EQUATIONS DIFFERENTIELLES STOCHASTIQUES

FIGURE 6.1 — Trajectoires de mouvement Brownien a une dimension en fonction du temps : les cinq
trajectoires partent de l'origine.

FIGURE 6.2 — Bruit blanc a une dimension en fonction du temps

ou a(x,t) et b(x, t) sont des fonctions continues et £(t) est un fonction aléatoire fluctuante variant rapide-
ment. Sans perdre de généralité, on peut toujours imposer (a une redéfinition pres de la fonctions a) que
la moyenne de & est nulle, < £(t) >= 0 et on impose que

<E(MEE)>=(t—t) (6.18)

qui impose 'abscence de corrélations entre les différents temps du processus.

La notion de bruit blanc provient du fait que si 1'on fait la transformée de Fourier de la fonction
de corrélation temporelle définie par ’équation (6.18), on obtient une fonction indépendante de la fré-
quence, ce qui signifie que toutes les fréquences sont également représentées dans le spectre et par
analogie avec le spectre lumineux, on qualifie ce processus de bruit blanc.

Soit le processus u(t) défini par I’intégrale suivante

u(t) = Ltdt’é(t’) (6.19)

11 est simple de vérifier que u(t) et u(t’) — u(t) sont statistiquement indépendant pour ' > t. En d’autres
termes u(t) est un processus stochastique Markovien. De plus, on vérifie que < u(t’) — u(t) >= 0 et <
(u(t’)—u(t))> >=t’'—t, ce qui montre que le processus u(t) est en fait un processus de Wiener. On a donc
ainsi le résultat suivant

AW (t) = &(t)dt (6.20)

Il faut toutefois souligner qu'un processus de Wiener conduit a une trajectoire non différentiable, ce
qui signifie que la définition de £(t) est en fait mathématiquement délicate et 1’équation de Langevin
n'est pas a priori intégrable. Il faut donc préciser son sens ce que nous allons voir maintenant avec la
procédure introduite par Ito. Pour comprendre simplement cette difficulté, on peut voir que d W(t) est
de l'ordre de Vdt contrairement a une forme différentielle usuelle.

6.4 Calcul d’Ito et équations différentielles stochastiques

6.4.1 Introduction

Pour résoudre I’équation de Langevin précédemment introduite, nous avons a calculer une intégrale
de la forme

tf(t)dW(t) (6.21)
to

ou W(t) est un processus de Wiener et f(t) une fonction quelconque La maniere naturelle de chercher a
calculer cette intégrale est de faire une discrétisation du temps avec un intervalle de temps constant et
d’évaluer une intégrale de type Riemann. Ainsi on a

Su=) FlT)(W(t)=W(ti1)) (6.22)
i=1

ou 7; est un temps intermédiaire entre t;_; et t;.

50/101

6.4. CALCUL D’ITO ET EQUATIONS DIFFERENTIELLES STOCHASTIQUES

Si on choisit maintenant f(t) = W(t), on peut calculer exactement la moyenne de I'intégrale sur les
différentes réalisations du processus de Wiener

<§,>= Z (Min(t;, t;) — Min(t;, ;1)) (6.23)

- (u-to) (6.24)
i=1

Si maintenant on choisit de prendre 7; comme le barycentre des extremités de I'intervalle de temps
T, =at;+(1—-a)t;; (6.25)
avec a compris entre 0 et 1, on obtient pour la valeur moyenne de S,
<S,>=a(t-ty) (6.26)

ce qui conduit a avoir un résultat qui dépend complétement du point intermédiaire, méme une fois la
moyenne sur les différentes réalisations!

Pour définir de maniére la valeur d’une intégrale stochastique, il est nécessaire de choisir le point
intermédiaire et le choix d’Ito est de prendre a = 0. Ainsi, on a

t
f(naw(n = lim Zf 1) (W(E) = W(ti1) (6.27)

Ce choix est physiquement raisonnable car il signifie que ’'on choisit d’évaluer I'intégrale en prenant
une valeur de la fonction f qui est indépendante du comportement du processus de Wiener dans le
futur. Un respect de la causalité en quelque sorte!

L’intégrale stochastique d’Ito a des propriétés un peu non intuitives. En effet, on peut montrer en
utilisant les propriétés d’un processus de Wiener que

t t
Wy =£ f(ndt (6.28)

ce qui, une fois de plus, met en évidence que la forme différentielle d W (t) est de 'ordre Vdt

6.4.2 Calcul différentiel stochastique
Soit le changement de variable dy = f(x(t),t). Si on fait un développement a 'ordre 2 en dx, on
obtient
of
dy(t) = f(x(t+dt)) — f(x(t)) + =-dt (6.29)

dt
_9f(xt) Pf(x1) f . (6.30)

=g)+ o dx(t) + 7

Compte tenu de la forme différentielle de I’équation de Langevin, le terme en dx(t)? contient des
termes en dt?, dWdt qui sont négligeables, mais il reste un terme d W(t)? qui est égale a dt que ’on doit
conserver. Ainsi, on obtient le résultat suivant

of (xt) | 1)

af (x,
dy(t) =(fg; Dt ax, 1) = L b e
+b(x,) f (x).dW(1) (6.31)

51/101

CHAPITRE 6. EQUATIONS DIFFERENTIELLES STOCHASTIQUES

Une fois ces regles parfaitement définies,, il est possible de donner un sens a ’équation de Langevin;
sa solution est une intégrale stochastique intégrale donnée par

x(t)—x(tg) = f dt'a(x(t'),t') + Jt AW (t)b(x(t'),t) (6.32)

Nous allons voir maintenant quelques exemples treés connus d’équations de Langevin avant d’aborder
les méthodes de résolution numérique.

6.4.3 Processus d’Orstein-Uhlenbeck
Un procesus d’Ornstein-Uhlenbeck satisfait I’équation de Langevin suivante

dx

Ir =0(u—x(t))+on(t) (6.33)
ou de maniere équivalente (et mathématiquement plus correcte), on peut écrire sous la forme différen-
tielle suivante

dx = O(p—x(t)dt + cd W (1) (6.34)

ou dW(t) est la forme différentielle d’'un processus de Wiener.
On utilise le changement de variable suivant

p(t) = x(t)e’ (6.35)

En appliquant les regles d’Ito, on a
dy(t) =0x(t)e% dt + %' dx(t) (6.36)
:deetdt+aeetdW(t) (6.37)

On peut alors faire I'intégrale stochastique, ce qui donne

t
y(t) :y(t0)+y(69t—1)+J. ae%dW(s) (6.38)
to
Revenant a la variable initiale x(¢), on obtient

x(t) = x(tg)e O + p(1—e70%) + -r oW (s) (6.39)

to

La valeur moyenne a 'instant t est donnée par
<x(t)>= x(to)e_9t+]/t(1 — e 0 (6.40)
tandis que la variance est donnée par

2
o
<x()?>—<x(t)>2= ?(1—526”) (6.41)
Le processus d’Ornstein-Uhlenbeck est un processus de Markov qui conduit donc une valeur moyenne
qui devient indépendante de la condition initiale et dont la variance est finie quand le temps devient
treés grand.

On considere est le processus d’Ornstein-Uhlenbeck suivant

dx

=7 = 5= 1)+7(t) (6.42)

52/101

6.4. CALCUL D’ITO ET EQUATIONS DIFFERENTIELLES STOCHASTIQUES

ou 7(t) est un bruit blanc gaussien.

A ce jour, le module de la résolution des équations différentielles stochastiques en Python est dans
une phase de construction. Dans la figure ??, on illustre la résolution de I’équation différentielle stochas-
tique par la méthode d’Euler en utilisant la convention d’Ito. Une dizaine de trajectoires indépendantes
sont calculées et tracées ainsi que la valeur moyenne qui est obtenu exactement dans ce processus.

#!/usr/bin/env python3
-x- coding: utf-8 -*-

mmn

@author: viot

mmn

import numpy as np
import sdeint
import matplotlib.pyplot as plt

3.0
2.5

2.0

def f(x, t):
return -5x(x-1)

def g(x,t):
return 1

x0 =3

def moyexact(t,x0):
return((x0-1)*np.exp(-5*t)+1)

x 1.5

1.0 1

0.5 A

0.0 A

t tspan = np.linspace(0.0, 5.0, 201)
for rep in range(10):
FiGure 6.3 — 10 trajectoires correspondant au pro- result = sdeint.itoint(f, g, x0, tspan)
cessus d’Ornstein-Uehlenbeck ainsi que la solution plt.plot(tspan,result, =="}
exacte pour la valeur moyenne plt .f)_l)oti;tspan,moyexact(tspan,xO) s %, 1w

plt.xlabel('t")
plt.ylabel('x")
plt.tight_layout()
plt.savefig("ou.pdf")

6.4.4 Modéle de Black-Scholes

Le modele de Black-Scholes est un processus Markovien stochastique satisfaisant I’équation de Lan-
gevin suivante

as(t)

ST S(t)(p+on(t) (6.43)
ou S(t) est le prix de I'actif sous-jacent a I'instant t. Pour les lecteurs peu familiers au modeles financiers,
je vous renvoie au cours de N. Sator, et bien sur aussi a des ouvrages plus spécialisés.

On applique a nouveau la formule d’Ito en utilisant le changement de variable

(1) =1In(S(t)) (6.44)
ce qui donne

ds(t) o?dt
do(t) =—L _ 6.45
YW=350m "2 (6.45)

o2
:(y—;)dt+adW(t) (6.46)
La solution est donnée par 'intégrale stochastique suivante
2
o

p(t) = plto) + (u= TN+ aW(t) (6.47)

53/101

CHAPITRE 6. EQUATIONS DIFFERENTIELLES STOCHASTIQUES

Revenant a la variable S(t), on obtient

2
S(t) = S(to)exp((p—)t + o W(1) (6.48)

Compte tenu de 'expression de la solution, on parle souvent de modele Brownien géométrique. La dis-
tribution de la probabilité de S est une loi log-normale, c’est-a-dire une une distribution Gaussienne
avec le logarithme de la variable.

Ce type de modele peut étre aisément généralisé pour tenir compte de comportements plus réalistes,
en particulier, la volatilité symbolisée par o n’est généralement pas constante en fonction du temps.

6.4.5 Transformée de Lamperti

Avant d’aborder les méthodes de résolution numérique, nous allons introduire la transformée de
Lamperti qui est tres utile pour traiter de nombreux processus stochastiques Markoviens. Sous la forme
différentielle (autonome) suivante

dX(t) = a(X, t)dt + b(X)dW (1) (6.49)

On appelle la transformée de Lamperti de X, la fonction Y définie de la maniére suivante

X(t) du
Y(t)=F(X(t)) = J(; B (6.50)
Avec ce changement de variable, ’équation stochastique devient
dY(t)=ay(Y,t)dt +dW(t) (6.51)
avec . ;
a(t, F7 (y) 1db __
arly)= MO 2P k) (6.52)

b(F(y) 20x

La démonstration de cette propriété est un simple exercice du calcul différentiel stochastique exposé
ci-dessus. L'intéret de cette transformation est qu’elle supprime le bruit multiplicatif de 1’équation dif-
férentielle stochastique initiale au profit d‘une équation de Langevin non linéaire avec un bruit blanc
simple. Nous allons voir par la suite que sur le plan numérique ce changement de variable est tres utile
et peut améliorer la précision numérique.

6.5 Meéthodes numériques

6.5.1 Introdution

De maniere similaire aux équations différentielles ordinaires ou la résolution numérique passe par
une discrétisation du temps et un schéma d’approximation concernant l‘intervalle de temps élémentaire
sur lequel l'intégration est faite, il est nécessaire de procéder de maniere similaire avec les équations
différentielles stochastiques, a quelques différences pres : (i) pour une équation ordinaire, la trajectoire
étant déterministe (en tout cas pour les exemples simples a une particule, oscillateur harmonique ou an-
harmonique), on peut controler avec la solution exacte la qualité de 'approximation. Avec un processus
de Wiener, nous avons vu que deux trajectoires sont tres différentes, cette différence s’accroissant avec
le temps. Si par contre, on cherche a résoudre un processus d’Ornstein-Uhlenbeck, on sait que le sys-
téme évolue vers une distribution stationnaire que la variance des trajectoires est finie... (ii) Les schémas
d’approximation des méthodes de résolution des équatioins différentielles sont basés sur le calcul diffé-
rentiel usuel. Dans le cas des équations différentielles stochastiques, ces schémas reposent sur le calcul

54/101

6.5. METHODES NUMERIQUES

différentiel stochastique de nature assez différente. (iii) Des questions fondamentales sur l’existence et
I"'unicité d’une solution pour une équation existent de maniere similaire aux équations ordinaires.

Sans bien évidemment rentrer dans le détail qui releve de travaux tres techniques, il y a deux crieres
pour prouver l'existence ete 'unicité d’une solution sur un intervalle donné

1. Une condition de Lipschitz qui exprime le fait que pour tout couple (x,p) et tout t appartenant a
I'intervalle ou I'intégration numérique doit étre faite, il existe une constante K telle que

la(x, £) —a(y,) +|b(x, 1) = b(p,)| < K|x - | (6.53)

2. Une condition de croissance qui exprime le fait que les “variations” de a(x,t) et de b(x,t) ne sont
pas trop rapides, c’est-a-dire qu’il existe une constante K telle que dans l'intervalle de temps de
I'intégration on ait la condition

la(x, t)* +|b(x, t)]> < K*(1 + x?) (6.54)

Sur le plan numérique, on parle d’ordre fort de convergence y si une approximation discrétisée en
temps X5 d’un processus continu X, 0 réprésentant la borme supérieure des incréments de temps utilisés
vérifie la propriété

(IXs(T)-X(T)|y < CO” (6.55)

les crochets symbolisant la valeur moyenne sur les trajectoires et C étant une constante.

