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b Laboratoire de Physique Théorique des Liquides, Uni6ersité Pierre et Marie Curie, 4 place Jussieu 75252, Paris, Cedex 05, France

c Department of Chemical Engineering and Material Science, Wayne State Uni6ersity, 5050 Anthony Wayne Dri6e, Detroit,
MI 48202, USA
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Abstract

The adsorption or adhesion of large particles (proteins, colloids, cells,…) at the liquid–solid interface plays an
important role in many diverse applications. Despite the apparent complexity of the process, two features are
particularly important: (1) the adsorption is often irreversible on experimental time scales and (2) the adsorption rate
is limited by geometric blockage from previously adsorbed particles. A coarse-grained description that encompasses
these two properties is provided by sequential adsorption models whose simplest example is the random sequential
adsorption (RSA) process. In this article, we review the theoretical formalism and tools that allow the systematic
study of kinetic and structural aspects of these sequential adsorption models. We also show how the reference RSA
model may be generalized to account for a variety of experimental features including particle anisotropy, polydisper-
sity, bulk diffusive transport, gravitational effects, surface-induced conformational and orientational change, desorp-
tion, and multilayer formation. In all cases, the significant theoretical results are presented and their accuracy
(compared with computer simulation) and applicability (compared with experiment) are discussed. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The adsorption of large particles (proteins,
viruses, bacteria, colloids, macromolecules) at the
liquid–solid interface has received considerable
theoretical and experimental attention in recent

years. Among the many issues pertaining to this
problem, we address in this review the conse-
quences of the adsorption kinetics and the ad-
sorbed layer structure of two key features: (i) the
absence of reversibility and (ii) the deceleration of
adsorption due to surface exclusion from previ-
ously adsorbed particles [1–6]. We choose as a
starting point a mesoscopic approach, where
atomic-level detail is coarse-grained and incorpo-* Corresponding author.

0927-7757/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PII: S0927 -7757 (99 )00409 -4



J. Talbot et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 165 (2000) 287–324288

rated as a set of effective parameters such as rate
constants, particle shapes and sizes, effective in-
terparticle interaction parameters, etc… The two
essential features listed above are well accounted
for in sequential adsorption models [7,8]; these will
be the central topic of this review.

The outline of our review is as follows. In
Section 2, we introduce the simplest of sequential
adsorption processes, the random sequential ad-
sorption model (RSA), and its one-dimensional
version, the car parking problem. Since these pro-
cesses result in structures that are generally far
from equilibrium, the well-developed methods of
liquid-state statistical mechanics are not directly
applicable. We present, in Section 3, the formal-
ism and principal theoretical tools that we have
developed for describing the kinetics of the ad-
sorption processes and the structure of the ad-
sorbed layers. The next sections are devoted to
extensions of these methods to processes involving
additional physical features. In Section 4, we con-
sider the adsorption of nonspherical particles and
of mixtures and in Section 5, we address bulk
transport issues such as particle diffusion and the
influence of the gravitational field. In Section 6,
we treat surface-induced events, like conforma-
tional and orientational changes of the particles
and in Section 7, we introduce partial reversibility
produced by desorption. Finally, we discuss mul-
tilayer formation in Section 8.

2. RSA: a reference model

The random sequential adsorption model, the
prototype for sequential addition processes, is a
stochastic process in which ‘hard’ particles are
added sequentially to a D-dimensional volume at
random positions with the condition that no trial
particle can overlap previously inserted ones.

2.1. The car parking problem

The one-dimensional version of the model,
known as the car parking problem, was first intro-
duced by Rényi [9], a Hungarian mathematician.
Consider an infinite line, assumed empty at t=0.
Hard rods of length s are dropped randomly and

sequentially at rate ka onto the line, and are
adsorbed only if they do not overlap previously
adsorbed rods. Otherwise, they are rejected. If
r(t) denotes the number density of particles on
the line at time t, the kinetics of this process is
governed by the equation

(r(t)
(t

=kaF(t) , (1)

where F(t), the insertion probability at time t, is
the fraction of the substrate that is available for
the insertion of a new particle. To calculate this
quantity it is convenient to introduce the gap
distribution function G(h, t), which is defined so
that G(h, t)dh represents the density of voids of
length between h and h+dh at time t. For a given
void of length h, the available length for inserting
a new particle is h−s, and therefore the available
line function F(t) is merely the sum over the
number density of available intervals, i.e. G(h, t):

F(t)=
&�

s

dh(h−s)G(h, t) (2)

Since each interval corresponds to one particle,
the number density of particles r(t) can be ex-
pressed as

r(t)=
&�

0

dhG(h, t) , (3)

whereas the uncovered line is related to G(h, t) by

1−r(t)s=
&�

0

dhhG(h, t) (4)

These two equations, Eqs. (3) and (4), represent
two sum rules for the gap distribution function.
During the process, the gap distribution function
G(h, t) evolves as

(G(h, t)
((kat)

= −H(h−s) (h−s)G(h, t)

+2
&�

h+s

dh %G(h %, t) , (5)

where H(x) is the unit step function. The first
term of the right-hand side of Eq. (5) (destruction
term) corresponds to the insertion of a particle
within the gap of length h (for h]s), whereas the
second term (creation term) corresponds to the
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insertion of particle in a gap of length h %\h+s.
The factor 2 is due to the two possibilities of
creating a length h from a larger interval h %. It is
worth noting that the time evolution of G(h, t) is
entirely determined by intervals larger than h. We
now have a closed set of equations, which results
from the fact that the adsorption of a particle in
one gap has no effect on other gaps. The above
equations can be solved by introducing the ansatz
[10]

G(h, t)=
F(kast)

s2 exp (−ka(h−s)t) , (6)

which leads to

F(t)= t2exp
�

−2
& t

0

du
1−e−u

u
�

(7)

Inserting Eqs. (6) and (7), one obtains G(h, t) for
h\s and integrating Eq. (5) with the solution of
G(h, t) for h\s finally gives G(h, t) for 0BhB
s,

G(h, t)=
2

s2

& kast

0

du exp (−uh/s)
F(u)

u
(8)

The three equations, (1), (3) or (4), all lead to the
same result for the number density r(t),

r(t)=
1
s

& kast

0

du exp
�

−2
& u

0

d6
1−e−6

6

�
, (9)

which was first derived by Rényi [9].
A first nontrivial property of the model is that

the process reaches a ‘jamming limit’ (when t�
�), at which the density saturates at a value
r�s=0.7476…; this value is significantly lower
than the closed-packed density (r�s=1) that is
expected when the surface is allowed to restruc-
ture between adsorption steps. Moreover, it is
easy to show that the jamming limit depends upon
the initial configuration, here an empty line. In
contrast, the final state of an equilibrium system is
determined solely by the chemical potential and
has no memory of the initial state. The long-time
kinetics, during which a small number of adsorp-
tion events occurs, can be obtained from Eq. (9)
and are seen to display a power-law behavior.

r�s−r(t)s#
�e−2g

kas

� 1
t

(10)

where g is the Euler constant.
The structure of configurations generated by

this irreversible process has several noticeable
properties. At saturation, the gap distribution
function shows a logarithmic divergence at con-
tact, h�0,

G(h,�)#−e−2gln(h/s) (11)

The correlations between pairs of particles are
extremely weak at long distances. The pair corre-
lation function behaves at long distances as

g(r)−18
1

G(r/s)
� 2

ln r/s
�r/s

, (12)

where G(x) is the Gamma function, i.e. it decays
super-exponentially in contrast with the character-
istic exponential decay of equilibrium systems
[11].

2.2. Two-dimensional sequential adsorption

The RSA model can be studied in two dimen-
sions, which represents the physical dimension for
adsorption problems. Since the RSA process gen-
erates random disordered configurations of ‘hard
particles’, a statistical geometric approach is useful
for describing the system. For a given time t, or
equivalently a given density r, it is convenient to
introduce the set of n-particle density functions
{r (n)(r1, r2,…,rn, t)}, where r1, r2,…,rn denote the
positions of the n particles that characterize com-
pletely the configuration of particles.

The time evolution of the density is still given
by Eq. (1), where F denotes the available fraction
of the surface for the insertion of a new particle.
When the particles are hard disks, F has a simple
geometrical interpretation: It represents the prob-
ability of finding a circular cavity of diameter
equal to twice the particle diameter, that is cen-
tered at r1, and is free of particle centers [12–14].

F(r1* ;r)= %
�

s=0

1
s !
&

…
&

dr2…dr(s+1) f12…f1(s+1)

r (s)(r2,…r(s+1);r) , (13)

where * denotes a cavity (as defined above) and
fij f(�ri−rj �) is the Mayer function for non over-
lapping hard particles:
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fij=0 , �ri−rj �\s , (14)

fij= −1 , �ri−rj �Bs , (15)

where s is the diameter of the hard spherical
particles. (Note that because of the macroscopic
uniformity of the system, F(r1*; r) is independent
of the position r1, i.e. F(r1*; r)F(r).) The terms
of the sum in the right-hand side of Eq. (13) can
be interpreted geometrically: the first term, which
is equal to one, corresponds to the certain acceptance
of particles added to an empty surface. The second
(negative) term subtracts the fraction of the surface
occupied by exclusion disks in which no new particle
center can be placed. The third (positive) term
corrects for the fact that two exclusion disks may
overlap, etc… For hard-core interactions, the sum
is always finite since the number of non-overlapping
particles located at a distance less than the particle
diameter from a given point is finite. For instance,
for hard disks in two dimensions, only six first terms
have a nonzero contribution to Eq. (13).