6.5.2 Schéma d’Euler

Soit a nouveau la forme différentielle de 1’équation stochastique
dX(t)=a(X,t)dt+b(X,t)dW(t)

avec une valeur initiale Xj.
Lapproximation d’Euler consiste a utiliser une discrétisation régulierement espacée du temps t; =
iAt avec At = T/N etivariedeOa N.
Le schéma d’Euler est bien évidemment analogue a celui que l'on a pour les équations différentielles
ordinaires
Xiy1 = Xi+a(X, t)(ti1 — 1) + b(X;, 1) (Wi = Wi) (6.56)

On peut montrer que l'ordre fort de convergence de la méthode d’Euler est égal a ¥ = 1/2. Facile a
mettre en oeuvre, l’algorithme d’Euler souffre de défaults similaires a ceux rencontrés lors des équations
différentielles ordinaires, car la précision n’est pas tres grande et il convient de diminuer fortement le
pas de temps pour éviter les probléemes numériques.

6.5.3 Schéma de Milstein

Il est bien évidemment raisonnable de chercher d’avoir une méthode de résolution allant au dela de
cette approximation et dans cet état d’esprit, Milstein a proposé une approximation du second ordre
qui utilise a nouveau le calcul stochastique différentiel. En utilisant a nouveau un pas de discrétisation
tempotrel constant, on a le schéma itératif suivant

Xiv1 = Xj+a(X;, tj)(tip1 — 1) + b(X, £;) (Wi — Wi)+

1 b
Sb(Xi, 1) 5 (Xi, 1) [(Wisy = Wi)? = (ti1 — 17)] (6.57)
2 dx
Cette approximation a un ordre fort de convergence égal a 1. Cette méthode améliore donc les instabili-
tés numériques par rapport a la méthode d’Euler. Toutefois, il y a un lien entre les deux méthodes dans

55/101

CHAPITRE 6. EQUATIONS DIFFERENTIELLES STOCHASTIQUES

le cas ol on peut réaliser une transformée de Lamperti de I’‘équation différentielle stochastique de dé-
part. En effet, dans le cas ou I’équation stochastique de départ n’a pas de bruit multiplicatif, comme par
exemple dans I’exemple du processus d’Ornstein-Uhlenbeck, la méthode d’Euler a un ordre de conver-
gence fort qui devient égal a 1. Or, avec une transformée de Lamperti (si b(x,t) = b(x) est indépendant
du temps), on peut transformer 1’équation stochastique en une autre équation sans bruit multiplica-
tif. Ainsi, on peut montrer que le schéma d’Euler de I'équation transformée est identique au schéma
de Milstein sur 1‘équation originale. Dans le cas ou la transformée de Lamperti est difficile a obtenir
analytiquement, il est utile d’utiliser le schéma de Milstein qui est plus précis.

6.5.4 Runge-Kutta

En continuant le paralleélisme avec les équations différentielles ordinaires, on peut aller aller au dela
et des méthodes plus précises ont été developpés. Jusqu'a une période récente (1996), on pensait que
les méthodes de type Runge-Kutta ne pouvaient pas donner un ordre de convergence supérieur a 1.5.
Cette limite est aujourd’hui dépassée et il est possible de contruire de maniere systématique des schémas
d’approximation qui augmentent progressivement l'ordre fort de convergence. Pour information, nous
donnons ci-dessous une méthode de Runge-Kutta explicite d’ordre 1.5

Xip1 = X; +a(X, t)(tie — t;) + (X, t) (Wi — W)+
W;)

l(b(X{,ti)—b(Xi,ti))[(i+1 — 2 (i+1 —)] (6.58)
2 (ti1 —)

avec
Xi =X +a(X;)(tisg — ;) + b(X;)V(tipq — 1) (6.59)

Cette méthode permet de réaliser des simulations en n’utilisant qu‘un nombre aléatoire issu d’une
distribution gaussienne. Il existe bien entendu d’autres méthodes d’ordre plus élevé, mais faisant faisant
intervenir des nombres aléatoires qui ne sont pas des variables aléatoires gaussiennes, ce qui complique
de beaucoup la resolution de 1’équation différentielle stochastique. Toutefois, pour des équations de
Langevin sans bruit multiplicatif, il a été développé des algorithmes d’ordre élevé (jusqu’a 4) et ne faisant
intervenir que des variables aléatoires gaussiennes.

56/101

7

7.1 Introduction

FONCTIONS SPECIALES ET EVALUATION DE FONCTIONS

Les fonctions spéciales sont définies de maniere diverse puisqu’elles regroupent les fonctions que
l'usage (ou la fréquence d’utilisation) a fini par associer a un nom. Parmi ces fonctions, on trouve un
grand nombre de fonctions qui sont des solutions d’équations différentielles du second ordre, sans que
cette propriété soit exclusive. Ces fonctions sont toutefois tres utiles, car elles apparaissent treés souvent,
des que l'on cherche a résoudre des équations différentielles du second ordre dont les coefficients ne
sont pas constants. Les fonctions spéciales sont disponibles en programmation sous la forme de biblio-
theques. Elles sont aussi disponible numériquement en Python et en C++ pour un grand nombre d’entre
elles.

Les fonctions les plus simples que I'on rencontre lors de I'apprentissage des mathématiques sont tout
d’abord les monoémes, puis les polynomes, et enfin les fractions rationnelles. Le calcul de la valeur de
la fonction pour un argument réel ou complexe nécessite un nombre fini des quatre opérations élémen-
taires que sont I’addition, la soustraction, la multiplication et la division.

Les premieres fonctions transcendantes que I'on rencontre sont alors les fonctions trigonométriques
(sin, cos,tan, arccos, arcsin) ainsi que leurs fonctions inverses ainsi que les fonctions similaires hyperbo-
liques.

7.2 Fonction Gamma

7.2.1 Deéfinition et propriétés

#!/usr/bin/env python3
20 # -x- coding: utf-8 -x-

nmnn

131 Created on Mon Jun 1 19:36:43 2020

° @author: viot

5 mmn
K_,J from scipy.special import gamma
1 (”\\ import matplotlib.pyplot as plt

r(x)
o

import numpy as np
x = np.linspace(-4,4,400)
_101 plt.figure(figsize=(6,6))
plt.plot(x, gamma(x))
-151 plt.x1im(-4.0,4.0)
plt.ylim(-20.0,20)
-4 -3 -2 -1 0 1 2 3 4 plt.xlabel(’'x")

* plt.ylabel(r’'$\Gamma(x)$")
plt.savefig(’ gamma.pdf”)

-20

FiGcure 7.1 — Tracé de la fonciton I’

57

CHAPITRE 7. FONCTIONS SPECIALES ET EVALUATION DE FONCTIONS

La fonction Gamma est généralement définie par I'intégrale suivante

I(z) = LN > le7tdt (7.1)

quand la partie réelle de z est strictement positive, Re(z) > 0).

La formule d’Euler donne une expression de la fonction I pour toute valeur de z complexe hormis
les valeurs de z entieres négatives ou la fonction possede des poles :

nln®

Iz :nlggo z(z+1)...(z+n) (7:2)
En intégrant par parties I’équation (7.1), on peut facilement montrer que
I(z+1)=2zI(2) (7.3)
En vérifiant que I'(1) = 1, on obtient par récurrence que
Fn+1)=mn! (7.4)

Avec cette définition, la fonction I' apparait comme un prolongement analytique de la fonction facto-
rielle définie sur IN. D’apres ’équation (7.2), la fonction I' a un podle en 0 et pour toutes les valeurs
entieres négatives (voir Fig. (7.1)).
La formule suivante permet de relier la fonction entre les valeurs situées dans le demi-plan complexe
ou Re(z) > 1 et celui ou Re(z) < 1:
T

F(l—z): Wn(nz) (75)

Pour calculer numériquement la fonction I pour une valeur de z en dehors des poles, il est nécessaire de
développer cette fonction sur la base des polynomes et des exponentielles. La formule la plus précise est
celle de Lanczos. Ce développement est spécifique a la fonction I'. La formule qui s’inspire de la formule
de Stirling bien connue pour la fonction factorielle n’est valable que pour Re(z) > 0 et est donnée par

1

1 Z+%
[(z+1)= (z+ y+ 5) e (#+r+32)

1 (%] CN
V2 + —+ +...+ + 7.6
% H[CO z+1 z+2 z+ N € (7:6)

ou € est le parametre estimant ’erreur. Pour le choix particulier y =5, N = 6 et ¢ tres voisin de 1, on a
le| < 2.10710,

I1 est difficile de calculer la fonction I pour des valeurs de z un peu importantes. Cela résulte de la
croissance tres rapide de la fonction I'. On peut montrer que la fonction I croit plus vite que toute expo-
nentielle, comme de maniere analogue on montre que l’exponentielle croit plus vite que tout polynome.
On dit parfois que la fonction I' a une croissance super-exponentielle.

58/101

7.2. FONCTION GAMMA

14

12 A

10 1

In(r(x))

FIGURE 7.2

#!/usr/bin/env python3
-x- coding: utf-8 -x-

nmmn

@author: viot

from scipy.special import loggamma
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,10,400)

plt.figure(figsize=(6,6))
plt.plot(x, loggamma(x))
plt.x1im(0.0,10.0)
plt.ylim(-1,14)
plt.xlabel(’'x")

plt.ylabel(r $1n(\Gamma(x))$")
plt.savefig(’lgamma.pdf”)

Dans de nombreuses formules, la fonction I' apparait a la fois au numérateur et au dénominateur
d’une expression. Chacun des termes peut étre tres important, mais le rapport est souvent un nombre
relativement modeste. Pour calculer numériquement ce type d’expression, il est préférable de calculer
In(I'(z)) (voir Fig. 7.2). Ainsi la fraction est alors I'exponentielle de la différence de deux logarithmes.
Tous les nombres qui interviennent dans ce calcul sont exponentiellement plus petits que ceux qui ap-
paraissent dans un calcul direct, on évite ainsi le dépassement de capacité de l'ordinateur.

1.0

0.8

0.6 1

P(a, x)

0.4

FiGure 7.3

On définit la fonction y incomplete comme

y(a,x)

#!/usr/bin/env python3
-%- coding: utf-8 -x-

nmmn

Created on Mon Jun 1 19:36:43 2020

@author: viot

import scipy.special as sc
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0,15,400)
plt.figure(figsize=(6,6))
a=[1,3,10]
for ia in a:
plt.plot(x, sc.gammainc(ia,x),label=r"a="+
— str(ia))
x1im(0.0,15.0)
ylim(0,1)
xlabel('x")
ylabel(r'$P(a,x)$")
legend()
savefig(incg.pdf”)

plt.
plt.
plt.
plt.
plt.
plt.

X
J. 1 le gy
0

(7.7)

59/101

CHAPITRE 7. FONCTIONS SPECIALES ET EVALUATION DE FONCTIONS

La fonction normalisée suivante P(a, x)

(7.8)

est parfois appelée aussi fonction Gamma incomplete. On peut montrer que P(a, x) est monotone crois-
sante avec x. La fonction est trés proche de 0 quand x est inférieur a a—1 et proche de 1 quand x est tres
supérieur. La variation entre ces deux valeurs apparait autour de 1’abscisse a — 1 et sur une largeur de
l'ordre de v/a (voir figure 7.3).

7.2.2 Fonctions reliées : ¥, B

A partir de la fonction I', on définit des fonctions dérivées. En raison de leur grande fréquence d’utili-
sation, elles ont “recu” un nom. Ainsi, la fonction W, appelée aussi fonction Digamma est définie comme

la dérivée logarithmique de la fonction Gamma ! :

_ dIn(T'(x))

WY(x) P

(7.10)

Parmi les propriétés remarquables de la fonction W, notons que, pour des valeurs entiéres, on a

n—1
\I’(n):—y+z% (7.11)
i=1

ou y =0.577... est la constante d’Euler.
Les fonctions Beta qui sont notées paradoxalement avec un B sont définies par la relation :

_ I(2)l(w)
B(Z,W) = m (712)

7.3 Fonctions de Bessel

Les fonctions de Bessel sont définies de la maniére suivante : considérons I’équation différentielle du
second ordre
2y +xy' + (x> vy =0 (7.13)
Les solutions de cette équation sont appelées fonctions de Bessel de premiére et de deuxiéme espece :
La solution finie a l'origine et notée], (x) est appelée fonction de Bessel de premiere espece et la seconde
solution notée Y, (x) est appelée fonction de Bessel de deuxieme espece. Si v n’est pas un entier, ces
fonctions sont reliées par la relation suivante :

Jy(x)cos(vm) -], (x)

Y, (x)= - 7.14
V) sin(vr) (7.14)
1. On définit aussi les fonctions polygamma comme une généralisation de la fonction Digamma
d"W¥(x)
W(n,x)= ——— 7.9
(nx) = (7.9

60/101

7.3. FONCTIONS DE BESSEL

1.0 A — Ju(0,x)
— J(1.x)
Ju(2.x)

— Ju(3.x)

0.8

0.6 -

0.4 1

0.0 A

—0.21

—0.4 1

T T T
10 12 14

— Yu(0,x)
— Yu(1,x)
— Yu(2,x)
— Yu(3.x)

0.75 A

0.50 -

0.25 A

0.00 A

—0.25 A

—0.50 -

—0.75 A

-1.00

#!/usr/bin/env python3
-x- coding: utf-8 -x-

mmn

@author:

nmmn

viot

import numpy as np
from scipy.special import jv,yv
import matplotlib.pyplot as plt
x = np.linspace(0,15,400)
fig,ax=plt.subplots(2,1,figsize=(6,12))
orders=np.arange(4)
for i in orders:
ax[0].plot(x,jv(i,x),label=r"$J v$("+str(i)
— +",x)")
ax[1].plot(x,yv(i,x),label=r"Y_v("+str(i)
— +",x)")
ax[1].set_ylim(-1,1)
ax[1].legend()
ax[0].legend()
plt.savefig("bessell1.pdf")

FIGURE 7.4 — Les quatre premieres fonctions de Bes-
sel entieres de premiere espece et de deuxiéme es-

pece

La figure 7.4 représente graphiquement les fonctions de Bessel de premiere et de seconde especes

pour les quatre premiéres valeurs entieres de v

Le comportement asymptotique des fonctions de Bessel de premiere et de seconde espece est le sui-

vant
| 2
Ty (x) =4[—(cos(x — v7t/2 — 1¢/4)) (7.15)
X
[2 .
Y, (x) ~ E(sm(x—vn/Z—nM)) (7.16)
Soit I’équation différentielle du second ordre
" +xy’ = (x> =v*)p=0 (7.17)

Les solutions de cette équation sont appelées fonctions de Bessel modifiées . La solution finie a 'origine
et notée I, (x) est appelée fonction de Bessel modifiée de premiere espéce et la seconde solution notée

61/101

CHAPITRE 7. FONCTIONS SPECIALES ET EVALUATION DE FONCTIONS

K, (x) est appelée fonction de Bessel modifiée de seconde espece. Ces fonctions sont reliées par la relation

suivante :

K, (x) =

n(lv(_x) - Iv(x))

2sin(vm)

(7.18)

La figure ?? représente graphiquement les fonctions de Bessel modifiées de premiere et de deuxieme
espece pour les quatre premieres valeurs entieres de v.

10

©

o

IS

N

— 1,(0,x)

1,(1,x)
— 1y(2,x)
— 1,(3,x)

1.0

8 10

0.8

0.6

0.4

0.2

0.0

— Ky(0,x)

Ky(1,x)
— Ku(2,x)
— Ku(3,x)

10

#!/usr/bin/env python3
-x- coding: utf-8 -=»-

nmmn

Created on Thu Jul 30 17:13:58 2020

@author: viot

nmmn

import numpy as np

from scipy.special import iv,kv
import matplotlib.pyplot as plt
x = np.linspace(0,10,200)
plt.figure(figsize=(6,12))
plt.subplot(2,1,1)
orders=range(4)

for i in orders:

— ,x)")
plt.ylim(0,10)
plt.legend()
plt.subplot(2,1,2)
for i in orders:

= ,x)")
plt.ylim(0,1)
plt.legend()
#plt.show()
plt.savefig("besselml.pdf")

plt.plot(x,iv(i,x),label=r"I_v("+str(i)+

plt.plot(x,kv(i,x),label=r"$K v§("+str(i)+"

Ficure 7.5 — Les quatre premieres fonctions de Bes-
sel entiéeres modifiées de premiere et de deuxieme

espece.

Le comportement asymptotique des fonctions de Bessel modifiées est le suivant :

(7.19)

(7.20)

Les fonctions de Hankel H; ,, and H,, sont appelées fonctions de Bessel de troisieme espece et sont

62/101

7.4. FONCTIONS HYPERGEOMETRIQUES

définies par la relation

Hl,v(x) =Jy(x) +1Y, (x) (7.21)
Ha, (x) =], (x) = Y, (x) (7.22)

7.4 Fonctions Hypergéomeétriques

7.4.1 Fonction Hypergéométrique Gaussienne

Les fonctions hypergéométriques gaussiennes sont définies comme étant les solutions de 1’équation
différentielle suivante.
x(1-x)y"+[c—(a+b+1)x]y’—aby =0 (7.23)

ou a, b et ¢ sont des constantes.
Sic,a—b et c—a—bsont non entiers, la solution générale de cette équation est

v =F(a,b;c;x) +Bx!"Fla—c+1,b—c+1;2-¢;x) (7.24)
La fonction F peut étre exprimée sous la forme d’une série

F(a,b;c;x) = ,F(a,b,c;x)

T(c) iﬂaw)ﬂbw) x" (7.25)

I(c+n) n!

Cette série converge uniformément a l'intérieur du disque unité. Des que a, b ou ¢ sont entiers, la
fonction hypergéométrique peut se réduire a une fonction transcendante plus simple. Par exemple,
,F1(1,1,2;x) = —x ' In(1 — x)

7.4.2 Fonctions Hypergéométriques généralisées

On définit des fonctions hypergéométriques généralisées de la maniere suivante : soit le rapport

ai,dy,...,a - (a1)x(a ap)k xk
F p — 7.26
[m by,...,b Z] ZO Dr(B2) - (by)i k! (7.26)
ou on a utilisé la notation de Pochhammer
I'(a+k
(@ = (7.2

7.5 Fonction erreur, exponentielle intégrale

La fonction erreur et la fonction erreur complémentaire sont définies comme

erf(x \/_j e dt (7.28)
erfc(x)=1—erf(x

\/_j (7.29)

La fonction erf est aussi présente dans toutes les bibliotheques standard de programmation.

63/101

CHAPITRE 7. FONCTIONS SPECIALES ET EVALUATION DE FONCTIONS

1.00 4

0.75 A

0.50 -

0.25 A

0.00 -

—0.25 A

—0.50 -

—0.75 A

—1.00 -

— erf(x)

IN
|
w
|
N
|
—
o4
-
N
w
IS

—— Eq(0,x)

En(1,x)
— En(2,x)
— En(3,x)

o
-
N
w4
IS
v

#!/usr/bin/env python3
-x- coding: utf-8 -»-

nmmn

Created on Thu Jul 30 17:13:58 2020

@author: viot

import numpy as np

from scipy.special import expn,erf
import matplotlib.pyplot as plt

x = np.linspace(0,5,200)

x2 = np.linspace(-4,4,200)

fig,ax= plt.subplots(2,1,figsize=(6,12))
orders=np.arange(4)
ax[0].plot(x2,erf(x2),label=r"erf(x)")
ax[0].legend()

for i in orders:

= 1)+",x)")
ax[1].set_ylim(0,5)
ax[1].legend()
plt.savefig("expint.pdf")

ax[1].plot(x,expn(i,x),label=r"E_n("+str(

Ficure 7.6 — La fonction erreur et les quatre pre-
mieres fonctions exponentielles intégrales (fonc-
tions E,,
La fonction exponentielle intégrale Ei est définie comme la valeur principale de l'intégrale suivante
pour x > 0.

Le développement en série de cette fonction donne

Pour des grandes valeurs de x, on a le développement asymptotique suivant

—jx Y (7.30)
ot
Ei(x)=y +In(x)+) :n' (7.31)
n=1 ’
Ei(x) ~ ;(1 +§+...) (7.32)

64/101

7.5. FONCTION ERREUR, EXPONENTIELLE INTEGRALE

De manieére générale, on définit les exponentielles intégrales E, (x) comme

0 e—zt
En(z):f St (7.33)
1

La Figure 7.6 représente les quatre premieres exponentielles intégrales. Le développement en série de
cette fonction donne

Eq(x) = —(y +In(x) +Z nn' (7.34)
n=1
La fonction E;(1, x) n’est définie que pour des arguments réels : Pour x <0, on a
Ei(x) = —Ei(l,—x) (735)

On peut noter que les exponentielles intégrales E,(x) sont reliées a la fonction y par la relation

E,(x)=x"1y(1 -n,x) (7.36)

65/101

CHAPITRE 7. FONCTIONS SPECIALES ET EVALUATION DE FONCTIONS

66/101

TRANSFORMEE DE FOURIER RAPIDE ET ALGORITHMES DE TRI

8.1 Introduction

Largement utilisée en Physique, la transformée de Fourier d’une fonction dépendant d’une variable
(par exemple du temps) est devenue si naturelle que sa représentation graphique est généralement aussi
utile, voire plus, que celle de la fonction elle-méme. Apres un rappel des propriétés élémentaires et fon-
damentales des transformées de Fourier pour la résolution de problémes mathématiques, nous allons
présenter le principe de la méthode numeérique de I’évaluation de cette transformée. Plus spécifique-
ment, depuis prés de 40 ans est apparu un algorithme performant pour le calcul de la transformée de
Fourier dont le temps de calcul varie essentiellement comme N In,;(N) ou N est le nombre de points ou
la fonction f a été évaluée. Par opposition a une approche trop naive, ou le nombre d’opérations croit
comme N? cette méthode a recu le nom de transformée de Fourier rapide (FFT, Fast Fourier Transform,
en anglais), que toute bibliotheque mathématique propose généralement a son catalogue.

Profitant du fait que l'une des opérations essentielles de la transformée de Fourier est un réarrange-
ment des éléments d’un tableau, nous allons voir les principaux algorithmes de tri que I'on peut utiliser
pour réordonner les éléments d’un tableau.

8.2 Proprietés

Soit une fonction f définie sur R, on appelle transformée de Fourier de f, la fonction f
A +m .
f= [e (8.1
La transformée de Fourier inverse est définie comme
+00 . .
A= [foeiay (82

Pour une fonction f intégrable, il y a identité entre la fonction f; et la fonction f, hormis éventuellement
sur un support de IR de mesure nulle.

Une autre définition de la transformée de Fourier rencontrée dans la littérature est celle qui corres-
pond a une représentation en pulsation au lieu de celle en fréquence donnée ci-dessus.

ﬂm=£wﬂmmw (8.3)

67

CHAPITRE 8. TRANSFORMEE DE FOURIER RAPIDE ET ALGORITHMES DE TRI

La transformée de Fourier inverse correspondante est définie comme !

A= | fardo (5.6)

Avec le logiciel Maple, la transformée de Fourier est définie d’'une maniere encore différente!

flor= | rweterar (8.7)

avec bien entendu la transformée de Fourier inverse correspondante

A= | fwrdo (5.9)

Compte tenu des différentes définitions des transformées de Fourier et en I’absence de documen-
tation précise dans certaines bibliotheques mathématiques, il est fortement recommandé de tester la
transformée de Fourier numérique que 1'on va utiliser, en testant une fonction dont la transformée de
Fourier est connue analytiquement pour déterminer de maniere simple la convention utilisée dans la
bibliotheque disponible. Au dela du principe général de la transformée de Fourier rapide, il existe des
optimisations possibles compte tenu de l’architecture de I'ordinateur sur lequel le programme sera exé-
cuté. Cela renforce l’aspect totalement inutile de la réécriture d’un code réalisant la dite transformée, ce
code serait en général tres peu performant comparé aux nombreux programmes disponibles.

Dans le cas ou la fonction f possede des symétries, sa transformée de Fourier présente des symétries
en quelque sorte duales de la fonction initiale

® Si f(t) est réelle, la transformée de Fourier des fréquences négatives est complexe conjuguée de
celle des arguments positifs f(-v) = (f(v))".

® Si f(t) est imaginaire, la transformée de Fourier des fréquences négatives est égale a 'opposée du
complexe conjugué de celle des arguments positifs f(—v) =—(f(v))".

Si f(t) est paire, la transformée de Fourier est aussi paire, f(-v) = f(v).
Si f(t) est impaire, la transformée de Fourier est aussi impaire, f(—v) = —f(v).
Si f(t) est paire et réelle, la transformée de Fourier I’est aussi.
Si f(
Sif(

)
)
t) est impaire et réelle, la transformée de Fourier est imaginaire et impaire.
i f(t)est paire et imaginaire, la transformée de Fourier 1’est aussi.

Si f(t) est impaire et imaginaire, la transformée de Fourier est réelle et impaire.

Des propriétés complémentaires sont associées aux opérations de translation et dilatation

® Soit f(at), sa transformée de Fourier est donnée par ﬁf(%)
® Soit ﬁf(ﬁ), la transformée de Fourier est donnée par f(bv).

® Soit f(t—tg), la transformée de Fourier est donnée par f(v)eZninO.

1. Pour symétriser les expressions, la transformée de Fourier est parfois définie comme

. 1 +00 .
flon= = [rmeietar (8.4)
et la transformée de Fourier inverse comme
1 +00 . .
il = <= [faneerae (8.5)

68/101

8.2. PROPRIETES

® Soit f(t)e‘zm"to, la transformée de Fourier est donnée par f(v -).

Une identité particulierement utile concernant les transformées de Fourier concerne la distribution
de Dirac ¢ : soit f une fonction continue définie sur IR, La distribution o est définie a partir de la relation
suivante

+00
[axpwste-xo) = fixo (8.9
Ainsi, on en déduit facilement que
+00 X .
J dxd(x — xq)e?™kix = o27ekixo (8.10)
et donc que
+00
j dxd(x)e?™ = 1 (8.11)
Par inversion de cette relation, on a la représentation intégrale de la distribution o
+00 .
5(x) = J dke 2Tk (8.12)
De maniere équivalente, on montre que
1 +0o ”
o(x)=— dke™ " 8.13
()= | ke (8.13)

La propriété sans doute la plus importante concernant les transformées de Fourier concerne la convolu-
tion. Soit deux fonctions f et g définie sur C, on définit la convolution de f avec g notée f * g comme

(F*)(t) :f_ f(0g(t -) (8.14)

On vérifie immédiatement que f +g = g+ f. L'opérateur de convolution est commutatif, car la multipli-
cation de deux nombres complexes 1’est aussi.

La transformée de Fourier de la convolution de deux fonctions f et g est égale au produit de leurs
transformées de Fourier.