Higher order density functions can be systemat-
ically defined. For instance, F(2)(r1*, r2; r) represents
the density of finding one (unspecified) particle at
the point r2 and a cavity of diameter 2s free of
particle centers at the point r1. More generally, one
can introduce F(n)(r1*, r2,…rn ; r) as the probability
density of finding n−1 (unspecified) particles at the
points r2, r3,…rn and a cavity of diameter 2s free
of particle centers at the point r1,

F(n)(r1*, r2 , · · · rn ;r)

= 5
n

j=2

(1+ f1j)

×
� %
�

s=0

1
s !
&

…
&

drn+1 …dr(n+s) f1(n+1)…f1(n+

s)r (n+s−1)(r2 ,… ,r(n+s);r)
�

(16)

For a RSA process, the insertion of a new particle
amounts to finding a cavity of diameter 2s for a given
set of previously adsorbed particles. The kinetic
equation for the density, Eq. (1), can be generalized
to higher order density functions,

(rn(r1,r2,… ,rn ;r(t))
((kat)

= %
n

i=1

F(n)(r1,… ,ri−1,ri*,ri+1,… rn ;r), (17)

or, by using Eq. (1),

(rn(r1, r2,· · · ,rn ;r)
(r

=
1

F(r1;r)
%
n

i=1

F(n)

×(r1,… ,ri−1,ri*,ri+1,… rn ;r) (18)

The exact and infinite hierarchy of equations cannot
be solved (nor is it possible in the equilibrium case),
but approximate solutions and computer simula-
tions (both to be detailed below) provide a good
description of the process.

The main features observed in the one-dimen-
sional car parking problem persist in higher dimen-
sions: existence of a jamming limit at which the
density of adsorbed particles saturates (in 2D,
u�=r�(ps2/4)#0.547 [15,16]), slow kinetics
when approaching jamming (in 2D, u�−u(t)�
t−1/2 [15]), logarithmic divergence at contact of the
pair correlations at saturation, configurations of
adsorbed particles that differ from those character-
istic of an equilibrated system. The qualitative and
quantitative relevance of two-dimensional RSA for
describing the adsorption of macromolecules at
liquid–solid interfaces has been demonstrated in
several experiments on proteins [1,17] and colloidal
particles [2,6,18–20].

3. Theoretical formalism and tools

3.1. Statistical mechanics of sequential adsorption
systems

Consider a system of N particles in a D-dimen-
sional volume V (in practice, adsorption involves
D=2). For simplicity, we assume that the parti-
cles are identical and interact through a pairwise-
additive spherically-symmetric potential.
Generalization to mixtures, nonspherical particles
and non pairwise-additive potentials is, conceptu-
ally at least, straightforward (see below). If the
system of particles is at equilibrium at a given
temperature T, the probability density, r eq

(N)({r1,
r2,…rN}), associated with finding the N particles
in a configuration with one (unspecified) particle
whose center is an infinitesimal volume element
around position r1,…, one (unspecified) particle
whose center is an infinitesimal volume element
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around position rN is given by the Gibbs distribu-
tion for the canonical ensemble,

r eq
(N)({r1, r2,… rN})=

e−b Sn(�ri−rj �)
15 iB j5N

ZN(V, b)
, (19)

where b=1/kBT, kB is the Boltzmann constant,
n(�ri−rj�) is the pair potential, and ZN(V, b) is the
configurational integral defined by

ZN(V, b)=
&

…
&

dr1dr2… drNe−bS15 iB j5N
n(�ri−rj �)

(20)

All the powerful tools of equilibrium statistical
mechanics and the connection to thermodynamics
derive from the Gibbs distribution. Consider now
a situation in which the configuration of particles
does not correspond to thermal equilibrium, but
is generated by a sequential adsorption process.
More specifically, we consider a ‘cooperative se-
quential adsorption’ (CSA) that is a simple gener-
alization of the random sequential adsorption
process introduced above. In this process, the rate
of adsorption of a new particle in a given configu-
ration of pre-adsorbed particles is proportional to
a Boltzmann factor involving the interaction en-
ergy between the new particle at the chosen posi-
tion and all pre-adsorbed particles. If {r1, r2,…rn}
denotes the position of the n pre-adsorbed parti-
cles, adsorption of a particle at position rn+1 is
given by

k(rn+1�{r1,r2, …rn})

=ka exp
�

−b %
n

j=1

n(�rn+1−rj �)n , (21)

where ka is the rate of adsorption of a particle in
an empty D-dimensional volume. What is the
probability of finding a given configuration with a
total number of N particles at {r1, r2, rN} which is
generated by this cooperative sequential adsorp-
tion, irrespective of the time required? It is clear
that the intrinsic irreversibility, resulting from the
fact that once a particle is adsorbed it can no
longer move or desorb, creates a strong memory
effect. As a result, one must take into account the
order in which the positions r1, r2,…rN have been
filled by particle centers and consider the N !
sequences of insertion that lead to a given

configuration of N particles at {r1, r2,…rN}. With
the rate given by Eq. (21) and the definition
e(rn+1�{r1, r2,…rn})=k(rn+1�{r1, r2,…rn})/ka, one
obtains the following probability density

rCSA
(N) ({r1, r2,…rN)}

=
e−bS15 iB j5N

n(�ri−rj �)

N !
%

s�SN

5
N

i=L�&
drs(i)e(rs(i)�rs(1), … rs(i−1)})

n−1

, (22)

where the sum s�SN is over all permutations of
{1, 2,…N} and where we have used PN

i=1e({rs(i )�
rs(1),rs(2),…rs(i−1)}) = exp (−b�15 i5 j5nn(�ri−rj �)).
(One easily checks that the normalization condi-
tion 	…	dr1dr2…drNrCSA

(N) ({r1,r2,…rN)})=1 is sa-
tisfied.) Eq. (22) is the CSA counterpart of the
Gibbs distribution for equilibrium systems, (Eq.
(19)). In a thermally equilibrated system, Eq. (19)
implies that all configurations having the same
energy are equiprobable. On the other hand, in a
sequential adsorption process there is a bias that
favors some configurations over others among all
those that have the same energy: this results from
the fact that in Eq. (22), the factor Ss�SN

PN
i=1

[	drs(i ) e(rs(i ) �rs(1), … rs(i−1) })]−1

depends on the positions r1, r2,…rN (for N\2).
This feature has been already noted by Widom
[21] in the example of three hard spheres added to
a large volume. The seemingly formal difference
between the equilibrium Gibbs distribution (Eq.
(19)) and the CSA distribution (Eq. (22)) has
important consequences. Some of the dramatic
ones are that the CSA systems are characterized
by the existence of a jamming limit where the
density of adsorbed particles (for particles pos-
sessing a hard core) reaches a saturation value
that is significantly less than the optimum filling
(as in RSA, cf. Section 2) and the absence of
thermodynamic phase transitions1. This latter fea-
ture results from the infinite memory of the ad-
sorption process and is illustrated in Fig. 1. In the
figure, we compare two typical configurations of
hard nonspherical two-dimensional particles
(disco-rectangles, i.e. a planar spherocylinder,

1 Geometric phase transitions such a percolation phenomena
are still possible, see section VB.



J. Talbot et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 165 (2000) 287–324292

Fig. 1. Typical RSA (a) and equilibrium (b) configurations of disco-rectangles with an aspect ratio a=15 at the RSA saturation
coverage u=0.45. Note that the orientational order is purely local for RSA, whereas a nematic phase is present at equilibrium.

with an aspect ratio of 15) on a plane at the same
surface density (or coverage), one being an equi-
librium configuration, the other being generated
by RSA. At the chosen coverage of 0.445, the
equilibrium configuration is in a nematic phase
with long range orientational order (the transition
from the disordered to nematic occurs for u#
0.4), whereas the RSA configuration is at satura-
tion in a disordered state.

The existence of a well-defined probability den-
sity for configurations of N particles produced by
sequential adsorption in a D-dimensional volume
V at a given temperature T, as in Eq. (22), makes
a ‘statistical mechanical’ approach possible, but
the complicated form of the probability density
imposes a nontrivial generalization of the equi-
librium formalism.

The kinetics of a sequential adsorption process,
as well as the characteristics of the configurations
of adsorbed particles, can be obtained from a
knowledge of the grand ensemble analog of the
‘canonical’ probability density introduced above,
r (N)({r1, r2,…rN}; t), which is associated with
finding a configuration of N adsorbed particles
positioned at {r1, r2,…rN} at time t. However, the
expression of this quantity is quite intricate, and it
is convenient to directly derive kinetic equations
describing the time evolution of the infinite set of
n-particle densities, r (n)({r1, r2, rn)}; t). (r (n)({r1,
r2,…rn}; t) is associated with the probability of
simultaneously finding an (unspecified) particle at
r1, another at r2,…, and one at rn, irrespective of
the remaining particles and is thus obtained from
the r (N)({r1, r2,…rn}; t)’s for N]n by integrating
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Fig. 1. (Continued)

over the positions of N−n remaining particles.
This derivation has been done in Section 2.2 for
the RSA of hard particles by means of statistical
geometric arguments. The result can be general-
ized for all sorts of cooperative sequential adsorp-
tion processes (as well as processes involving
desorption and other mechanisms, see the next
section). Consider a cooperative sequential ad-
sorption similar to that described above with an
adsorption rate that generalizes Eq. (21), namely

k(n+1�{1, 2, …n})=kae(n+1� {1, 2, · · ·n})

=ka exp [−bW(n+1� {1, 2, …n})] (23)

where j is a short-hand notation for canter-of-
mass position rj and orientation uj and W(n+
1�{1, 2,…n}) is the interaction energy between an
incoming particle at position rn+1 with orienta-

tion un+1 and n pre-adsorbed particles character-
ized by {1, 2,…n}. There is no need here to
assume pairwise additivity or spherical symmetry
for the interaction potential.