(F*8)v) = f(1)g(v) (8.15)
Soit une fonction réelle f, on définit la fonction d’autocorrélation comme
+00
Cf(t):J duf(u)f(t+u) (8.16)

La transformée de Fourier de la fonction Cy est alors donnée par

A A

Cr(v)=f)f (=v) (8.17)
Compte tenu du fait que f est réelle, on a f(—v) = (f(v))*, ce qui donne
Cr(v)=If(n)P (8.18)

Cette relation est appelée théoreme de Wiener-Khinchin.
Le théoréme de Parseval donne que

f °°|f<t)|2dt:f)Py (8.19)

—00 —00

69/101

CHAPITRE 8. TRANSFORMEE DE FOURIER RAPIDE ET ALGORITHMES DE TRI

8.3 Discrétisation de la transformée de Fourier

8.3.1 Echantillonage

Dans la situation la plus fréquemment rencontrée, la fonction f est échantillonnée a intervalle régu-
lier. Soit A le pas séparant deux “mesures” consécutives, on a

fn = f(nA) avecn-=...,-2,-1,0,1,2,3,... (8.20)

Pour le pas de I’échantillonnage A, il existe une fréquence critique, appelée fréquence de Nyquist,

1
Ve=——

X (8.21)

au dela de laquelle il n’est pas possible d’avoir une information sur le spectre de la fonction échantillon-
née. Supposons que la fonction soit une sinusoide de fréquence égale a celle de Nyquist. Si la fonction
est maximale pour un point, elle est minimale au point suivant et ainsi de suite.

La conséquence de ce résultat est que si on sait que le support de la transformée de Fourier est
strictement limité a 'intervalle [-v, v.], la fonction f(¢) est alors donnée par la formule

sin(2mv.(t —nA))
=A Z 1, o) (8.22)

Si la fonction f(t) est multipliée par la fonction ¢?™1 avec v, qui est un multiple de 1/A, les points
échantillonnés sont exactement les mémes. Une conséquence de cette propriété est I’apparition du phé-
nomene de duplication (“aliasing” en anglais). Cela se manifeste de la maniére suivante : supposons que
la transformée de Fourier exacte d’une fonction ait un spectre plus large que celui donné par l'intervalle
de Nyquist, le spectre situé a droite se replie a gauche et celui a droite se replie a gauche.

8.3.2 Transformée de Fourier discréte

Soit un nombre fini de points ou la fonction f a été échantillonnée
fo=f(t) aveck=0,1,2,...,N-1 (8.23)

Avec N nombres fournis, il semble évident que I'on peut obtenir N fréquences pour la transformée de
Fourier. Soit la suite "
V”:ﬂ avecn=-N/2,...,0,...,N/2 (8.24)

Le nombre de fréquences est a priori égale a N+1, mais comme les bornes inférieure et supérieure de I'in-

tervalle en fréquence correspondent aux bornes définies par la fréquence critique de Nyquist, les valeurs

obtenues pour n = -N/2 et n = N/2 sont identiques et nous avons donc bien N points indépendants.
Soit un nombre fini de points noté hy, on définit la transformée de Fourier discréete comme

N-1

_ 1 2nikn/N
=5 the (8.25)

k=0

La transformée de Fourier discréte inverse est donnée par

N-1
hk — Zflne—zmkn/N (826)
n=0

70/101

8.3. DISCRETISATION DE LA TRANSFORMEE DE FOURIER

Ces transformées de Fourier sont définies indépendamment des abscisses correspondant aux valeurs
originales ou la fonction h a été évaluée. Il est toutefois possible de relier la transformée de Fourier
discrete a la transformée de Fourier de départ par la relation

fva) = A, (8.27)

2 Notons que les propriétés établies pour les transformées de Fourier au début de ce chapitre, selon le
cas ou la fonction est paire ou impaire, réelle ou imaginaire se transposent completement au cas de la
transformée de Fourier discrete. Les regles concernant la convolution se retrouvent bien évidemment et
par exemple I'expression du théoreme de Parseval est alors

T
z

1

> =55) il (8.30)

0

T
o
=~
I

Le passage de la transformée de Fourier continue a la transformée de Fourier discrete est en fait un
changement de mesure, ce qui explique que les propriétés établies pour I'une restent vraies pour la
seconde.

On peut noter que les différences entre la transformée de Fourier discréte et son inverse sont au
nombre de deux : un changement de signe dans I’exponentielle complexe et un facteur de normalisa-
tion en 1/N. Ces faibles différences expliquent pourquoi les procédures sont souvent identiques pour le
calcul de la transformée de Fourier et de son inverse dans les bibliotheques mathématiques.

2. La transformée de Fourier continue est approchée de la maniére suivante

o= [st 82
N-1]
~A) freP Tl (8.29)
k=0

71/101

CHAPITRE 8. TRANSFORMEE DE FOURIER RAPIDE ET ALGORITHMES DE TRI

000 000 000
001 y 001 ./ 001
010 \ / 010 010
011 \| y 011 L 011
100 /| \ 100 [100
101 / \ 101 101
110 /] N 110 | 110
111 111 111
@) (b)

F1GUrE 8.1 — Schéma illustrant le principe de la mise en ordre du tableau par renversement de bits. (a)
Sur un tableau de 8 éléments étiquettés en binaire, on note les opérations de déplacements. (b) Bilan des
déplacements a effectuer : deux opérations d’échange d’éléments.

8.4 Transformeée de Fourier rapide

L’idée de base de la transformée de Fourier rapide repose sur la remarque suivante : posons

W = e?™/N (8.31)

a composante de Fourier de h s’exprime alors comme
L tede F de h s’ 1

T

" Wy (8.32)
0

>
Il
=
Il

Ainsi le vecteur h de composante hy est multiplié par une matrice de coefficients a,; = W"*. Sans utiliser
d’astuces particuliéres, le temps de calcul pour une telle opération est alors en N2. Pour améliorer de
maniere spectaculaire la rapidité de ce traitement, on note que la transformée de Fourier discrete de
longueur N peut étre écrite comme la somme de deux transformées de Fourier discrete chacune de
longueur N/2. En effet, en supposant que le nombre N est pair, on peut séparer la contribution des

72/101

8.4. TRANSFORMEE DE FOURIER RAPIDE

termes pairs et celle des termes impairs dans ’équation

N-1
F, = Zeznijk/ij (8.33)
j=0
N/2-1 N/2-1
_ Z ean(Z])k/Nfzj + Z 62n1(2]+1)k/Nf2]_+1 (8.34)
j=0 j=0
N/2-1 N/2-1
_ Z e2m]k/(N/2)f2], + Wk Z 62771]k/(N/2)f2j+1 (8.35)
j=0 j=0
=FP + WK (8.36)

ou F,f représente la kieme composante de Fourier pour les composantes paires de la fonction de départ et
F, représente la kieme composante de Fourier pour les composantes impaires de la fonction de départ.
A noter que ces deux composantes sont périodiques en k avec une période N/2.

Pour itérer ce type de procédure, nous allons supposer que le nombre de points de la fonction de
départ est dorénavant une puissance de deux. On peut alors exprimer chaque composante de Fourier en
fonction de deux nouvelles composantes de Fourier sur un intervalle de longueur N/4 et ainsi de suite.
Une fois obtenue un intervalle de longueur 1, on a la transformée de Fourier pour cet intervalle qui est
égale au nombre f, correspondant. Le nombre d’indices pour caractériser ce nombre est égal a In,(N)

/PP (8.37)

On remarque donc que pour chaque valeur de n on a un alphabet fini d’indice iipip... ppi constitué de i
et de p. Cette correspondance est biunivoque. Si on pose que i = 1 et p = 0, on a l’expression inversée en
binaire de chaque valeur de n.

La procédure de transformée de Fourier rapide est alors constituée d’une premiere opération de tri
pour réordonner la matrice selon la lecture de l’alphabet généré, puis on calcule successivement les
composantes de Fourier de longueur 2, puis 4, jusqu’a N. La figure 8.1 illustre le nombre d’opérations a
effectuer pour inverser les éléments du tableau selon le mécanisme du renversement de bits.

De nombreuses variantes de cet algorithme original sont disponibles, qui permettent d’obtenir la
transformée de Fourier pour un nombre de points différent d’une puissance de deux.

La figure 8.2 illustre le calcul de la transformée de fourier de la Gaussienne en fréquences. Le résultat
exact de la transformée de Fourier de la fonction e~* est égale a

o . 72
J dxe 2imkx e _ [T 20k (8.38)

—00

73/101

CHAPITRE 8. TRANSFORMEE DE FOURIER RAPIDE ET ALGORITHMES DE TRI

#!/usr/bin/env python3
-*- coding: utf-8 -x-

nmn

@author: viot

import numpy as np

import matplotlib.pyplot as plt

def gauss(x,alpha=2):
return(np.exp(-alpha * xx*x2))

1.0 nc = 200
dt = 0.04
0-81 tmax = (nc/2-1) = dt

tmin = -nc/2 * dt

t = np.linspace(tmin, tmax, nc)

0.4 # Trace la gaussienne

fig,ax= plt.subplots(4,1,figsize=(4,12))

0.6

027 x=gauss(t,2)
0.0 ax[0].plot(t,x,label=r"$e~{-2x~2}$")
0 50 100 150 200 plt.legend()
Decalage pour positionner le temgps zero
124 [— fit < comme premier element
H — Ie-TFR a =np.fft.ifftshift(x)
107 H ax[1].plot(a)
0.8 1 | #Transformee de Fourier
056 (| A = np.fft.fft(a)
04 J\ # Decalage inverse pour positionner la
| | < frequence zero au centre
021 | X = dt*np.fft.fftshift(A)
0.0 1 J \ # calcul des frequences avec fftfreq
10 -5 0 5 10 n = t.size
5o le=15 freq = np.fft.fftfreq(n, d=dt)

f = np.fft.fftshift(freq)

comparaison avec la solution exacte

ax[2].plot(f, np.real(X), label="fft")

ax[2].plot(f, np.sqrt(np.pi/2)x*gauss(f,np.pi
— *x2/2), label=r"$\frac{\pi}{2}e~{-\pi~2f
— ~2/2}$")

ax[2].set_xlim(min(f),max(f))

ax[2].legend()

comparaison avec la solution exacte

ax[3].plot(f, np.real(X)-np.sqrt(np.pi/2)x*gauss
FiGcure 8.2 — Tracée de la gaussienn (haut < (f,np.pi**2/2))

gauche), tracée de la gaussienn déplacée ax[3].set_xLim(min(f),max(f))

(haut droit), tracée de la solution exacte et ax[3].set_ylim(-2e-15,2e-15)

de la transformée de Fourier numérique ax([3] :legend()

(bas gauche), différence entre la valeur gﬁ ;ellszizgl;?}‘/(f)ﬁé?pdf")

exacte et la transformée de Fourier numé-

rique

On voit que la précision numérique de la transformée numérique est extremement bonne dans le cas
de la gaussienne. Cela est liée en particulierement a la décroissance extremement rapide de la fonction
et que la fonction gaussienne est infiniment dérivable. Ainsi les valeurs numériques de la fonction sont

74/101

8.4. TRANSFORMEE DE FOURIER RAPIDE

quasi-nulles aux bornes du support.

Dans le deuxiéme exemple, on considere la fonction e™*** dont la transformée de Fourier est aussi
connue

o imkx — 2a
J dxe 2”Ikx€ alx] = m (839)

—00

75/101

CHAPITRE 8. TRANSFORMEE DE FOURIER RAPIDE ET ALGORITHMES DE TRI

1.0 T
#!/usr/bin/env python3
0.8 1 # -*- coding: utf-8 -x-
061 Created on Mon Aug 3 16:43:16 2020
0.4 1
@author: viot
0.2 DOE
import numpy as np
R " import matplotlib.pyplot as plt
- - 0 g ¢ def expp(x,alpha=2):
1.0 return(np.exp(-alpha * abs(x)))
def loren(x,alpha=2):
081 return(2+alpha/(alpha**2+4*np.pi**2*x**2))
0.6 nc = 200
dt = 0.04
0.4 tmax = (nc/2-1) = dt
tmin = -nc/2 * dt
0-21 t = np.linspace(tmin, tmax, nc)
0.0 # Trace la gaussienne
o <0 100 150 200 fig,ax= plt.subplots(4,1,figsize=(4,12))
0.7 x=expp(t,3)
— fft ax[0].plot(t,x,label=r"$e~{-2|x|}$")
€1 e ax[0].legend()
0.51 # Decalage pour positionner le temgps zero
0.4 - < comme premier element
0.3 a = np.fft.ifftshift(x)
ax[1].plot(a)
021 #Transformee de Fourier
0.1+ A = np.fft.fft(a)
0.0 +——— — T———— # Decalage inverse pour positionner la
10 -5 0 5 10 < frequence zero au centre
0.00200 X = dt*np.fft.fftshift(A)
0.00175 - # calcul des frequences avec fftfreq
0.00150 0 = tosla®
0.00125 1 freq = np.fft.fftfreq(n, d=dt)
' f = np.fft.fftshift(freq)
0.00100 1 # comparaison avec la solution exacte
0.00075 - ax[2].plot(f, np.real(X), label="fft")
0.00050 ax[2].plot(f, loren(f,3), label=r"$\frac{1}{1+\
0.00025 - < pi~2k~2}$")
0.00000 L— , , , , ax[2].set_xlim(min(£f),max(£f))
-1 -5 0 5 10 ax[2].legend()
comparaison avec la solution exacte
Ficure 8.3 — De haut en bas : Tracé de 14
fonction exponentielle, tracée de la fonc{ax[3].plot(f, np.real(X)-loren(f,3))
tion exponentielle déplacée , tracée de la @%[3] 'Set—xum(mi”(f) ymax(f))
solution exacte et de la transformée de ax[3]:set_y11m(0,2e—3)
. ;. e rs plt.tight_layout()
Fourier numérique, différence entre la va- = "
" |plt.savefig("fftexp.pdf")
leur exacte et la transformée de Fourier

numérique

On voit que la précision de la transformée de Fourier a chuté considérablement et cela est liée a
’existence de la discontinuité de la dérivée a l'origine. Dans le dernier exemple, on considere une fonc-
tion qui est nulle pour |x| > aa et qui vaut 1 dans l'intervalle |x| < a. Le code est similaire aux deux

76/101

8.5. ALGORITHMES DE TRI

précédents exemples et je laisse le lecteur le déterminer. La figure illustre les résultats numériques de
cette transformée de Fourier numérique.