The time evolution of the 1-particle density,
which, for macroscopically homogeneous (i.e.
both uniform and isotropic) systems considered
here, is equal to the average density of adsorbed
particles r, is governed by the following kinetic
equation:
(r(t)
((kat)

=F(1* ; t) , (24)

where F(1*; t) is the probability of inserting a
new particle at the position r1 with an orientation
u1. (Note that because of the homogeneity of the
system, one can average as well over r1 and u1.)
Introducing the Ursell (or ‘cluster’) functions as-
sociated with the e(n+1�{1, 2,…n})’s,
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fn+1�{1, 2,…n}= %
n

m=0

(−1)n−m

× %
{i 1, i 2,…,im}¦{1, 2,…n}

e(n+1�{i1, i2, …im}) , (25)

where the second sum in the right-hand side of the
above equation is over all distinct m-tuplets cho-
sen from {1, 2,…, n}, and recalling that for
sequential adsorption processes there is a one-to-
one mapping between reduced time, kat, and den-
sity, r, one generalizes Eq. (13) as follows:

F(1* ;r)= %
�

s=0

1
s !
&

…
&

d2…d(s+1)

×f1�{2,…(s+1)}r
(s)({2,…(s+1)};r), (26)

where the integral involves integration over both
center-of-mass positions and orientations. For a
pairwise additive potential, it is easy to show that
the Ursell function is just a product of conven-
tional Mayer functions fij=e−bn

ij−1, f1�{2,…(n+

1)}=Pn
j=1f1( j+1), and that Eq. (26) reduces to

Eq. (13) for simple RSA. For higher-order parti-
cle densities, generalizing Eq. (18) leads in a simi-
lar way to

(r (n)(1, 2,…n;r)
(r

=
1

F(1* ;r)
%
n

i=1

F(n)

×(1, …,i−1, i*, i+1,…n;r) , (27)

with

F(n)(1*,2, …n; r)= %
�

s=0

1
s !
&

…
&

d(n+1) …d(n+s)

×f (1�{(n+1) …(n+s)})
{2, …n} r (n+s−1)(2, …(n+s); r) (28)

where the f (1�{(n+1) …(n+s)})
{2, ·…n} ’s are generalized Ursell

functions defined by

f1�{(n+1) …(n+s)}
{2, …n} = %

s

m=0

(−1)s−m

× %
{i 1, ·…im}¦{n+1, …n+s}

e(1�{2, …n, i1, …,im})

(29)

Again, for pairwise additive potentials, the gener-
alized Ursell functions reduce to products of
Mayer functions. (In Section 5.2, we shall con-
sider a process with non-pairwise additive

potentials.)
The above hierarchy of equations for the n-par-

ticle densities is the counterpart for cooperative
sequential adsorption processes of the Kirk-
wood–Salsburg hierarchy for equilibrium sys-
tems. The latter reads

r (n)(1, 2,…n; r)
r

=
1

F(1* ; r)
%
n

i=1

F(n)

×(1, · ,i−1, i*, i+1,···,n; r) ,

=
nF(n)(1*, 2, ···,n; r)

F(1* ; r)
(30)

where the F(n)’s are given by the same expression
as in Eqs. (26) and (28). The comparison of Eqs.
(27) and (30) again illustrates the difference be-
tween CSA and equilibrium systems.

The Kirkwood–Salsburg hierarchy for CSA
processes, Eqs. (24)–(28), is a good starting point
for generating diagrammatic expansions [14].
These can be used to formulate various approxi-
mate descriptions, such as low-density expansions
for the adsorption probabilities and integral equa-
tions for the pair correlations, that parallel those
used in equilibrium statistical mechanics of fluids.
In the case of pairwise additive potentials, dia-
grammatic expansions are also conveniently
derived by using the ‘replica trick’ developed for
spin glass models [22]. The trick relates the proba-
bility distribution for CSA and RSA configura-
tions of N particles to the Gibbs distribution of a
fictitious equilibrium system with n2 replicas of
particle 2, n3 replicas of particle 3,…, nN replicas
of particle N, in the limit n2�0, n3�0, nN�0
[23].

3.2. Approximation scheme

There is, unfortunately, no exact solution to the
sequential adsorption problem when the dimen-
sionality D of the substrate is two or more, (the
one-dimensional case will be discussed below). To
describe the kinetics of the adsorption process and
of the structure of the adsorbed configuration,
one can use computer simulation (see below). In
addition, it is also fruitful to develop approximate
treatments that allow one to study a wide range of
control parameters and a variety of interactions,
external fields, and mechanisms. To do so, it is
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Fig. 2. (a) Typical RSA configurations of hard disks for three values of the coverage (a) u=0.1; (b) u=0.3; (c) u=0.5. The black
disks are the adsorbed hard disks and the hatched region represents each disks exclusion area. The remaining white region
corresponds to the surface that is available for adsorption of a new disk. In (c), close to the jamming limit, the remaining available
surface consists only of a small ‘target’ indicated by the arrow.

instructive to consider configurations of hard
disks generated by RSA at different stages of the
process. This is illustrated in Fig. 2(a–c). Also
shown in white on the figures is the region that is
available for the insertion of a new disk center
and whose area gives the adsorption probability
(correspondingly, the region in grey is that part of

the surface which is excluded to the center of a
new disk, over and above the region covered by
the adsorbed disks themselves that is shown in
black, cf Section 2.2). At low surface coverage,
corresponding to short times, the available surface
percolates through the whole space and adsorp-
tion is locally prohibited by groups involving only



J. Talbot et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 165 (2000) 287–324296

a small number of pre-adsorbed disks. When the
coverage increases, the available surface dimin-
ishes and no longer percolates. Finally, close to
the jamming limit (the saturation coverage is
u�#0.547), the available surface reduces to
small, isolated regions that can accommodate
only one additional disk. This suggests that differ-
ent approximations must be used for describing
the different stages of the process.

Consider first the last-stage, long-time, regime
that corresponds to the asymptotic approach to
the jamming limit. Note that the existence of such
a jamming limit is a feature of all sequential
adsorption processes, be they random or coopera-
tive, provided the adsorbing particles possess a
‘hard core’ that results in an exclusion or blocking
effect. When the surface coverage is sufficiently
high, this hard-core interaction dominates all ad-
ditional ‘soft’ potentials describing for instance
dispersion and electrostatic interactions. (The case
of ‘singular’ additional potentials such as those
encountered for systems of sticky disks and in the
description of generalized ballistic deposition (see
Section 5.2) is different.) In the asymptotic regime
near the jamming limit, the surface available for
adding new particles is composed, as shown

above, of small isolated ‘targets’, whose number
exactly provides the number of particles that will
still be adsorbed before reaching saturation. Due
to the irreversibility and the infinite memory of
the process, the asymptotic kinetics is simply re-
lated to the rate of disappearance and the statis-
tics of the targets. The standard arguments for the
RSA of spherical particles have been put forward
by Pomeau [24] and Swendsen [25]. Consider a
typical target at time t that is characterized by a
small linear scale h so that the area available for
the center of a new disk goes as h2 in two
dimensions (and hD for general dimension D) (see
Fig. 3). The rate of disappearance of such a target
is proportional to its surface area, hence to h2; as
a consequence, the number density of targets
characterized by a linear size h, n(h, t) decays
exponentially in time according to
n(h, t)#n(h, tc)e

−kaAhD(t− tc) , (31)
where tc is a crossover time that marks the begin-
ning of the asymptotic regime and A is a mean
shape factor (besides h, the geometric characteris-
tics of the targets are irrelevant). Making the
reasonable assumption that n(h, t) goes to a
nonzero value n(0, tc) when h�0, one then ob-
tains that the difference in density of adsorbed
particles between time t and saturation (t��) is
given by

r(�)−r(t)=
& hc

0

dh n(h, t)

�n(0, tc)
& hc

0

dh e−kaAhDt� t−1/D,

(32)
where hc is an (unimportant) upper cutoff. The
approach to saturation is thus very slow in RSA
processes and is described by a power law in time
(when D=1, one recovers the exact t−1 result, cf
Section 2.1). The same line of reasoning permits
one to show that the pair correlation function at
saturation has a logarithmic divergence when two
disks (or, more generally, two D-dimensional
spherical particles) approach contact, a result that
is also obtained exactly in one dimension (cf
Section 2.1). The arguments in terms of small,
isolated targets can be generalized to all CSA and
RSA processes involving particles with a hard
core. The key property is the rate of disappear-

Fig. 3. Typical ‘target’ in the asymptotic regime of the RSA of
disks close to saturation (see Fig. 3(c)). Only a small surface
area characterized by a linear length h is available for adsorp-
tion of a new disk (such a disk is shown by the dotted circle).
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ance of targets when their linear size h goes to
zero. If this rate goes to a nonzero limit, as in the
case of generalized ballistic deposition (which cor-
responds to singular sticky potentials, cf Section
5.2) and of a mixture involving point-like particles
[26], the approach to saturation is fast and is
essentially exponential. If the rate goes to zero,
generally as hN where N is the number of de-
grees of freedom for the adsorbing species, the
approach is again a power-law, t−1/N: for in-
stance, in two dimensions N=3 for non spheri-
cal (unoriented) particles [27,28] as well as for a
continuously polydisperse mixture of disks [29],
whereas N=D=2 for a monodisperse system of
disks. Note that the above results are valid for
irreversible adsorption in which once adsorbed,
the particles stay fixed. A quite different behavior
is observed when particles are allowed to desorb
from the surface (see Section 7.2).

In the low and intermediate density regime
(Fig. 2(a) and (b)), one expects that the approxi-
mation employed in the statistical mechanical the-
ory of equilibrium fluids can, mutatis mutandis, be
useful as well for describing systems of particles
produced by sequential adsorption. In particular,
this is the case for low-density expansions, some-
what analogous to the standard virial expansion
for the imperfect gas [30]. As mentioned above,
such expansions can be generated either order by
order from the Kirkwood–Salsburg-like hierarchy
or directly from the diagrammatic series when
they are available (e.g. for pairwise additive po-
tentials). For instance, the adsorption probability
FRSA(u) for the RSA of hard disks onto a plane is
given by

FRSA(u)

=1−4u+
6
3

p
u2�40
3

3p
−

176
3p2

�
u3+ …, (33)

where s is the hard-disk diameter and u= (ps2/
4)r is the surface coverage. As noted before (Sec-
tion 3.1), this expansion coincides with its
equilibrium counterpart at order u2, but departs
from it at the next order (in general, FRSABFEQ)
Similar formulas have been derived for the ad-
sorption of hard convex objects of various shapes,
for mixtures, and for sequential processes involv-
ing cooperative effects and competing mecha-

nisms (see below). For cases involving ‘soft’ (i.e.
continuous in the configurational variables) inter-
action potentials in addition to hard cores, the
computation of the coefficients is always numeri-
cal since it requires more than geometric consider-
ations. However, one can again fruitfully borrow
ideas that have proven efficient in equilibrium
statistical mechanics [30]: weak attractive poten-
tials can be treated as perturbations and spheri-
cally-symmetric soft repulsive potentials can be
approximately replaced by a hard-core potential
with a suitably chosen effective diameter that
depends on both density and temperature [6,31].

Even for hard-core exclusion interactions, cal-
culating the coefficients rapidly becomes in-
tractable as the order in density increases. For
hard disks, the fourth-order term has been ob-
tained and for parallel hard squares, the sixth-or-
der term, but these are exceptions, and in practice
only coefficients up to r3 (or u3) have been calcu-
lated analytically. This unfortunately restricts the
range of density over which the truncated expan-
sion is accurate. It is possible, however, to en-
hance the convergence of the low-density
expansion by building interpolation formulas that
incorporate the known asymptotic behavior. For
instance, in the case of the RSA of hard disks, the
result r(�)−r(t)� t−1/2 converts, through the
use of the kinetic equation (r/(t=F(r(t)) , to
F(r)� (r(�)−r)3 when r�r(�). By employ-
ing standard techniques such as Padé approxi-
mants [32–34], e.g.

F(r)=
(r(�)−r)3

%n=0
p anr

n

(34)

where the (p+1) coefficients an are determined
by expanding in coverage (or density) and match-
ing term by term to the exact expansion (Eq. (33))
one obtains an improved description of the kinet-
ics over the whole process. In particular, expres-
sions such as Eq. (34) provide estimates of the
saturation coverage u(�). The procedure works
very well for the RSA of hard D-dimensional
spheres and D-dimensional parallel hard cubes: cf
Table 1. For more complicated shapes and more
complicated cooperative processes (see below), the
results are fair, but not as good. This trend can
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Table 1
Saturation coverage for RSA processesa

u Computer simula-Estimate
tion

0.548–0.553 0.547 [16]D=2 hard disks
[32,33]

D=3 hard spheres 0.382 [105,109]0.365 [105]
0.5625 [33,34] 0.5620 [107]D=2 parallel hard

squares
0.40–0.46 [34]D=3 parallel hard 0.42–0.43 [108,109]

cubes

a Estimates from approximants and simulation results.

(see Section 2.2), but it captures the rapid, super-
exponential decay of the spatial correlations with
a distance that is typical of sequential adsorption
processes [8,11].

3.3. Usefulness of one-dimensional models

The vast majority of real situations in which
large particles (proteins, cells, colloids,…) adsorb
at a liquid/solid interface correspond to a two-di-
mensional substrate (that, for sake of simplicity!
we consider flat and uniform in this whole re-
view). Why therefore should one study one-di-
mensional models? Equilibrium statistical
mechanics seems to teach us that one-dimensional
systems have very little relevance to physical two-
and three-dimensional fluids: indeed, no thermo-
dynamic phase transitions are possible in one-di-
mension whereas they are a key phenomenon of
real fluids. The situation is, however, different for
sequential adsorption processes. First, as already
stressed, there is no thermodynamic phase transi-
tion in the adsorbed layer, regardless of its dimen-
sionality. Second, the main features of the
phenomenology of sequential adsorption pro-
cesses, such as the existence of a jamming limit
and of a well-characterized asymptotic approach
toward saturation, the short (super-exponentially)
decay of the spatial correlations among adsorbed
particles, and many other properties that may
depend upon the specific process under study (see
the following sections), are independent of
spactial dimensionality. One-dimensional sequen-
tial adsorption models already have the ingredi-
ents, partial or total irreversibility with the
associated memory effect, exclusion or blocking
phenomena, that make their behavior nontrivial
and qualitatively similar to that observed in
higher dimensions. There are of course quantita-
tive changes. For instance, a sequential adsorp-
tion process with hard objects is less and less
efficient as the dimension increases. (For the RSA
of spherical particles, u(�)#0.75 for D=1,
u(�)#0.55 for D=2, u(�)#0.38 for D=3,
etc; it is, however, interesting to note that, as a
rule of thumb, the saturation coverage in D di-
mensions is rather well approximated by that in
one dimension raised to power D [36].)

usually be rationalized by invoking the appear-
ance of an additional regime in the process (see,
for instance, the case of elongated nonspherical
particles with random orientations discussed in
Section 4.1).

The approximation scheme just described fo-
cuses on the kinetics of the process at the level of
the density of adsorbed particles (or surface cov-
erage). However, valuable insight on the adsorp-
tion process is gained by a proper description of
the spatial correlations among adsorbed particles.
Actually, studying the structure of the adsorbed
layer can facilitate the discrimination between dif-
ferent hypothesized model descriptions of real
adsorption situations [1,6,20]. In this regard, it is
interesting to develop approximate treatments for
obtaining the pair correlation function in configu-
rations of particles generated by sequential ad-
sorption. As in equilibrium statistical mechanics,
the most obvious route is to derive integral equa-
tions for the pair correlations, and this can be
done by making approximations in the diagram-
matic expansions, as obtained for instance from
the Kirkwood–Salsburg-like hierarchy presented
above. As an example, the analog of the cele-
brated Percus–Yevick integral equation for D-di-
mensional equilibrium hard-sphere fluids [30] has
been studied for the RSA case [35]. The result for
the pair correlation function for an adsorbed layer
of hard disks is illustrated in Fig. 4. The descrip-
tion is good at intermediate surface coverage, but,
as expected, it deteriorates in the asymptotic
regime near saturation; the approximation fails to
reproduce the logarithmic divergence at contact
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Fig. 4. Pair correlation function g(r) for the RSA configurations of hard disks for two values of the coverage: (a) u=0.3; (b) u=0.5.
The continuous line is computed from the Percus–Yevick-like integral equation for RSA, and the wavy line represents the
simulation result.

An additional motivation for studying one-di-
mensional models is that they are often amenable
to exact analytical solutions, as illustrated by the
case of the car parking problem (see Section 2.1).
The underlying reason for solvability is a shielding
property [8], that is generally found only in one
dimension. The shielding property in one dimen-
sion means that an empty interval of a minimum,
finite length separates the substrate into two dis-
connected regions such that adsorption in one
region is not affected by the configuration of
particles in the other region [8]. As a result, a
closed system involving only a finite number of
kinetic equations can be written and, often,
solved. Further examples will be given in Sections
5 and 6.

3.4. Monte Carlo algorithms

Computer simulation provides additional infor-
mation on sequential adsorption processes. It was
from simulation results, for instance, that Feder
first observed the characteristic power-law kinetics

at long times [15]. The basic procedure for a
Monte Carlo simulation of a sequential adsorp-
tion process with hard-core particles is the follow-
ing: at each step one attempts to place a particle
in the simulation cell with periodic boundary con-
ditions, at positions sampled from a uniform
probability distribution. Because of the finite
range, hard-core interaction between particles it is
advantageous to employ a grid construction [16].
The computer time then depends on the number
of particles instead of the square of the number.
Moreover, close to the jamming limit the process
is dominated by very few successful events of
adsorption and accelerating procedures have been
introduced. Indeed, at long times, the available
surface for inserting new particles is very small
compared to the simulation cell. If the grid cell
element is chosen for accommodating only one
particle, the algorithm can be improved as fol-
lows: first, an unoccupied grid element is chosen
at random and a second random number deter-
mines the trial position within the vacant grid
element; the time is then incremented by an
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Fig. 4. (Continued)

amount Dt=Ntotal/Nvacant where Ntotal is the total
number of grid elements in the simulation cell and
Nvacant is number of vacant grid elements at a
given density [37,38]. (The procedure accelerates
significantly the simulation, but it may occur that
in the last stage of the process the surface which is
the sum of the grid elements remaining vacant
largely exceeds the available surface for inserting
new particles and many unsuccessful attempts still
slow down the simulation.) Event-driven al-
gorithms have been used in various adsorption
models (RSA of nonspherical particles [38], poly-
mer adsorption [39]). Moreover, in some cases,
e.g. in one dimension, the available surface can be
determined exactly, and a trial position can be
always chosen within the available surface such
that no rejection (or wasted time) occurs along the
simulation. The procedure leads to a correct result
provided that the time is incremented by the ratio
of the system size to the available surface. It can
also be used in the simulation of processes involv-
ing desorption (see Section 7.3).

4. Adsorption of nonspherical particles and mix-
tures

4.1. RSA of anisotropic particles

Biological molecules have in general a non-
spherical shape and they adsorb in an irreversible
way when the area of the surface they have in
contact with the substrate is maximum. Experi-
mentally, Schaaf et al. [40] found that the maxi-
mum coverage of the substrate they were able to
obtain in the adsorption of fibrinogen (a non-
spherical protein with aspect ratio of approxi-
mately 7.5) was around 40%, i.e. less than the
saturation coverage predicted by the RSA of hard
disks (#55%) and observed in experiments in-
volving fairly spherical globular proteins [1,15,17].
(A similar effect was observed for adsorption of
albumin [41].) A simple way to account for these
effects consists of considering the irreversible ad-
sorption of anisotropic particles onto a surface
with the RSA rules generalized so that the posi-
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tions and the orientations of the adsorbing parti-
cles are chosen randomly from uniform distribu-
tions (for generalizations, see Section 6).
Ourselves and other authors [27,28,42–48] have
performed this study for hard convex bodies of
different shapes: ellipses, squares, disco-rectangles
(i.e. ‘2D spherocylinders’). The relevant questions
include the following:
1. What is the influence of the aspect ratio on the

saturation coverage of the substrate?
2. What is the dependence on the particle shape

of the kinetics (short and long times)?
3. What are the similarities and differences be-

tween the RSA generated configurations and
equilibrium configurations at the same surface
coverage?