1.0 4 — 1.0 — — 6 | — ft
—— fft num 0.02
5 |
0.8 0.8
47 0.01
0.6 0.6 34
0.00
2]
0.4 0.4
17 -0.01
0.2 0.2 ol
1 -0.02
1
0.0 0.0
-10 0 10 0 200 400 600 800 -10 -5 0 5 10

Ficure 8.4 — De gauche a droite : Tracée de la fonction porte , tracée de la fonction porte déplacée , tracée

de la solution exacte et de la transformée de Fourier numérique , différence entre la valeur exacte et la

transformée de Fourier numérique

La discontinuité de la fonction aux bornes de I'intervalle a cette fois un impact plus important sur la
précision numérique, en particulier vers les hautes fréquences.

8.5 Algorithmes de tri

8.5.1 Introduction

Un tableau est une suite d’élements repérés par un entier appelé indice. Une opération tres classique
consiste a changer l'ordre initial (qui peut étre aléatoire) en respectant un critére défini par 1'utilisa-
teur. Une opération de base consiste a trier des nombres selon un ordre croissant ou décroissant. Une
opération voisine est la recherche du plus petit ou du grand élément de ce tableau.

Les opérations précédentes sont destructrices dans le sens ou l'ordre initial du tableau est perdu une
fois 'opération effectuée. On peut en créant un tableau supplémentaire construire une correspondance
entre I'ordre obtenu par un tri et 'indice occupé par I’élément du tableau correspondant dans le tableau
initial.

Si, au lieu d’utiliser un tableau de nombres, on dispose d’un tableau d’objets, c’est-a-dire un tableau
dont I’élément de base est une structure comprenant des champs, qui sont eux-mémes des nombres et
des chaines de caracteres, les opérations de tri peuvent aussi réalisées sur plusieurs champs de maniere
séquentielle; cette opération est appelée opération de tri multiple.

8.5.2 Meéthode d’insertion

Supposons que 'on veuille trier des éléments d’un tableau de nombre selon un ordre croissant.L’algorithme
de la méthode d’insertion est le suivant : on place un a un les éléments du tableau a la bonne place du
nouveau tableau rempli des éléments triés. On procede donc de maniere itérative jusqu’au dernier élé-
ment du tableau a trier. On peut choisir de construire un nouveau tableau ou de réutiliser le tableau
existant. Pratiquement, on procede de la maniere suivante. On choisit le premier élément : il est auto-
matiquement bien placé dans un tableau a un élément. On tire le second élément : on augmente d’un
élément la taille du tableau a trier; soit le nouvel élément est plus grand que le précédent et on place
cet élément a la deuxieme place, sinon, on déplace ’élément initialement placé a la seconde place et I'on
place le nouvel élément a la premiere place. On choisit alors un troisieme élément; on teste si celui-ci
est plus grand que le deuxiéme. Si le test est positif, cet élément est placé en troisieme place, sinon on
déplace I’élément placé en numéro deux en numéro trois et on teste si le nouvel élément est plus grand

77/101

CHAPITRE 8. TRANSFORMEE DE FOURIER RAPIDE ET ALGORITHMES DE TRI

que I’élément un. Si le test est positif, on place le nouvel élément en numéro deux, sinon on déplace
le premier élément en deux et on place le nouvel élément en un. On continue cet algorithme jusqu’au
dernier élément du tableau a trier. Il est facile de voir que le nombre d’opérations en moyenne évolue
comme N2, ol N est le nombre d’éléments & trier. Comme nous allons le voir ci-dessous les algorithmes
de type “tri rapide” sont beaucoup plus efficaces car ceux-ci dépendent du nombre d’éléments comme
Nlog,(N). Néanmoins, un algorithme de type insertion reste suffisamment efficace si N < 20.

8.5.3 Tri a bulles

Le tri & bulles es un algorithme en N? qui opére de la maniére suivante : On compare les deux
premiers éléments du tableau; si l'ordre est correct, on ne fait rien sinon on échange les deux éléments :
on passe alors au couple suivant constitué des éléments 2 et 3, et on effectue un test a nouveau. Apres
N —1 opérations de ce type, on a placé le plus grand élément du tableau en derniére position; on peut
alors recommencer sur le tableau restant des N — 1 éléments; cet algorithme est bien évidemment un
algorithme en N? et ne peut servir que pour des valeurs de N trés modestes.

8.5.4 Trirapide

Connu par son nom anglais “quicksort”, le tri dit rapide procéde de la maniére suivante : on prend le
premier élément du tableau a trier, noté a;. On construit avec les autres éléments deux sous tableaux : le
premier contient les éléments plus petits que a; et le second les éléments plus grands. On peut placer a;
a la bonne place dans le tableau final et on applique I'algorithme du tri rapide sur chacun des deux sous-
tableaux. On peut montrer qu’en moyenne l’algorithme est en Nlog,(N), mais il est possible d’obtenir
des situations ou l'algorithme est en N2.

Des variantes de cet algorithme puissant existent pour par exemple éviter la récursivité qui pénalise
la rapidité d’exécution du programme. A nouveau, il est inutile, hormis pour des raisons pédagogiques,
de chercher a réécrire un programme pour ces algorithmes, que cela soit en programmation ou de nom-
breuses bibliotheques sont disponibles, ou dans les logiciels scientifiques ou les instructions de tri sont
disponibles, mais il convient de tester la méthode la plus adaptée car le “désordre initial” du tableau a
trier influe de maniere significative sur la performance des algorithmes.

Sur la figure 8.5, on mesure le temps de calcul pour le tri d’un tableau constitué de valeurs aléa-
toires par la méthode quicksort. Cette méthode peut avoir des performances de l'ordre de nln(n)) en
moyenne, mais les performances peuvent décroitre pour étre en n2. Pour ce type de tableau, on trouve
des performances se situant croissant plutot linéairement.

78/101

8.5. ALGORITHMES DE TRI

0.035 N
0.030 A -
0.025 A -

0.020 -

time
\
N

0.015 A g
0.010 4 -7

0.005 - Kol

0.000

200000 300000 400000 500000

size

0 100000

Ficure 8.5 — Temps de calcul en fonction de la taille
du tableau par la méthode de tri rapide

#1/usr/bin/env python3
-»- coding: utf-8 -»-

nmmn

Created on Tue Aug 4 16:30:02 2020

@author: viot

import numpy as np

import time

import matplotlib.pyplot as plt

perf=[]

sizes
— =[100, 1000, 10000,20000,80000, 100000,50000
[SEEN

for i in sizes:
tab=np.random.uniform(size=i)
start_time = time.time()
tab.sort(kind="quicksort”)
perf.append(time.time() - start_time)

plt.
plt.
plt.
plt.
plt.

plot(sizes,perf, *--")
xlabel(size”)
ylabel(’ time”)
tight_layout()
savefig('sort.pdf”)

79/101

CHAPITRE 8. TRANSFORMEE DE FOURIER RAPIDE ET ALGORITHMES DE TRI

80/101

ALGEBRE LINEAIRE

9.1 Introduction

Les deux chapitres qui suivent concernent le traitement numérique des matrices Ce premier chapitre
est consacré aux méthodes employées pour résoudre les quatre taches les plus fréquemment rencontrées
pour les systemes linéaires. Par définition, on peut écrire celles-ci comme

Ax=b (9.1)
ou A est une matrice M x N
a ain . aIN
a1 4z ... A2N
A= (9.2)
ami 4m2 ... AMN

x est un vecteur colonne de M éléments et b un vecteur colonne de N éléments.

bl X1
by X2

b= X = (9.3)
bN XM

Si N = M, il y autant d’équations que d’inconnues et si aucune des équations n’est une combinaison
linéaire des N — 1 autres, la solution existe et est unique. !

Hormis pour des valeurs de N trés petites (typiquement N < 4), ou les formules sont simples a ex-
primer, il est généralement nécessaire de procéder a un calcul numérique pour obtenir la solution d’un
systeme d’équations linéaires. Comme nous allons le voir ci-dessous, si la matrice A n’est pas une ma-
trice creuse (matrice dont la majorité des éléments est nulle), il est nécessaire d’appliquer une méthode
générale qui revient en quelque sorte a inverser la matrice A (ou a la factoriser), ce qui nécessite un
grand nombre d’opérations qui augmente comme le cube de la dimension linéaire de la matrice, N°.

Méme si la procédure numérique est censée conduire a une solution dans le cas d’une matrice non
singuliere (det(A) # 0), 'accumulation d’erreurs d’arrondi, souvent liée a des soustractions de nombres
voisins fournit un vecteur x erroné. Dans le cas d’'une matrice dont le déterminant est tres voisin de zéro
(matrice presque singuliere), les solutions obtenues peuvent étre aussi fausses. L'énorme bibliotheque
de sous-programmes pour les problemes d’algebre linéaire montre I'importance de ces problemes dans
le calcul numérique et la nécessité de choisir une méthode spécifique dés que la matrice a des propriétés
particulieres.

Parmi les taches typiques d’algebre linéaire hormis la résolution d’un systeme linéaire, on peut citer

1. Si N > M, les équations sont indépendantes entre elles et il n’y a pas de solution. Si N <M, il y a une indétermination et
il existe une infinité de solutions.

81

CHAPITRE 9. ALGEBRE LINEAIRE

® la détermination des solutions d’un ensemble de systemes, par exemple A.x; = b; ou x; et b; sont
des vecteurs a N composantes et j un indice parcourant un ensemble fini d’entiers,

® le calcul de I'inversede A : A7},
® le calcul du déterminant de A.

De maniere encore plus aigué que dans les chapitres précédents, une méthode de force brute est bien
moins efficace pour résoudre un probleme d’algebre linéaire qu'une méthode spécifique. Nous allons
donc voir tout d’abord le principe d’'une méthode générale pour une matrice quelconque, puis considérer
quelques unes des techniques spécifiques qui dépendent de la structure des matrices.

9.2 Elimination de Gauss-Jordan

9.2.1 Rappels sur les matrices

Il est utile de remarquer que le calcul des quatre taches précédentes peut étre a priori exécuté de
maniere similaire : en effet, si on considére par exemple un systéeme 4 x 4, on a

a1 a4 a1z a4\ ((* t Vi1 Y12 V13 V4
azy 4z Az ax| |[x2 t Y2 P2 Va3 Y4
az; ay3p 4133 asg| [[x3 t3 Y31 Y132 Y133 Y34
agy A4y Aa43 ag4) \\X4 ty Va1 Va2 Va3 Va4

bl C1 1 0 0 O

_ bz Cy 01 00
bs|Zles|Plo 0 1 0 (-4)
b4 Cyq 0 0 0 1

ou l'opérateur LI désigne l'opérateur réunion de colonnes. Ainsi on voit que l'inversion d’une matrice
est identique a la résolution d’un ensemble de N systemes linéaires pour lequel le vecteur situé dans le
membre de droite a tous les éléments nuls sauf un seul qui est différent pour chaque colonne.

Les trois regles élémentaires que 'on peut réaliser sur les matrices sont les suivantes.

e Echanger les lignes de A et de b (ou ¢ ou de la matrice identité) et en gardant x (ou t ou Y) ne
change pas la solution du systéme linéaire. Il s’agit d'une réécriture des équations dans un ordre
différent.

® De maniere similaire, la solution du systéme linéaire est inchangée si toute ligne de A est rem-
placée par une combinaison linéaire d’elle-méme et des autres lignes, en effectuant une opération
analogue pour b (ou c ou la matrice identité).

® [’échange de deux colonnes de A avec échange simultané des lignes correspondantes de x (ou
t ou Y) conduit a la méme solution. Toutefois, si on souhaite obtenir la matrice Y dans l'ordre
initialement choisi, il est nécessaire de procéder a 'opération inverse une fois la solution obtenue.

9.2.2 Meéthode sans pivot

Pour la simplicité de I’'exposé, on considere tout d’abord une matrice dont les éléments diagonaux
sont strictement différents de zéro.

On multiplie la premiere ligne de A par 1/a;; (et la ligne correspondante de b ou de la matrice
identité). On soustrait a,; fois la 1ere ligne a la deuxiéme ligne, a3; fois la 1ere ligne a la troisieéme ligne

82/101

9.3. ELIMINATION GAUSSIENNE AVEC SUBSTITUTION

et ainsi de suite jusqu’a la derniere ligne. La matrice A a maintenant la structure suivante

7 Vi 7
a}z ﬂ/13 (/'l,14
Apy Gy dpy (9.5)
7 7 Vi .
a/32 ﬂ§3 0;34
0 ay, a5 ay

o o

ot les coefficients a; j s’expriment en fonction des coefficients ou les coefficients a;;.

On multiplie alors la deuxiéme ligne par 1/a},, puis on soustrait a}, fois la deuxieme ligne a la
premiére ligne, a}, fois la deuxieme ligne a la troisiéme ligne et ainsi de suite jusqu’a la derniére ligne.
La matrice A a maintenant la structure suivante

1 0 a5 a4

0 1 a’2,3 Ar4 (9 6)

0 0 ajy ajyy '

0 0 ay; ay,
On itére le procédé jusqu’a la dernieére ligne et on obtient alors la matrice identité. On peut obtenir

alors facilement la solution du systeme d’équations.

9.2.3 Meéthode avec pivot

La méthode précédente souffre du défaut de ne s’appliquer qu’aux matrices dont tous les éléments
de la diagonale sont non nuls. Or, une matrice n’est pas nécessairement singuliere si un seul élément de
la diagonale est nul. Pour permettre une plus grande généralité de la méthode, on ajoute aux opérations
précédentes la troisiéme regle énoncée ci-dessus. On peut en effet, en utilisant 'inversion des colonnes,
placer sur la diagonale un élément non nul de la ligne (si tous les éléments d’une ligne sont nuls, cela
signifie que le déterminant de la matrice est nul et que la matrice est singuliere, ce qui a été exclu par
hypothese). De plus, on peut montrer que la recherche du plus grand élément de la ligne pour faire la
permutation des colonnes rend la procédure bien plus stable, en particulier en augmentant de maniere
importante la précision numérique des solutions.

Ce type d’algorithme est disponible dans de nombreuses bibliotheques et il est parfaitement inutile
de chercher a réécrire un code qui nécessite un temps important a la fois pour sa réalisation et pour sa
validation.

9.3 Elimination gaussienne avec substitution

Pour la résolution stricte d’un systeme linéaire, il n’est pas nécessaire d’obtenir une matrice diagonale
comme celle obtenue par la méthode précédente. Ainsi en effectuant a chaque ligne la soustraction des
lignes situées au dessous de la ligne dont le coefficient de la diagonale vient d’étre réduit a 'unité, on
obtient une matrice triangulaire supérieure dont la structure est la suivante

’ 7 7 ’ 7

ay, a}z a}3 a}4 X1 b}

0 a3 ay ay|[x] _|b; (9.7)

0 0 a ab, ' xs| | b)
133 34 3 3

7 /
0 0 0 ay,) \x4 by
I1 est possible de faire la résolution de ce systéeme linéaire par une procédure de substitution successive

b/
Xq= — (9.8)

X3 = T(bé —X4075,) (9.9)

83/101

CHAPITRE 9. ALGEBRE LINEAIRE

et de maniere générale
N

X; = ai’(bl - Z a;]X]) (9.10)
1 j=i+1
Cette méthode est avantageuse dans le cas des systemes linéaires car le nombre d’opérations a effectuer
est d’ordre N2, contrairement a la méthode précédente qui nécessite de calculer complétement I'inverse
de la matrice et nécessite un temps de calcul en N3.
S’il faut résoudre un ensemble de systemes linéaires comprenant N termes, cela est alors équivalent
a résoudre l'inversion d’une matrice et ’on retrouve un temps de calcul de l'ordre de N°3.

9.4 Décomposition LU

Les méthodes précédentes nécessitent de connaitre a ’avance le membre de gauche de I’équation (9.1).
Les méthodes qui suivent consiste a réécrire la matrice A afin que la résolution du systéeme d’équations
soit exécutée plus facilement.

9.4.1 Principe
Nous allons montrer que toute matrice N x N peut se décomposer de la maniere suivante.

A=LU (9.11)

ou L est une matrice triangulaire inférieure et U une matrice triangulaire supérieure, soit

a1q 0 0 e 0
a1 [25)) 0 ... 0
L=| : C E (9.12)
anN-1N-1) O
anN1 N2 .- v ONN
et
Bir Bi2 Pis Bin
0 ﬁzz ﬁzs /32]\]
U=|: c : (9.13)
Dot Bn-niN-ny Bin-1)N
o 0 ... 0 BNN
En effectuant la multiplication matricielle de L par U, on obtient les relations suivantes
i
aij=) @y i<j (9.14)
I=1
j
aﬁziiwﬁj i>j (9.15)
I=1

Ce systéme d’équations linéaires donne N2 équations et le nombre d’inconnues est Z(M) Ce sys-

teme est donc surdéterminé. On peut donc choisir N équations supplémentaires afin d’obtenir une et
une seule solution. On fixe donc la valeur de la diagonale de la matrice L

a;; = 1 (916)

84/101

9.4. DECOMPOSITION LU

pour i€ [1,N].
L’algorithme de Crout permet de calculer simplement les N2 coefficients restants, en utilisant les
relations suivantes

i—-1
Bij = aij —Zaikﬁkj i<j (9:17)
k=1
1 =
aijZ—(aij—Zaikﬁkj) izj+1 (9.18)
Bji P

I1 faut noter que les sous-programmes créant cette décomposition s’appuie sur la recherche du meilleur
pivot afin que la méthode soit stable. 2

9.4.2 Reésolution d’un systeme linéaire

La résolution d’un systéme linéaire devient tres simple en introduisant le vecteur p.

Ax=LU.x (9.20)
=L(Ux)=b (9.21)
Soit
Ly=b (9.22)
Ux=y (9.23)

Chaque systeme peut étre résolu par une procédure de substitution.

by
- (9.24
=)
1 i—1
Vi = a—ii(bi - ;aijyj) (9.25)

(substitution a partir du premier élément car la matrice est triangulaire inférieure). On obtient la solu-
tion pour le vecteur x en utilisant

_ YN
=g (9.26)
) N
xj = F(yi - Z Bijx;) (9.27)
" j=i+l

car la matrice est triangulaire supérieure.

2. Sachant que le nombre d’inconnues est devenu égale a N2, on peut écrire les deux matrices sous la forme d’une seule
matrice de la forme
Bir P12 Pi3 Bin
axr P22 P23 e PaN
: D : (9.19)
BN-1)(N-1) O

aN1 QN2 ... BNN

en se rappelant que les éléments diagonaux de la matrice a ont été choisis égaux a un.

85/101

CHAPITRE 9. ALGEBRE LINEAIRE

Une fois effectuée la décomposition LU, le calcul du déterminant d’une matrice devient tres simple.
On sait que le déterminant d’un produit de matrices est égale au produit des déterminants. De plus pour
une matrice triangulaire, le déterminant de la matrice est égal au produit des éléments de sa diagonale.
Comme les éléments de la diagonale de L ont été choisis égaux a 1, le déterminant de cette matrice est
donc égal a 1, et le déterminant de A est donc égal a

N
det(A) =]_[/3]-]- (9.28)
j=1

9.5 Matrices creuses

9.5.1 Introduction

On appelle matrice creuse une matrice dont la plupart des éléments sont égaux a zéro. Si de plus, la
structure des éléments non nuls est simple, il n’est pas nécessaire de réserver une quantité de mémoire
égale a celle de la matrice compleéte. Des algorithmes spécifiques permettent de réduire le temps de
calcul de maniere considérable. Parmi les cas simples de matrices creuses, citons les matrices

® tridiagonales : les éléments de matrice non nuls sont sur la diagonale et de part et d’autre de celle-ci
sur les deux lignes adjacentes. On a a;; = 0 pour [i — j| > 1,

® diagonales par bande de largeur M : les éléments de matrice tels que |i — j| > M sont nuls a;; = 0,

® simplement ou doublement bordées : par rapport a la définition précédente, des éléments non nuls
supplémentaires existent le long des lignes ou colonnes du bord de la matrice.

9.5.2 Matrices tridiagonales

Soit le systeme suivant

bl C1 0 0 X1 }’1

aj b2 Cy 0 X V2

0 : : ol= | (9.29)
0 bN—l CN-1

0 0 bNN XN /J\YUN

Noter qu’avec cette notation a; et cy ne sont pas définis. Il y a un vaste de choix de bibliotheques
disponibles pour calculer les solutions qui prennent un temps de calcul proportionnel a N. De maniere
générale, on peut obtenir aussi avoir un algorithme proportionnel a N pour une matrice a bandes. Le
préfacteur de I'algorithme est proportionnel a M.

9.5.3 Formule de Sherman-Morison

Supposons que l’'on ait une matrice A dont on a facilement calculé l'inverse (cas d’'une matrice tri-
diagonal). Si on fait un petit changement dans A en modifiant par exemple un ou quelques éléments de
I’ensemble de la matrice, peut-on calculer encore facilement l'inverse de cette nouvelle matrice?

B=A+uQ®v (9.30)

ou le symbole ® désigne le produit extérieur. u®v représente une matrice dont I’élément ij est le produit
de la iéme composante de u par la jéeme composante de v.

86/101

9.6. DECOMPOSITION DE CHOLESKI

La formule de Sherman-Morison donne ’'inverse de B

Bl=(1+A ugv)tal (9.31)
=(1-A uev+AtugvAtugr—..)A" (9.32)
=A —-A u®uvA — A+ +... .

Al a7t AN 11+ 22 9.33
4 Alwew.A™
=A"1- T (9.34)

ol A =v.A7 u. On a utilisé I'associativité du produit extérieur et produit interne.
Posons z=A"tuetw = (A‘l)Tv, onal=v.zet

1 zZQw

Bl=AT-""+ 9.35
1+A ()
9.6 Décomposition de Choleski
Une matrice est définie positive symétrique (a;; = a;;) quand Yx, on a
x.Ax>0 (9.36)
quel que soit x. Il existe alors une matrice L triangulaire inférieure telle que
A=LLT (9.37)
Les éléments de matrice sont déterminés par les relations
i-
Li; = (aji - ZLl_zk)m (9.38)
k=1
1 i-1
Lj = L_ii(aij - ZLiijk) (9.39)
k=1

avec j € [i +1,N]. Une fois cette construction réalisée, on peut résoudre un systeme linéaire simplement
en utilisant la procédure de substitution précédemment détaillée dans la section 9.4.2.

9.7 Conclusion

Avant de résoudre des systemes linéaires de grande dimension, il est impératif de commencer par
une analyse des propriétés de la matrice afin de déterminer la méthode la plus adaptée afin d’obtenir
une solution avec une précision correcte et pour un temps de calcul qui sera minimal. Les différentes
méthodes présentées dans ce chapitre ne sont qu’'une introduction a ce trés vaste sujet.

87/101

CHAPITRE 9. ALGEBRE LINEAIRE

88/101

ANALYSE SPECTRALE

10.1 Introduction

Ce chapitre est consacré aux opérations que l'on peut réaliser sur des matrices. Plus spécifiquement,
nous allons nous intéresser a la détermination des valeurs propres et/ou vecteurs propres correspon-
dants. Tout d’abord, quelques rappels utiles pour la suite de ce chapitre : soit une matrice carrée A de
dimension N, on appelle un vecteur propre x associé a la valeur propre A, un vecteur qui satisfait la
relation

Ax=Ax (10.1)

Si x est un vecteur propre, pour tout réel @ # 0, ax est aussi un vecteur propre avec la méme valeur
propre A.
Les valeurs propres d’une matrice peuvent étre déterminées comme les racines du polynoéme carac-
téristique de degré N
det(A-21.1)=0 (10.2)

ou 1 désigne la matrice identité.

Compte tenu du fait que dans C, tout polynome de degré N a N racines, la matrice A possede N
valeurs propres complexes.

Quand une racine du polyndme caractéristique est multiple, on dit que la valeur propre est dégéné-
rée, et la dimension de l'espace associé a cette valeur propre est supérieure ou égale a deux.

La détermination des valeurs propres d’une matrice a partir de I’équation caractéristique n’est pas
efficace sur le plan numérique. Des méthodes plus adaptées sont exposées dans la suite de ce chapitre.

Si une matrice posséde une valeur propre nulle, la matrice est dite singuliere.

® Une matrice est symétrique si elle est égale a sa transposée
A=AT (10.3)
ai]‘ = a]-i Vl,]

® Une matrice est hermitienne ou auto-adjointe si elle est égale au complexe conjugué de sa trans-
posée.

A=A" (10.5)
® Une matrice est orthogonale si son inverse est égale a sa transposée
AAT=AT A=1 (10.6)
® Une matrice est unitaire si sa matrice adjointe est égale a son inverse
AAt=ATA=1 (10.7)

Pour les matrices a coefficients réels, il y a identité de définition entre matrice symétrique et Hermi-
tienne, entre matrice orthogonale et unitaire.
Une matrice est dite normale si elle commute avec son adjointe.

89

CHAPITRE 10. ANALYSE SPECTRALE

10.2 Propriétés des matrices

Les valeurs propres d'une matrice Hermitienne sont toutes réelles. Parmi les matrices Hermitiennes
trés utilisées en Physique, il vient a I'esprit la représentation matricielle de l'opérateur de Schrodinger
en mécanique quantique !

Un corollaire de la propriété précédente est que les valeurs propres d’une matrice réelle symétrique
sont elles aussi toutes réelles.

Les vecteurs propres d’une matrice normale ne possédant que des valeurs propres non dégénérées
forment une base d’un espace vectoriel de dimension N. Pour une matrice normale avec des valeurs
propres dégénérées, les vecteurs propres correspondant a une valeur propre dégénérée peuvent étre
remplacés par une combinaison linéaire de ceux-ci.

Pour une matrice quelconque, I’ensemble des vecteurs propres ne constituent pas nécessairement
une base d’un espace de dimension N.

Pour une matrice non normale, les vecteurs propres ne sont pas orthogonaux. On appelle vecteur a
droite les vecteurs tels que

AxR =R (10.8)

ou A; est la iéme valeur propre. De manieére similaire, on appelle vecteurs propres a gauche, les vecteurs
tels que
xFA = Ak (10.9)

Le transposé du vecteur a gauche de A est le vecteur propre a droite de la transposée de la méme matrice.
Si la matrice est symétrique, les vecteurs propres a gauche sont les transposés des vecteurs propres a
droite 2.

Si la matrice est Hermitienne, les vecteurs propres a gauche sont les transposés des vecteurs propres
conjugués a droite.

Dans le cas d’une matrice non normale, on définit la matrice X comme la matrice constituée de
colonnes formées par les vecteurs a droite. On introduit la matrice X; formée par les lignes des vecteurs
a gauche. On obtient par définition que

A.XR:XR.diﬂg(Al,...,/\n) (1010)

de méme on a
XL.A:diag(/\l,...,/\n).XL (1011)

En multipliant ’équation (10.10) par X; et ’équation (10.11) par X, on obtient
XL.XR.diﬂg(/\l,. cey /\n) = diﬂg(/\l,. oy An)XL'XR (1012)

ce qui montre que la matrice diagonale formée par les valeurs propres de A commute avec le produit
X1.Xg. Sachant que les seules matrices qui commutent avec une matrice diagonale constituée d’élé-
ments différents sont elles-mémes diagonales, on en déduit que chaque vecteur a gauche est orthogonal
a chaque vecteur a droite et réciproquement. En normalisant les vecteurs a droite et a gauche, on peut
obtenir que la matrice X;.Xy soit égale a I'identité.