The hard convex bodies mentioned above are
characterized by one parameter which is the as-
pect ratio, a : for ellipses and disco-rectangles, a is
the ratio of the long axis to the short axis and for
rectangles is the ratio of the length to the width.
Both disco-rectangles and ellipses reduce to a disk
when a�1, while rectangles tend to a square (i.e.
an anisotropic object) in the same limit. Fig. 5

displays the saturation coverage obtained by com-
puter simulation of two-dimensional RSA as a
function of the inverse aspect ratio, 1/a, for vari-
ous shapes. Three main conclusions can be drawn
from the results: (i) for the three different shapes,
the maximum coverage is obtained for a value of
a close to 2; (ii) the maximum coverage for el-
lipses and disco-rectangles (for a#2) is larger
than that for disks, and (iii) for all objects consid-
ered here, the saturation coverage goes to zero
when the aspect ratio or goes to infinity, seem-
ingly with a power law dependence. It is also
interesting to note that for a�7–8 (typical of
fibrinogen, see above), the saturation coverage
falls below the hard-disk value and is close to
40%.

As far as the kinetics are concerned, computer
simulation also showed that the approach toward
saturation is slower for anisotropic objects than it
is for disks [27]. From a geometric analysis of the
available surface Talbot et al. [27] showed that the
long-time kinetics results from adsorption of par-
ticles in two types of targets, the larger ones being
independent of the orientation of the trial particle
(nonselective targets) and the smaller ones corre-
sponding to the insertion of a particle with a small
range of possible orientations (selective targets).
To minimize size effects while still retaining the
effect of anisotropy, Viot and Tarjus [28] per-
formed extensive simulations of the RSA of un-
oriented squares, and the results clearly showed
that the asymptotic approach follows a power law
with an exponent equal to 1/3. For ellipses and
disco-rectangles with moderate and large aspect
ratios, the long-time kinetics are described by the
same power law, but the crossover time beyond
which the asymptotic kinetics sets in increases
with a. For weakly elongated objects, by intro-
ducing a small anisotropy parameter, e=a−1, it
can be shown that the long-time kinetics follows
the equation [47]

r(�)−r(t)�e

:& z

0

dxe−x3

z1/3 +Ce−zz1/2

;
(35)

where z=e2t and C is a positive constant. Eq.
(35) can be simplified in the two limits z�1 and

Fig. 5. RSA of rectangles, ellipses and disco-rectangles onto a
plane: saturation coverage, ua(�), as a function of the inverse
of the aspect ratio a (for 15a515). The lines are drawn for
visual guidance.
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z�1. The long-time kinetics thus consists of two
consecutive asymptotic regimes. First, for 1/
e�
t�1, one has a t−1/2 behavior and for t�1/
e
this regime vanishes and a t−1/3 behavior emerges.
This last regime disappears and the contribution
of the coverage goes to zero when the aspect ratio
goes to one. Simulations have been performed for
weakly elongated objects and only an effective
exponent between 1/2 and 1/3 has been measured
[47]. (To observe numerically a clear separation of
these two critical regimes, simulations of very
slightly elongated particles should be performed.)

The low-coverage expansion of the available
surface function F permits, as shown in Section
3.1, a systematic description for low and, some-
what intermediate coverages. To third order, one
has

F=1−B2u+
�

2B2
3−

3
2

B3
�

u2

+
�

3B2B3−
4
3
(B2

3+B4)−B %4
n

u3 (36)

where Bi denotes the ith equilibrium virial coeffi-
cient [30] and B %4 is the specific RSA coefficient
which can be expressed in terms of Mayer dia-
grams [46]. All coefficients must be calculated
numerically in general [44], except the second
virial coefficient for which an analytical formula is
known [49]. The comparison with simulation re-
sults shows that the third-order expansion pro-
vides a good description as long as F is not too
small. It is worth noting that the range of useful-
ness of the density expansion diminishes when the
aspect ratio a increases. Even at low coverage, F
decreases markedly when a increases, which
means that adsorption of very elongated particles
rapidly becomes difficult. An intermediate regime
appears before the asymptotic regime, in which
the longest linear size of the particles is responsi-
ble for many rejections of trial particles in the
process. As displayed in Fig. 1, this regime leads
to the formation of a local order whose (linear)
domain size is given by the length of the particle
long axis. The feature becomes more pronounced
when the aspect ratio becomes larger. This regime
cannot be described by a low-density expansion
whose validity (or quality) range is of the order

1/a. (Notice that for equilibrium systems, a virial
expansion is also unable to describe the isotropic-
nematic transition.) To understand the emergence
of this third regime, it is useful to consider the
adsorption of infinitely thin needles whose length
corresponds to that of the long axis of elongated
particles. For needles, which do not have a proper
area, no saturation is reached and the number
density of needles increases algebraically with
time [45]. By studying the one-dimensional prob-
lem, two of us [45] showed that the RSA of
needles can be mapped at long times onto a
solvable two variable fragmentation model [45,50]
and that the density of needles increases asymp-
totically as

r(t)� t
2−1 (37)

The same algebraic law is expected to hold in two
dimension, as is confirmed by computer simula-
tions [51,52].

Following the procedure described in Section
3.2, approximation schemes can be constructed by
combining low-density expansions and asymptotic
regimes. For weakly and moderately elongated
particles (a55), a fit of the form of Eq. (34) gives
results which are indistinguishable from the simu-
lation data during most of the process. However,
the predicted saturation coverage is overestimated
by the fitting formula [46].

For very elongated particles, a more efficient
approximation scheme can be built. From the
discussion above, it can be assumed that the filling
process is mainly composed of two critical
regimes: a needle-like regime followed by the true
asymptotic regime. Matching the two behaviors
leads to the following result,

u�(a)�a−1/(1+2
2) , (38)

and the crossover time between the two regimes is

tc�a3/(1+2
2) (39)

when a��. These two results are well supported
by simulations: for elongated rectangles, Vigil and
Ziff [42,52] obtained an algebraic law u�(a)�1/
a0.20−0.22, whereas the value of the exact exponent
of Eq. (38) is −0.2612… The increase in
crossover time has also been reported but not
quantitatively estimated [43].
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A structural analysis of the configurations of
anisotropic particles generated by RSA has been
performed by considering the pair correlation
function [48]. For anisotropic hard-core particles
in two dimensions, the pair correlation depends
on three variables: the distance between the two
particles r and the orientation ui of each particle
with respect the interparticle vector. The center-
to-center pair correlation function g0,0(r), which is
the average over the orientations of two particles,
i.e. has no orientational dependence, already pro-
vides useful information about the structure. In
particular, the highest peak in g00(r) is for a
distance r close to 1/2(1+a) when a55, whereas
the peak shifts towards r=1 with a secondary
weak peak emerging for distances close to or
when a]5 (all distances are measured in units of
the short axis). These results show that the most
probable relative orientation of two particles
evolves from perpendicular to parallel when the
anisotropy parameter becomes larger. Although
the center-to-center pair correlation function is
always finite at contact, one observes a logarith-
mic divergence of the surface-to-surface pair cor-
relation function at saturation [48]. This is
reminiscent of the behavior observed in the RSA
of spherical particles. As already stressed, nematic
order is never observed, regardless of the aspect
ratio.

4.2. RSA of mixtures

For a general mixture of n components of
arbitrarily shaped hard particles adsorbing irre-
versibly on a planar surface, one would like to be
able to predict the time dependent and saturation
coverages. Even in one-dimension, this is a chal-
lenging problem. However, one can deduce the
behavior in some limiting cases.

The RSA of a binary mixture of hard disks is
characterized by two parameters: k=kA/kB,
where kA and kB are the adsorption rates of the
components on an empty surface, and the diame-
ter ratio l=sA/sB. Talbot and Schaaf [53] ana-
lyzed the case of a binary mixture of hard disks of
greatly differing diameters, l�1. The time-depen-
dent coverages can be obtained from the numeri-

cal solution of two coupled first-order differential
equations,

(uA

(t
=kl2f(uA

eff)(1−xBuB) (40)

(uB

(t
=fBB(uA, uB) exp

� −xA

1−xBuB

n
(41)

where xA= (1+l−1)2, xB= (1+l)2 and uA
eff=

uA/[1−xBuB] is the effective coverage of the
smaller disks. As long as l is sufficiently small,
fBB depends only on uB and the large disks
approach their saturation coverage exponentially.
The small disks then behave essentially as a one-
component system in a reduced area, approaching
their jamming limit coverage according to the
usual algebraic power law, t−1/2 [53]. The final
combined saturation coverage is accurately given
by

uA+B(�)=uB(�)+ (1−xBuB(�))u� (42)

where u�=0.547.
Tarjus and Talbot examined the asymptotic

approach to the jamming limit of a continuous
polydisperse mixture [29]. The adsorption rate of
a particle of radius s on an empty surface, K(s),
is assumed to be continuous for s15s5s2 and
zero otherwise. As in the monocomponent system
(Section 3.2), the asymptotic kinetics are deter-
mined by the filling of isolated target areas. If
K(s1) is different from zero then it follows that
the jamming limit is approached as

r�−r(t)� t−1/3 (43)

This is consistent with the idea that the exponent
is the inverse of the number of degrees of freedom
of the adsorbing species: two translational, plus
one corresponding to the continuous distribution
of particle diameters (see also Section 4.1 for
anisotropic particles). Note that if K(s1)=0 then
the exponent is determined by the order of the
first non-vanishing derivative of K at s1 [29].

Meakin and Jullien [54,55] conducted computer
simulation studies of a binary mixture of large
and small disks (and spheres), as well as continu-
ous mixtures with uniform and Gaussian distribu-
tions. Their results confirmed the theoretical
analyses.
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5. Bulk transport issues

In the simple RSA model the position of the
trial particle is selected from a uniform, random
distribution. While this simple choice facilitates
both simulation and analytic solutions in come
cases, it is not clear that it is always consistent
with the transport mechanism of the particle from
the bulk to the vicinity of the adsorption surface.

An adsorbing particle is in general subject to
Brownian, gravitational and hydrodynamic
forces, as well as specific interactions with the
adsorbing surface and the pre-adsorbed particles.
Examples of the latter include van der Waals,
electrostatic and short range repulsions.