Dans le cas ou I’ensemble des vecteurs propres ne constitue une base complete, il est toujours possible
de compléter cet ensemble afin d’avoir une matrice telle que X;.Xp = 1.

Si la matrice A est inversible, on obtient en multipliant I’équation (10.10) par X' que

Xzt AXg =diag(Ay,..., A,) (10.13)

1. La représentation de cet opérateur correspond en général a une matrice de dimension infinie, mais nous ne considérons
ici que les systemes ou la représentation matricielle est possible dans un espace de dimension finie.

2. Puisque le déterminant d’une matrice et de sa transposée sont les mémes, les valeurs propres de ces deux matrices sont
identiques.

90/101

10.3. METHODES DIRECTES

Nous avons alors construit une matrice de transformation similaire de A
Rappelons la propriété suivante : soit B une matrice telle que

B=P 1 AP (10.14)
ou P est une matrice inversible. On a
det(B— A1) =det(P~L.AP- A1) (10.15)
=det(P~'.(A-A.1)P) (10.16)
=det(A- 1) (10.17)

Ainsi, on a montré que l'on peut construire une matrice de transformation similaire ou la matrice A
devient diagonale dans cette nouvelle base.

Pour une matrice réelle symétrique, la matrice de passage est une matrice orthogonale.

La stratégie générale pour déterminer les valeurs propres d’une matrice consiste a construire une
suite de transformations de similarité jusqu’a 'obtention d’une matrice diagonale, ou plus simplement
jusqu’a l'obtention d’une matrice tridiagonale a partir de laquelle il est possible de déterminer assez
facilement les valeurs propres.

Pour réaliser ces transformations, deux grandes classes de méthodes sont disponibles : les méthodes
directes et les méthodes itératives.

Les premieres consistent a effectuer une suite de transformations similaires et ne s’appliquent qu’aux
matrices de taille relativement modeste, car le temps de calcul croit comme le cube de la dimension
linéaire de la matrice.

Pour les matrices de grande taille et généralement creuses, les méthodes itératives sont plus adap-
tées. Dans la mesure ou la plupart du temps, le spectre complet d’une trés grande matrice n’est pas
recherchée, mais seulement une partie, les méthodes itératives peuvent réaliser plus efficacement cette
tache. Nous allons voir dans la suite de ce chapitre quelques algorithmes de base, tout en ayant a l’es-
prit qu’il existe une tres vaste littérature sur ce sujet, et pour un probleme particulier, il est nécessaire
de commencer par analyser précisément le type de matrice dont on souhaite obtenir le spectre, afin de
choisir la méthode la plus adaptée pour résoudre ce probleme.

10.3 Meéthodes directes

10.3.1 Meéthode de Jacobi

La méthode de Jacobi revient a effectuer une suite de transformations similaires orthogonales. Chaque
transformation est une simple rotation planaire qui permet d’annuler un élément de la matrice A initial.
La rotation élémentaire P,, est donné par la matrice

1 0 O 0

0 1 0 0

0 C S 0

0 . 0
P, =10 . 1 0 (10.18)

0 . .. 0

0 ... =s c ... 0

0 . 1 0

0 . 1

avec la condition que

2+s2=1. (10.19)

91/101

CHAPITRE 10. ANALYSE SPECTRALE

Soit la matrice A’ telle que
_pT
A’ =P, APy, (10.20)

En notant les coefficients de la matrice a;;, on obtient apres calculs que

Arp = Carp —Sayg (10.21)
(rg = Crg +5a,p (10.22)
y 2 2

App = C app + 8 agg — 2¢5ap, (10.23)

a‘,M = 52“pp + Czaqq +2csay, (10.24)

a,, = (cz—sz)apq+cs(app—aqq) (10.25)

avecrzpetr=q.

Si on annule le terme a,,,, en introduisant I’angle de rotation ¢, (¢ = cos(¢), s = sin(¢)) on a le rapport

pq’
0

22

c*—s
0= 10.26
2sc ()
= cot(2¢) (10.27)

a,,—a
S| " (10.28)

Apq

Si on appelle t = s/c, on obtient en utilisant I’équation (10.26)
t2+2t0-1=0 (10.29)

La plus petite des racines correspond a un angle de rotation inférieur a 7t/4 et donne la méthode la plus

stable numériquement. Cette racine 3 peut s’exprimer sous la forme *
sgn(0
= _ sgn0) (10.30)
6] + VOZ + 1
En utilisant que ¢? +s? = 1,, on obtient pour c que
1
(= — (10.31)

V1 + 2

et on a immédiatement s = tc. En imposant que le terme a,

s’annule, on a finalement les relations

Pq
suivantes
7
pp = App ~ tpg (10.32)
7
fgq = Agq+ Ldpg (10.33)
a;p = arp_s(arq+Tarp) (10'34)
a;q = ayq+5(ay, = Tay) (10.35)
avec T défini par
T=— (10.36)
1+c¢

3. Pour éviter les dépassements de capacité de l'ordinateur, on choisit t = 1/26

4. Noter que la fonction sgn que l'on définit dans I’équation (10.29) vaut soit +1 soit —1. Cette fonction est généralement
intrinsique a beaucoup de langages, mais produit aussi la valeur 0 dans certains langages. Il faut donc s’assurer que cette
fonction est correctement implémentée dans le langage informatique que l'on utilise.

92/101

10.3. METHODES DIRECTES

En calculant la somme S

S= Zlamlz (10.37)

r#S

on peut obtenir une estimation de la convergence de la méthode. Pour une transformation similaire
élémentaire, on a

S’ =S =2y, (10.38)

Ainsi la suite des transformations conduit a faire décroitre la contribution des éléments non diagonaux.
Comme la transformation est orthogonale, la somme des carrés des éléments de la matrice est conser-
vée, ce qui revient a ce que la somme des carrés de la diagonale augmente de ce qui a été perdu par les
éléments non diagonaux. Ainsi formellement, on peut choisir les éléments de la matrice A dans n'im-
porte quel ordre et on obtient une méthode qui converge vers une matrice diagonale. Au terme de cette
procédure, on a

D=VT AV (10.39)

ou D est une matrice diagonale contenant les différentes valeurs propres et V est une matrice contenant
les vecteurs propres correspondants.

10.3.2 Réduction de Householder

La méthode précédente est treés coliteuse en temps de calcul. Pour réduire celui-ci, la procédure de
Householder se propose de transformer une matrice symétrique en une matrice tridiagonale par une
série de transformations orthogonales suivantes.

Une matrice de Householder est définie par la relation suivante

P=1-2ww’ (10.40)

T

ol w est un vecteur réel normalisé, w!.w = |w|*> = 1.

Vérifions que la matrice P est une matrice orthogonale

P?=(1-2ww?).(1 -2ww?) (10.41)
=1-4ww’ +4w.(wlw)w’ (10.42)
=1 (10.43)

Cela implique que P = P~!. En utilisant la définition de P, on vérifie facilement que PT = P, et on a donc
bien construit une transformation orthogonale.

Nous allons maintenant appliquer a P le vecteur x constitué de la premiere colonne de A. Pour cela,
on exprime la matrice P sous la forme suivante

T
u.u
P=1- 10.44
- (10.44)
avec H = |u|?/2. Si on choisit le vecteur u tel que
u=x7F|xle (10.45)

ou e; est le vecteur colonne unitaire tel que seule la premiere composante est non nulle et égale a 1. On
obtient facilement la valeur de H

H = 2(|x?| £ |x]x;) (10.46)

93/101

CHAPITRE 10. ANALYSE SPECTRALE

En appliquant P a x
P.x=x- %.(x$|x|el)T.x (10.47)

o 2u(xPF)

10.48

2|x]? F 2|x|x; ()
=x-u (10.49)
=+|x|e; (10.50)

Cela montre que la matrice P annule tous les éléments du vecteur x hormis le premier.

La stratégie pour construire les matrices de Householder est la suivante : on choisit un vecteur x
constitué des n — 1 derniers éléments de la premiere colonne pour construire la matrice P;. En consé-
quence, on obtient la structure suivante pour P;

100 .. .0
0
0
p =10 (10.51)
0
0

En appliquant la transformation orthogonale a la matrice A, on obtient

A’ =P.A.P (10.52)
a k o 0
k
0
-l 0 (10.53)
0
0

ol le nombre k est au signe prés la norme du vecteur (a,,...,a,1)" .
On choisit la seconde matrice de Householder avec un vecteur x qui constitué avec les (n—2) derniers
éléments de la seconde colonne

1 0 0 0
01 0 0
00

p=|0 0 (10.54)
por pir?
00
00

La tridiagonalisation de la partie supérieure de la matrice précédente est préservée, on construit ainsi
colonne par colonne une tridiagonalisation de la matrice A. La procédure est compléte apres (n — 2)
transformations similaires de Householder.

Pratiquement, pour éviter la multiplication de matrices, trés colteuse numériquement, on peut ex-
primer le produit P.A.P en introduisant la notation suivante

B A.u

P=5 (10.55)

94/101

10.3. METHODES DIRECTES

En conséquence, la premiere multiplication matricielle peut étre écrite comme

T
u.u
AP=A(1- 10.56
(-2 (10.56)
=A-pu’ (10.57)
de méme pour la seconde
A'=PAP=A-pu® —up’ +2Ku.u’ (10.58)
avec
K= (10.59)
- 2H '
En posant
g=p—-Ku (10.60)
on a la matrice A’ qui s’exprime alors simplement
A =A-quT —uq” (10.61)

10.3.3 Algorithme QL

En utilisant une suite de transformations de Householder, on peut écrire tout matrice réelle sous la
forme
A=QR (10.62)

ou Q est une matrice orthogonale et R une matrice triangulaire supérieure. Pour obtenir une telle décom-
position, les matrices de Householder sont construites dans ce cas de maniere a ce que la premiere co-
lonne ne possede que le premier élément non nul une fois la transformation effectuée, pour la deuxieme
colonne, on choisit le vecteur de la matrice de Householder pour que tous les éléments de la matrice
transformée soient nuls sous la diagonale et ainsi de suite jusqu’a former une matrice triangulaire supé-
rieure. Le nombre de matrices de Householder pour obtenir ce résultat est égal a (n—1).

De maniere analogue, on peut montrer qu’il existe une décomposition de la forme

A=QlL (10.63)

.ou Q est une matrice orthogonale et L une matrice triangulaire inférieure. Les transformations de Hou-
seholder correspondantes consistent a annuler, colonne par colonne, les éléments de la matrice transfor-
mée qui sont situés au dessus de la diagonale.
Si on définit la matrice A’ comme
A'=L.Q (10.64)

Puisque Q est orthogonal, on en déduit de I’équation (10.63) que
L=Q'A (10.65)

ce qui donne
A'=QT.AQ (10.66)

ce qui montre que A’ est une transformation orthogonale de A.
Pour des raisons de minimisation d’erreurs d’arrondi, il est préférable d’utiliser la décomposition QL
au lieu de la décomposition QR.

95/101

CHAPITRE 10. ANALYSE SPECTRALE

L'algorithme QL est défini par la suite suivante

As = Qs.Lg (10.67)
Ay = L0, (10.68)

La méthode repose sur les bases suivantes : (i) Si A a des valeurs propres toutes distinctes de valeur
absolue |1;|, alors A; tend vers une matrice triangulaire inférieure quand s — oco. Les valeurs propres
apparaissent sur la diagonale par valeur absolue croissante (ii) Si A a une valeur propre dégénérée de
multiplicité p,quand s — co, A; tend vers une matrice triangulaire inférieure, exceptée pour un bloc
d’ordre p correspondant a la valeur propre dégénérée. Pour une matrice quelconque, une itération a
un cott de calcul proportionnel a 73, mais pour une matrice tridiagonale, ce cofit est linéaire avec .
On peut montrer que la convergence dépend de la différence entre deux valeurs propres successives.
Quand deux valeurs propres sont trop proches, il est quand méme possible d’améliorer la convergence
de l'algorithme en déplacant ces valeurs propres successives.

10.3.4 Factorisation de Schur

La factorization de Schur consiste a réécrire une matrice carrée A sous la forme suivante

® Sila matrice A est complexe
A=zTZ! (10.69)

ou Z est unitaire et T est une matrice triangulaire supérieure.

® Sila matrice A est réelle
A=7TZT (10.70)

ou Z est orthogonale et T est une matrice quasi-triangulaire supérieure, ce qui signifie que la
diagonale est constituée soit de blocs 1 x 1 soit de blocs 2 x 2.

Les colonnes de Z sont appelées les vecteurs de Schur. Les valeurs propres de A apparaissent sur la
diagonale de T; les valeurs propres complexes conjuguées d’une matrice A réelle correspondent aux
blocs 2x2 de la diagonale.

L’algorithme utilisée dans la bibliotheque LAPACK, on commence par transformer la matrice A en
la transformant en une matrice de Hessenberg, qui est une matrice triangulaire supérieure bordée une
ligne d’éléménts nuls sous la diagonale.

® Sila matrice A est complexe
A=QHQ' (10.71)
ou Q est unitaire et H est une matrice de Hessenberg.
® Sila matrice A est réelle
A=QTQT (10.72)
ou Q est orthogonale et H est une matrice de Hessenberg.

Dans une deuxieme étape, on transforme la matrice de Hessenberg en une matrice de Schur.

10.4 Meéthode itératives

Ces méthodes sont principalement appliquées a des matrices de grande taille et largement creuses.
Les calculs croissent dans ce cas linéairement avec n. Pour toute méthode itérative, il convient de s’assu-
rer que la convergence est suffisamment rapide pour que le temps de calcul ne soit pas consommé sans
que la recherche d’une solution ne soit réellement effectuée.

96/101

10.4. METHODE ITERATIVES

10.4.1 Meéthodes des puissances

Le principe de cette méthode est tres simple, car il repose sur le fait qu’en appliquant un grand
nombre de fois la matrice sur un vecteur initial quelconque, les vecteurs successifs vont prendre une
direction qui se rapproche du vecteur propre de la plus grande valeur propre (en valeur absolue). Le
principe itératif de cette méthode est la suivante : soit x; un vecteur initial quelconque, et A la matrice
dont on cherche a déterminer la plus grande valeur propre. On effectue l'opération suivante

x1 =A.xg (10.73)

Si on désigne a comme l’angle entre ces deux vecteurs, on a

X1-Xp

cos(a) = (10.74)

lx1-Jxol
Si x(n’est pas perpendiculaire au vecteur recherché (ce qui est rarement le cas pour un vecteur choisi au
départ aléatoirement), le cosinus de ’angle entre x et x; est différent de zéro. En appliquant a nouveau
la matrice A sur le vecteur x; on crée un vecteur x, et on calcule I’angle entre x; et x, qui est inférieur au
précédent en valeur absolue. On continue jusqu’a ce que ’angle entre deux vecteurs successifs devienne
plus petit qu'une nombre € choisi initialement. On en déduit alors le vecteur propre recherché et donné
par x,, ainsi que la valeur propre correspondante. La convergence de cette méthode varie comme (1;/1,)
ce qui peut devenir assez lent quand les valeurs propres deviennent quasi-dégénérées. Cette méthode
n’est pas tres efficace, mais possede le mérite de s’écrire rapidement.

10.4.2 Méthode de Lanczos

La méthode de Lanczos consiste a la fois a calculer les puissances successives de A, en s’inspirant de
la méthode précédente, mais de maniere bien plus efficace en construisant un ensemble de vecteurs or-
thogonaux. Par simplicité, nous allons voir la méthode pour des matrices hermitiennes, mais la méthode
peut étre étendue pour des matrices plus générales, en particulier quand les vecteurs a gauche différent
des vecteurs a droite.

Soit un vecteur de départ normalisé u; : ce vecteur est convenablement choisi c’est a dire que sa
projection sur la base de la valeur propre a déterminer est non nulle. On construit les vecteurs successifs
de la base dite de Krylov a partir de la relation

/)72141 :A.uo—aluo (1075)

ou 8, et @y sont des constantes déterminées de la maniére suivante : @y est choisi de maniére a ce que le
vecteur u; soit orthogonal au vecteur u
a; = ul Ay (10.76)

et B, est déterminé de maniere a ce que le vecteur u; soit normalisé.

By = Jul . A2.uy - a? (10.77)
Pour le vecteur suivant u,, on utilise la relation :
Bsuy = A.uy — ayuy — Batig (10.78)

On note tout d’abord qu’avec cette construction, le vecteur u; est orthogonal au vecteur uy. De maniere
similaire, on impose que u; soit un vecteur orthogonal a u; ce qui conduit a la relation

ay =ul A (10.79)

97/101

CHAPITRE 10. ANALYSE SPECTRALE

et la normalisation de u; est imposée en choisissant 3 comme

B3 =\/u1T.A2.u1 ~al-p, (10.80)
Par itération, on obtient pour le iéme vecteur
Biviui = Aujq —ajuig — Bt (10.81)

On vérifie facilement que tous les vecteurs u; avec j < i— 2 sont orthogonaux avec le vecteur u;,; en

raison de la construction dans un sous espace orthonormé sur ses vecteurs. Les valeurs «; et f8;,1 sont
déterminées par les relations suivantes

a; =ul A, (10.82)

Bis1 = \/uiT_l.Az.ui_l —a?-p; (10.83)

Dans cette base, la matrice A’ est tridiagonale et est donnée

0 pfu1 an1 Bau

0 Bn ay
11 est possible d’utiliser alors une méthode de type QL pour obtenir rapidement les valeurs propres de
la matrice A’, c’est a dire aussi la matrice A.

Quelques remarques : en construisant progressivement une base de vecteurs de plus en plus grande,
on voit que la valeur propre recherchée peut étre estimée en utilisant les sous espaces successifs. On
peut donc arréter l'itération quand la différence entre deux estimations successives de la valeur propre
est devenue suffisamment petite.

Dans le cas ou la matrice A est une représentation tronquée d’un opérateur dont la base propre est
infinie (par exemple, un opérateur de Schrodinger), le procédé itératif conduit progressivement a des
valeurs de f; de plus en en plus petites. On peut considérer que la base de Krylov est complete quand
B, est devenu inférieure en valeur absolue a une valeur € choisie a I'avance (généralement 107!2).

a; B 0 0
B az Pz O 0
0 B3 a3 fy O 0
A=lo .. 0 (10.84)
0 0
0
0

98/101

TABLE DES MATIERES

1 Intégration et sommes discretes

1.1 Lesméthodesde COtes
111 Trapeze . . . o o v v oo e
1.1.2 SImMPpSOn e e

1.2 Méthodede Romberg

1.3 Méthodesde Gauss e

1.4 Méthode de Gauss-Kronrod et méthodes adaptatives

1.5 Intégralesmultiples

2 Interpolation de fonctions

2.1 Introduction e e e e e e e
2.2 Fonctionsaunevariable
2.2.1 Algorithmede Neville o
2.2.2 Polynomes de Chebyshev. L
2.2.3 Meéthodes de lissage (“Spline”) L
2.2.4 ApproximantsdePadé o o
2.3 Fonctions de plusieurs variables L o oo
2.3.1 Introduction
2.3.2 Interpolations bilinéaire et bicubiques o oo oL

3 Racines d’équations

3.1 Introduction e e e
3.2 Dichotomie e e e
3.3 Meéthodede Ridder e e
3.3.1 Meéthode dela positionfausse Lo L.
3.3.2 Meéthodede Ridder e e
3.4 MeéthodedeBrent e e e
3.5 Newton-Raphson
3.6 RacinesdePolynomes
3.6.1 Réduction polynomiale L L oo
3.6.2 Meéthodede Laguerre
4 Les nombres aléatoires
4.1 Introduction e e e e e
4.2 Distributions uniformes L e e e e e
4.2.1 Distribution discrete uniforme e
4.2.2 Distribution continue uniforme
4.3 Distribution non uniformes e e e
4.3.1 Distribution gaussienne oo
4.3.2 Distributionde Cauchy
4.4 Conclusion e e e

13
13
14
14
15
15
17
17
17
18

21
21
21
22
22
23
24
25
26
26
26

TABLE DES MATIERES

5 Equations différentielles

7

5.1
5.2
5.3

5.4

5.5

5.6

6.1
6.2
6.3

6.4

6.5

7.1
7.2

7.3
7.4

Introduction e
Définitions L e
Equations différentielles “spéciales”
5.3.1 Introduction e
5.3.2 Equations du premierordre oo
5.3.3 Equation différentielles dusecondordre
5.3.4 EquationdeBessel
5.3.5 Equation différentielleerreur o o L.
5.3.6 Equation différentielle d'Hermite
Méthodes d’intégration a pas séparé
5.4.1 Introduction e
542 Méthoded’Euler. L
5.4.3 Meéthode RK explicitesaunpoint o o oL,
5.4.4 Meéthodes RK implicitesaun point
5.4.5 Meéthodes RK explicites a 2 points intermédiaires
5.4.6 Méthodes RK explicites a 3 points intermédiaires
5.4.7 Formule générale des méthodes RK explicites
Méthodes d’intégration a pas variableo
5.5.1 Introduction e
Méthodes de Runge-Kutta “embarquées”
5.6.1 Exemples e
Equations différentielles stochastiques
Introduction
Variables aléatoires et processus stochastiques L.
Processus de Wiener, bruit blanc e
6.3.1 Equationdediffusion o L
6.3.2 EquationdeLangevin. o o
Calcul d’Ito et équations différentielles stochastiques
6.4.1 Introduction e
6.4.2 Calcul différentiel stochastique
6.4.3 Processus d’Orstein-Uhlenbeck
6.4.4 Modele de Black-Scholes o o o oo oo
6.4.5 Transforméede Lamperti. oo oo oL,
Méthodes numeériques. L e e
6.5.1 Introdution
6.5.2 Schémad’Euler
6.5.3 SchémadeMilstein
6.5.4 Runge-Kutta e
Fonctions spéciales et évaluation de fonctions
Introduction
Fonction Gamma e
7.2.1 Définition et propriétés L L
7.2.2 Fonctionsreliées: W, B
Fonctionsde Bessel
Fonctions Hypergéomeétriques e
7.4.1 Fonction Hypergéométrique Gaussienne

35
35
35
36
36
36
37
38
38
38
38
38
39
39
40
40
40
41
41
41
42
42

47
47
47
49
49
49
50
50
51
52
53
54
54
54
55
55
56

100/101

TABLE DES MATIERES

8

9

7.4.2 Fonctions Hypergéométriques généralisées

7.5 Fonction erreur, exponentielle intégrale

Transformée de Fourier rapide et algorithmes de tri
8.1 Introduction
8.2 Propriétés

8.3.1 Echantillonage
8.3.2 Transformée de Fourier discrete
8.4 Transformée de Fourier rapide
8.5 Algorithmesdetri
8.5.1 Introduction

8.5.2 Méthode d’insertion

85.3 Triabulles
854 Trirapide.

Algebre linéaire
9.1 Introduction

9.2.1 Rappels sur les matrices

9.2.2 Meéthode sans pivot
9.2.3 Meéthode avecpivot
9.3 Elimination gaussienne avec substitution

9.4 DécompositionLU
9.4.1 Principe
9.4.2 Résolution d’un systeme linéaire

9.5 Matricescreuses
9.5.1 Introduction

9.5.2 Matrices tridiagonales

9.5.3 Formule de Sherman-Morison

9.6 Décomposition de Choleski

9.7 Conclusion

10 Analyse spectrale

10.1 Introduction

10.3.3 Algorithme QL
10.3.4 Factorisation de Schur

10.4 Méthode itératives
10.4.1 Méthodes des puissances

10.4.2 Méthode de Lanczos

8.3 Discrétisation de la transformée de Fourier. . . .

9.2 Elimination de Gauss-Jordan

10.2 Propriétés des matrices
10.3 Méthodes directes
10.3.1 MéthodedeJacobi.
10.3.2 Réduction de Householder

101/101

	Intégration et sommes discrètes
	Les méthodes de Côtes
	Trapèze
	Simpson

	Méthode de Romberg
	Méthodes de Gauss
	Méthode de Gauss-Kronrod et méthodes adaptatives
	Intégrales multiples

	Interpolation de fonctions
	Introduction
	Fonctions à une variable
	Algorithme de Neville
	Polynômes de Chebyshev
	Méthodes de lissage (``Spline'')
	Approximants de Padé

	Fonctions de plusieurs variables
	Introduction
	Interpolations bilinéaire et bicubiques

	Racines d'équations
	Introduction
	Dichotomie
	Méthode de Ridder
	Méthode de la position fausse
	Méthode de Ridder

	Méthode de Brent
	Newton-Raphson
	Racines de Polynômes
	Réduction polynomiale
	Méthode de Laguerre

	Les nombres aléatoires
	Introduction
	Distributions uniformes
	Distribution discrete uniforme
	Distribution continue uniforme

	Distribution non uniformes
	Distribution gaussienne
	Distribution de Cauchy

	Conclusion

	Equations différentielles
	Introduction
	Définitions
	Equations différentielles ``spéciales''
	Introduction
	Equations du premier ordre
	Equation différentielles du second ordre
	Equation de Bessel
	Equation différentielle erreur
	Equation différentielle d'Hermite

	Méthodes d'intégration à pas séparé
	Introduction
	Méthode d'Euler
	Méthode RK explicites à un point
	Méthodes RK implicites à un point
	Méthodes RK explicites à 2 points intermédiaires
	Méthodes RK explicites à 3 points intermédiaires
	Formule générale des méthodes RK explicites

	Méthodes d'intégration à pas variable
	Introduction

	Méthodes de Runge-Kutta ``embarquées''
	Exemples

	Equations différentielles stochastiques
	Introduction
	Variables aléatoires et processus stochastiques
	Processus de Wiener, bruit blanc
	Equation de diffusion
	Equation de Langevin

	Calcul d'Ito et équations différentielles stochastiques
	Introduction
	Calcul différentiel stochastique
	Processus d'Orstein-Uhlenbeck
	Modèle de Black-Scholes
	Transformée de Lamperti

	Méthodes numériques
	Introdution
	Schéma d'Euler
	Schéma de Milstein
	Runge-Kutta

	Fonctions spéciales et évaluation de fonctions
	Introduction
	Fonction Gamma
	Définition et propriétés
	Fonctions reliées: , B

	Fonctions de Bessel
	Fonctions Hypergéométriques
	Fonction Hypergéométrique Gaussienne
	Fonctions Hypergéométriques généralisées

	Fonction erreur, exponentielle intégrale

	Transformée de Fourier rapide et algorithmes de tri
	Introduction
	Propriétés
	Discrétisation de la transformée de Fourier
	Échantillonage
	Transformée de Fourier discrète

	Transformée de Fourier rapide
	Algorithmes de tri
	Introduction
	Méthode d'insertion
	Tri à bulles
	Tri rapide

	Algèbre linéaire
	Introduction
	Élimination de Gauss-Jordan
	Rappels sur les matrices
	Méthode sans pivot
	Méthode avec pivot

	Élimination gaussienne avec substitution
	Décomposition LU
	Principe
	Résolution d'un système linéaire

	Matrices creuses
	Introduction
	Matrices tridiagonales
	Formule de Sherman-Morison

	Décomposition de Choleski
	Conclusion

	Analyse spectrale
	Introduction
	Propriétés des matrices
	Méthodes directes
	Méthode de Jacobi
	Réduction de Householder
	Algorithme QL
	Factorisation de Schur

	Méthode itératives
	Méthodes des puissances
	Méthode de Lanczòs