A substantial body of work has addressed the
issue of the effect of the transport mechanism of
the adsorbing particles on the adsorption kinetics
and the resulting structure of the deposited parti-
cle configurations. In particular, two limiting
cases of interest are diffusion random sequential
adsorption (DRSA) and the ballistic deposition
(BD). In the former the transport mechanism is
pure diffusion, while in the latter gravitational
forces are dominant. For spherical particles, one
can define a dimensionless gravity number (pro-
portional to the Péclet number)

NG=
4ps4Drg

3kBT
(44)

where Dr is the difference between the particle
and solution mass density, g the acceleration due
to the gravity, s is the particle diameter, kB is the
Boltzmann constant, and T is the temperature.
The limits NG�� and NG�0 correspond to the
BD and DRSA models, respectively.

5.1. Bulk diffusion

Schaaf et al. analyzed the effect of diffusion on
the asymptotic kinetics [56]. They found that the
presence of bulk diffusion modifies the asymptotic
kinetics,

r�−r(t)� t−2/3 (45)

The saturation coverage is approached more
rapidly than in simple RSA due to a funneling
effect of the pre-adsorbed particles forming the

target. Yet, this power law has never been ob-
served experimentally. This may result from the
presence of hydrodynamic interactions between
the diffusing particles and the particles on the
surface, interactions that are neglected in the dif-
fusion RSA model and that may modify the ki-
netics and the structure of the adsorbed layer
[57–59].

Senger et al. [60,61] examined the kinetics and
saturation coverage of the DRSA process by sim-
ulating the random walk of a spherical particle of
radius R on a cubic lattice with a lattice parame-
ter a. Each trajectory starts from a randomly
selected lattice site in a plane at height z=3R. A
particle is adsorbed and remains permanently
fixed, once its center reaches the plane z=R. If
the particle reaches the plane z=5R it is consid-
ered lost to the bulk and a new trajectory is
initiated. At each Brownian step, the particle
moves to one of six neighboring sites with equal
probability. If the selected displacement results in
an overlap with a pre-adsorbed particle, the parti-
cle is returned to its initial position and a new
direction is chosen.

The principal result of the simulations was that
to within the statistical error, the coverage and
structure of the adsorbed particle configurations
generated by a DRSA process are identical to
those of the simple RSA model. In order to gain
insight into this unexpected result, various one-di-
mensional models were studied. In particular, the
generalized parking process proposed by us [62]
proved useful in understanding the effect of the
transport mechanism.

In (1+1) dimensions, the kinetic equation de-
scribing the generalized parking process is

(G(h, t)
(t

= −ka(h) (h−s)G(h, t)

+2
&�

h+s

ka(h %)G(h %, t)dh % (46)

Where the rate of adsorption per unit length in a
gap of size h is denoted by ka(h). In simple RSA,
ka(h)=kaH(h−s) where H(x) is the Heaviside
unit step function.

In the generalized parking process, the rate of
deposition of a particle in a gap depends on the
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width of the gap, but is uniform within the gap. It
has been shown that all generalized parking pro-
cesses have the same jamming limit coverage.
Here we reproduce the argument given by Bafaluy
et al. [63]. The problem is to determine the num-
ber, N�(h), of particles adsorbed on a line seg-
ment of length h after an infinite time. Insertion of
one particle into this gap leads to two new gaps of
length h % and h−h %−s so one has the following
recursion formula:

N�(h)=1+2
& h−s

0

N�(h %)P(h, h %)dh % , (47)

where P(h, h %) is the probability that insertion of
a disk into the gap of length h produces gaps of
length h % and h−h %−s. In all generalized park-
ing processes, including simple RSA,

P(h, h %)= (h−1)−1 (48)

since, by definition, the trial particle arrives ran-
domly and uniformly in the gap. Thus, the final
state of the system does not depend on k(h) and
we conclude that all generalized parking processes
have the same jamming limit. The kinetics, of
course, can vary greatly depending on the form of
k(h).

The story is not yet complete, however, since a
careful simulation study revealed that the satura-
tion coverage of 1D DRSA [64] at 0.7529 is
slightly larger than that of 1D RSA (0.7476…).
This difference is a result of the non-uniform flux
of particles at the surface. Eq. (46) can be
modified to allow for a non-uniform distribution
of incoming particles:

(G(h, t)
(t

= −k(h)G(h, t)

+2
&�

h+s

k(h %, h)G(h %, t)dh % (49)

where k(h) is the total rate that gaps of length h
are destroyed by addition of a new particle and
k(h %, h) is the probability per unit length per unit
time that deposition of a disk in a gap of length h %
produces gaps of length h and h %−h−s. One can
also obtain information about the jammed state
without solving Eq. (49) directly with an ap-
proach similar to that described earlier for the
generalized (uniform) parking process. It is possi-

ble to obtain an analytic expression for the flux of
particles on a line segment bounded by two pre-
adsorbed disks [63] and the result obtained for the
jamming coverage is equal to the simulated value
within the confidence interval. More recent work
has examined situations where both gravity and
diffusion play a role [65].

5.2. Ballistic transport and generalizations

The ballistic deposition model describes situa-
tions in which the transport is dominated by
gravitational effects, corresponding to large values
of NG (Eq. (44)). Adsorbing particles follow linear
trajectories from the bulk to the adsorption sur-
face. If the particle arrives at an unoccupied re-
gion of the surface, it is immediately accepted and
remains permanently fixed in place. If it should
land on top of a pre-adsorbed particle, it is not
immediately rejected as with simple RSA. Instead,
it follows a path of steepest descent over the
pre-adsorbed particles. If it reaches the surface, it
is accepted, while if it remains in an elevated
position it is rejected. The possible trajectories for
2+1D BD are shown in Fig. 6.

5.2.1. 1+1-Dimensional models
Like simple RSA, the model is exactly soluble

in one-dimension with a gap-density approach
[66]. This a consequence of the already mentioned
shielding property (see Section 3.3). Specifically,
the kinetic equation is

(G(h, t)
((kat)

= −H(h−s)(h+s)G(h, t)

+2G(h+s, t)+2
&�

h+s

G(h %, t)dh % ,

(50)

where ka is the rate of adsorption of disks of size
s. A gap of length h will be destroyed if the center
of an incoming disk falls anywhere on an interval
h+s centered on the gap of length h. Conversely,
a gap of length h may be created by the impact of
a disk on either of the adsorbed disks bounding a
gap of length h+s, or by direct deposition in a
gap of length h %\h+s. To solve the kinetic
equations, one sets G(h, t)=e−ka(h+s)tF(kast)/s2
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Fig. 6. Generalized ballistic deposition: schematic illustration of the four possibilities for inserting particle 3 in the vicinity of two
previously adsorbed particles 1 and 2: (a) corresponds to a direct deposition; (b) and (c) correspond to a deposition after rolling on
one pre-adsorbed sphere, and (d) to a deposition after rolling on two spheres. This process can be described by a CSA of disks with
effective rates of adsorption (see Eq. (59)).

for h]s, which leads to a solvable differential
equation for F(t). G(h, t) for hBs can be found
using Eq. (50). By employing Eq. (4), the solution
for the time-dependent density is then obtained as

r(t)=
1
s

& kast

0

du(1+2u)e2(1−u−e−u)F(u)
u2 (51)

where F(t) is different than that given in Eq. (7).
As expected, the saturation coverage, r(�)s=
0.80865 is greater than that of the RSA process.
Moreover, the saturation coverage is approached
exponentially:

r(�)−r(t)�
�2e2(1−g)

s

� e−2kast

(kast)
(52)

where g is the Euler constant. The saturation state
is then obtained more rapidly than the corre-

sponding RSA processes (see Section 2.1). An-
other distinct feature of BD is the presence of
connected clusters of particles, which result from
the rolling mechanism.

Viot et al. [67] introduced a model that general-
izes both RSA and BD. A disk that arrives on an
unoccupied surface is accepted with probability p.
Otherwise, if it lands on a pre-adsorbed particle, it
follows the path of steepest descent. If this disk
reaches the surface, it is accepted with probability
1−p, otherwise it is rejected. RSA is recovered
when a=p/(1−p)=0, while a=1 corresponds
to the BD model. As a�� only deposition via
rolling is permitted. This limit corresponds to an
Eden-type off-lattice ballistic aggregation model.

In (1+1) dimensions the kinetic equations de-
scribing the process are



J. Talbot et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 165 (2000) 287–324 307

(G(h, t)
((kat)

= −H(h−s)(h−s+2as)G(h, t)

+2aG(h+s, t)+2
&�

h+s

dh %G(h %, t) ,

(53)

and they may be solved analytically. The number
density is

r(t)=
1
s

& kast

0

du(1+2au)e2a(1−u−e−u)F(u)
u2 (54)

For kast�1/a, the saturated density is ap-
proached as

r(�)−r(t)�2e2(a−g)e
−2kasat

kas
2t

, (55)

showing that saturation is approached exponen-
tially for a\0, while the usual power law is
recovered for a=0. For small, but finite values of
a, an intermediate critical regime for 1�kast�a
is present in which the number density increases
like 1/t ; the final exponential regime has a contri-
bution that vanishes when a�0. (This absence of
discontinuity, when the tuning parameter a de-
creases to zero, is similar to the situation encoun-
tered in the RSA of anisotropic particles when the
anisotropy parameter goes to zero: see Section
4.1)

The rolling mechanism leads to the formation
of connected clusters of particles of different sizes,
the distribution of which is very sensitive to the
value of the tuning parameter a. Some examples
are shown in Fig. 7. The presence of clusters has
a signature in the pair correlation function which
has an infinity of singularities for each integral
multiple of s [68]. The amplitude of these singu-
larities decreases super-exponentially with the dis-
tance. Nevertheless, no percolation transition is
expected in one-dimension for finite values of a.
5.2.2. 2+1-Dimensional models

The behavior of the model in (2+1) dimen-
sions is qualitatively similar to the (1+1)D ver-
sion [69,70,71]: a saturation coverage of 0.611
(higher than the RSA value) and an exponential
approach to saturation. As discussed in Section
3.3, the irreversible nature of the process allows us
to determine the asymptotic behavior, to leading
order, by investigating the filling of targets. Char-
acterizing the targets by the surplus area relative
to the minimum value s=S−Sm, where Sm is the

smallest target defined by three pre-adsorbed
spheres, the density n(s, t) of such targets, when
s�0, evolves in the asymptotic regime, t] tc,
according to

(

(t
n(s, t)= −aka

4
p

(Sm+s)n(s, t) , (56)

where one neglects the (much less efficient) filling
by direct deposition. One finds that, as in the
(1+1)-dimensional model, the coverage is ap-
proached exponentially [70]:

u(a,�)−u(a, t)�
e−akas2


3

p
t

(akast)2 (57)

Using the methodology outlined in Sections 3.1
and 3.2, one can also perform density (or cover-
age) expansions. The generalized ballistic deposi-
tion model can indeed be shown to be equivalent
to a purely two-dimensional cooperative sequen-
tial adsorption model of hard disks, in which an
incoming disk interacts with pre-adsorbed disks
through effective potentials involving up to 5-
body irreducible interactions. For instance, the 2-
and 3-body normalized adsorption rates (see Eq.
(21)) are expressed as

e(r1�r2)=H(r12−s)+ad(r12−s) (58)

e(r1�{r2, r3})=e(r1�r2)e(r1�r3)

+
a
2

d(r12−s)d(r13−s)

×
�

sin(a1, 23)−
a
2
�

(59)

where H(r12−s) is the Heaviside step-function
that describes a hard-disk interaction, d(r12−s)
is a Dirac function that describes a sticky-disk
interaction [72] and a1,23 is the angle between the
vectors r12 and r13 (see Fig. 6). Using then the
Kirkwood–Salsburg-like hierarchy described in
Eqs. (24)–(29), expanding in density, and calcu-
lating analytically the various geometric factors,
one can obtain the rate of adsorption F(a, u) to
the third order in coverage:

F(a, u)=1+4(a−1)u+
�6
3

p
+a

�16
3

−
10
3

p

�
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Fig. 7. Density of clusters formed by s particles at contact rs(t) as a function of time for different values of a\0 and s. (a) a=0.1,
s=1, 2, 3; (b) a=1, s=1, 2, 3, 4, 5; (c) a=3, s=1, 2, 3, 4, 5. Note that the density of monomers r1(t) has a maximum at a finite
value of time for a=1 and 3 but not for a=0.1. For a=3, the efficiency of the rolling mechanism leads to a density of dimers larger
than the density of monomers at the jamming limit.

+a2�−
16
3

+4

3
p

�n
u2

+
��40
3

3p
−

176
3p2

�
+a

�376
27

−
488
3

9p
+

1834
9p2

�
+a2�−

920
27

+
532
3

9p
−

228
p2

�
+a3�496

27
−

200
3
9p

+
24
p2

�n
u3+… (60)

Eq. (60) reduces to that of RSA and of BD for
a=0 and a=1 [73], respectively. In the latter
case, the first- and second-order terms of the
expansion vanish, expressing the inability of one

or two pre-adsorbed particles to prevent an in-
coming particle from reaching the surface.

Note finally that although configurations of
particles generated by the simple ballistic deposi-
tion model (a=1) do not contain any spanning
clusters, above a threshold value of approximately
ac=3.05, there is a percolation transition as the
surface coverage increases and one can construct
a percolation phase diagram of the model [74].
We also showed that the critical exponents b, g, n

are consistent with those of ordinary 2D lattice
percolation.

The ballistic deposition model and its general-
ization are useful to describe the adsorption (or
deposition) of particles that are denser than the
solvent and are therefore subject to gravitational
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Fig. 7. (Continued)

forces. This is often the case for colloidal parti-
cles. Wojtaszczyk et al. [20] in their experimental
study of the deposition of melamine particles on
mica surface showed that the saturation coverage
u� is close to 0.61, and that it is reached with a
fast kinetics. These features are describable by the
two-dimensional ballistic deposition model (a=
1), and the connection can even be made more
precise by comparing the experimental pair corre-
lation function in the deposited layer with the
predicted pair correlation function of the ballistic
deposition model [75] (see Fig. 8). For particles
not as dense as melamine particles, saturation
coverages intermediate between the RSA (u�#
0.55) and BD (u�#0.61) values are obtained [75].
Recently, Csúcs and Ramsden [76] have shown
that the adsorption of bee venom phospholiphase
A2 on a planar metal surface can be described by
this model with a=0.47.

6. Surface events: conformational and
orientational changes

In the standard RSA model, adsorbing particles
are assumed to remain indefinitely in their initial
adsorbed state. This feature is in contrast with
many experimental observations of non-spherical
and/or flexible proteins and other biomolecules
whose adsorbed state may change over time. For
example, the highly elongated protein fibrinogen
(aspect ratio of 7.5) is known to adsorb initially in
an end-on orientation and, following some time,
convert to a more stable side-on orientation [77].
Other proteins, upon adsorbing to a surface, ex-
hibit changes in secondary or tertiary conforma-
tion. A number of early and more recent
experimental studies have investigated these post-
adsorption transitions for various proteins. In
previous articles, we reviewed these findings in
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Fig. 7. (Continued)

some detail [78–80,37,81]. Here we simply summa-
rize the emerging picture of the transition process:
1. Post-adsorption transitions in conformation

and orientation do occur frequently in protein
adsorption systems.

2. The transition usually leads to a larger contact
region, thus decreasing the probability that
incoming proteins land on unoccupied surface.

3. The transition usually leads to stronger sur-
face-binding, thus decreasing the rate of
desorption.

4. The transition tends to be disfavored when the
surface is crowded, probably due to steric
blocking by neighboring proteins.

It is clear that the presence of a post-adsorption
transition affects the kinetics of the adsorption
process and vice-versa. A truly universal adsorp-
tion model should incorporate the possibility of a

post-adsorption transition, should account for the
above experimental observations, and should pre-
dict, in addition to the total adsorbate surface
density, the fraction of molecules in an altered
state. In the remainder of this section, we review
recent work aimed at developing RSA-like models
that account for a post-adsorption transition. The
basic idea is that particles first adsorb to the
surface as in RSA and then may change size
subject to certain geometric exclusion rules. The
change in size represents a change in conforma-
tion or orientation. We also highlight the phe-
nomena displayed by these new models and the
link to experimental results.

6.1. One-dimensional models

Recently, three one-dimensional models of irre-
versible adsorption with subsequent transition
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Fig. 8. Pair correlation function for deposited colloid layer at four different coverages: (a) u=0.075; (b) u=0.30; (c) u=0.46; (d)
u=0.53. Diamonds correspond to the experimental results (melamine latex spheres on mica) and the lines are determined from
simulation of the ballistic deposition model.

have been introduced [78]. In each of these, parti-
cles are modeled as line segments of initial length
sa that deposit randomly and sequentially onto an
infinite line at a rate ka. Once placed, the particles
may spread immediately to a larger size sb. One
of these (Model I) incorporates a symmetric
spread to the larger particle length. Another
(Model II) accounts for an asymmetric spread due
to contacting another particle during the spread.
The third (Model III) accounts for a tilting of the
particle to either side following adsorption (see
Fig. 9). In each case, the transition occurs only if
space allows (i.e. the presence of other particles
may block the transition). If the transition is
assumed to occur instantaneously following ad-
sorption, these models become exactly solvable by
introducing the gap density function G(h, t),

defined so that G(h, t)dh is the density of empty
line segments of length between h and h+dh at
time t. A kinetic equation can be written for the
time evolution of G(h, t) for each of these models
as follows.

(G(h, t)
((kat)

= − (h−sa)G(h, t)

+2
& h+ (sa+sb )/2

h+sa

dh %G(h %, t)

+2
& +�

h+sb

dh %G(h %, t) Model I (61)

(G(h, t)
((kat)

= − (h−sa)G(h, t)+2
& +�

h+sb

dh %G(h %, t)

+ (sb−sa)G(h+sb, t) Model II (62)
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Fig. 9. Illustration of a two-state transition on the substrate. The particle is a hard rod of length sa when it reaches the surface. (a)
Model I: if the neighbors are sufficiently far, the particle grows symmetrically up to a length sb; (b) Model II: growth can also occur
close to a neighboring particle, but the spreading is asymmetric; (c) Model III: the particle adsorbs side on and tilts to the left or
the right if space is available.

(G(h, t)
((kat)

= − (h−sa)G(h, t)

+3
& h+2sb−sa

h+sb

dh %G(h %, t)

+2
& +�

h+2sb−sa

dh %G(h %, t) Model III

(63)

In each of these, the first term on the right accounts
for the destruction of gaps due to incoming parti-
cles landing on empty line segments and subse-
quent terms account for the creation of gaps
formed by a previously adsorbed particle and one
landing on the line (the factors of 2 account for the
left-right symmetry of the line)2. One can also write
similar equations for gaps of hBsa, but they are
not needed to determine the surface densities. To
arrive at a solution, one takes G(h, t)=
F(t) exp [−ka(h−sa)t ] and solves for F(t) (note
that F(t) is different for each model).

The kinetic equations for the time evolution of
the particle densities, ra and rb, are directly calcu-
lable from the gap density distribution via

(ra

((kat)
=
& +�

sa

dh(Min(sb, h)−sa)G(h, t) (64)

(rb

((kat)
=
& +�

sb

dh(h−sb)G(h, t) (65)

These are integrated to obtain an analytical expres-
sion for the densities as functions of time.

In each model, the line fills initially with b-par-
ticles. At short times, one obtains rb� t and
ra� t2 (Model I) and ra� t3 (Models II and III).
The exponents reflect the number of particles on
the line needed to block the transition (one in
Model I and two in Models II and III). Line filling
later in the process is dominated by a-particles;
these approach their saturation as t−1. b-particles,
conversely, approach saturation exponentially.

In all of these models, the saturation values of
the a-particle density and total coverage (u=
rasa+rbsb) increase and those of the b-particle
density and total density decrease with increasing
sb/sa. Interestingly, the b-particle coverage in-
creases with sb/sa in Model II and decreases in
Models I and III (see Fig. 10(a)). This quantity is
experimentally important since often the unaltered
fraction may be removed by surfactant elusion.
The observed behavior is due to the greater effi-
ciency of the spreading mechanism in Model II.
This spreading efficiency is also evident in the
average particle diameter, u/r (see Fig. 10(b)).

6.2. Two-dimensional models

The experimental situation of interest is usually
adsorption onto a two-dimensional surface. With
this in mind, recent work has focused on the
development of two-dimensional models of irre-
versible adsorption with a post-adsorption transi-
tion [37,79,80,83]. Adsorbing particles are modeled

2 This property is lost for a class of models in which the
incoming direction of particles is not vertical (shadow models)
[82].
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as disks of size sa that adsorb randomly and
sequentially onto a plane at a rate ka=k. ac (c is
the bulk solution concentration). Once adsorbed,
if space is available, the disk will expand symmet-
rically and instantaneously to a larger diameter sb

at a rate ks. If space is not available, the disk
remains permanently of size sa (see Fig. 11). The
kinetic equations for the time evolution of a- and
b-particles are

(ra

(t
=k. acFa(r, S, Ks)−ksraCab(r, S, Ks) (66)

(rb

(t
=ksraCab(r, S, Ks) (67)

where Fa is the probability that an a-particle
lands on unoccupied surface and Cab is the prob-
ability that sufficient space exists for the transition
to occur. These functions depend on the overall
surface density, r, the ratio of particle diameters,

S=sb/sa, and the ratio of the spreading to ad-
sorption rates, Ks=ks/k. acaa (aa is the area of an
a-particle). In the special case where ks=0, these
equations reduce to those of the standard RSA
problem. When ks approaches infinity, which is
just the two-dimensional analog of Model I
above, one has kinetic equations

(ra

(t
=k. ac(Fa(r, S)−Fb(r, S)) (68)

(rb

(t
=k. acFb(r, S) (69)

where Fb is the probability that an incoming
particle will have sufficient space to immediately
spread to a diameter sb.

Analytical solutions to Eqs. (68) and(69) are
not available. However, Fa, Fb, and Cab may be
expressed as power series in terms of the total

Fig. 10. (a) Dependence on sb/sa of the saturation coverage of the largest particles, ub(�)=rb(�)sb, for the three models. (b) Time
evolution of the mean size of the adsorbed particles for the three models and for sb/sa=1.5, 2.0.
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Fig. 10. (Continued)

surface density. This is done by first generalizing
the Kirkwood–Salsburg-like hierarchy (see Eq.
(16)) to express sets of mixed particle-cavity distri-
bution functions in terms of an infinite series of
integrals over Mayer functions and multiplet den-
sity distribution functions (see Section 3.1).

Fl 1l 2 …ln+m
(r1, r2,…,rn, r(n+1)* ,…,r(n+m)* )

= 5
n

n%=1

5
m

m%=n+1

[1+fn%m%
ln %lm %] %

�

s a=1

%
�

s b=1

1
sa!sb!

&
×dr(n+m+1) …dr(n+m+s a+s b) 5

m

m%=1

×fm%(n+m%+1)
lm %ln+m+1 …fm%(n+m%+s a+s b)

lm %ln+m+s a+s b

×rl 1l 2 …ln+s a+s b

(n+sa+sb) (r1, ···rn, rn+m+1, ···, rn+m+s a+s b
)

(70)

rl 1l 2…a
(n) (r1, r2,…rn)Cl 1l 2…ln−1ab(r1, r2,…rn-1, rn*)

= 5
n−1

n%=1

[1+ fn%n
ln %b] %

�

s a=0

%
�

s b=0

1
sa!sb!

&
×dr(n+1) …dr(n+s a+s b) fn(n+1)

bln+1 …

Fig. 11. Protein adsorption with surface-induced configura-
tional change. Illustration of the two-dimensional symmetric
spreading model. Once adsorbed, an a-particle spreads sym-
metrically at a rate ks on the substrate if neighboring pre-ad-
sorbed particles do not prevent the transition.
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×fn(n+m+s a+s b)
bln+s a+s b rl 1l 2 …ln−1aa…b…

(n+sa+sb)

×(r1, r2,···, rn+s a+s b
) (71)

Fl 1l 2…ln+m
(r1, r2,…rn, rn+1* ,…rn+m* ) is the proba-

bility density of finding a l1-particle at position
r1,…a ln-particle at position rn, sufficient space (a
cavity) for a ln+1

− particle at position rn+1,…, and
sufficient space for a ln+m-particle at position
rn+m.

rl 1l 2…a
(n) (r1, r2, … ,rn)

×Cl 1l 2 …ln−1ab(r1, r2,…,rn−1, rn*) is the proba-
bility density of finding a l1-particle at position
r1,…, a ln−1-particle at position rn−1, and an
a-particle at position rn that has sufficient space to
spread and become a b-particle. The terms in
these summations represent the blockage of cavi-
ties on the surface by sa a- and sb b-particles. All
of the distribution functions (the F, C, and r ’s)
may be written as series expansions in the total
singlet density r. Using Eqs. (70) and (71) and
kinetic equations Eqs. (66) and (67) for the time
evolution of the multiplet density distribution
functions, the coefficients of the density expansion
may be determined term by term [80]. In the case
when Ks is finite, a renormalization is performed
to change variables from (r, Ks) to (r, z) where
z=rKs. This variable change is reflected in the
form of the kinetic equations for all density func-
tions and results in the series expansion coeffi-
cients having a dependence on the new variable z.
In the case where Ks is infinite, no renormaliza-
tion is needed and the series expansion coefficients
depend only on S.

Power series are accurate only at low to moder-
ate densities. As the system approaches satura-
tion, one must use other tools to analyze the
kinetics. As is the case in standard RSA, it is
useful to consider the geometry of small, isolated
targets on the crowded surface that are available
for addition of a- and b-particles. By expressing
the rate of adsorption in terms of the density and
size of the targets, one finds that a-particles ap-
proach their saturation as t−1/2 and that b-parti-
cles approach their saturation exponentially in
time. An exception is when S=1; in this case the
b-particles approach their saturation as t−3/2,
since their formation is not inhibited by surface

blockage. Consideration of surface targets also
allows one to show that the S derivative of the
saturation a- and b-particle (but not the total)
density diverges as S approaches 1. This result
suggests that even a very small transition could
result in quite a large fraction of particles remain-
ing in the unaltered state. Finally, an asymptotic
analysis of the structure of the adsorbed layer
shows that the b−b pair correlation function,
gbb(r), diverges at contact (as does g(r) in stan-
dard RSA) while gaa(r) and gab(r) remain finite.

The asymptotic regime scaling laws can be com-
bined with the short/moderate time regime density
series expansion via interpolation yielding expres-
sions that are accurate over the entire filling pro-
cess. When Ks is infinite, methods similar to those
developed for standard RSA may be applied. One
obtains equations for the time evolution of the
total density and total fractional surface coverage,

(r

(t
=

k. ac(1−x)3

1+b1x+b2x2 (72)

(u

(t
=

k. acab(1−x)3

1+c1x+c2x2+c3x3 (73)

where x=r/r� and the coefficients b1, b2, c1, c2,
c3, and r� are determined by matching the den-
sity expansion of the Padé ratios with the coeffi-
cients determined above. These equations may be
integrated to give ra and rb as functions of time
that compare quite favorably with computer sim-
ulation [80].

When Ks is finite, it is more accurate to intro-
duce an effective area, aeff(r, z), that serves as a
mapping variable of the RSA+spreading model
onto the standard RSA model. It is defined as the
particle area in the standard RSA of disks that
would yield the same fractional available surface
as in the RSA+spreading problem at the same
overall surface density, that is, F(u=raeff)=
Fa(r), where F is the available surface function
for the RSA of disks. Also introducing the aver-
age area of particles landing on the surface of
density r, ã(r, z), kinetic equations for the den-
sity and coverage may be written:

(r

(t
=k. acF(raeff(r, z)) (74)
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Fig. 12. Kinetics of RSA+spreading model. Effective area
interpolation calculation (dashed lines) of the reduced total
and partial densities as function of reduced time for S=1.05
and (a) Ks=1 and (b) Ks=10. Also shown are simulation
results (solid lines).

When Ks is infinite, results of computer simula-
tion of the two-dimensional problem are qualita-
tively similar to those of the one-dimensional
problem. One difference is that the density of
a-particles (b-particles) tends to be higher (lower)
in 2-D due to the greater probability of landing
near to a pre-adsorbed particle. When Ks is finite,
some important differences emerge. First, the a-
particle density may become non-monotonic in
time due to the delayed spreading (see Fig. 12).
Second, the b-particle coverage, rbab, approaches
zero for large S. This is because for any finite rate
of spreading, one can choose a spreading magni-
tude larger than the characteristic separation of
adsorbed particles. Increasing Ks favors the
spreading event and causes a decrease in the ra

and r and an increase in rb and u.
The need to employ a concentration-dependent

particle size when fitting experimental data to the
standard RSA model [17] provided an incentive to
develop irreversible adsorption models incorpo-
rating a post-adsorption transition. With the
RSA+spreading model, several kinetic
isotherms, each differing only in bulk concentra-
tion, may be accurately predicted with a single
particle area that is close in value to the known
size of the adsorbing particle (see Fig. 13) [81].

7. Influence of desorption processes

Up to this point, we have considered adsorp-
tion processes that are strictly irreversible, that is,
ones in which proteins or other macromolecules
remain forever on the surface following adsorp-
tion. In many experimental situations, proteins do
indeed adsorb tenaciously and little or no desorp-
tion occurs. However, other examples exist where
desorption may occur spontaneously or in re-
sponse to a change in experimental conditions
(pH, ionic strength, surfactant or detergent con-
centration). It is clear that, in order to be of
general applicability, a protein adsorption model
must be able to account for the possibility of
desorption. In this section, we introduce several
models that extend the irreversible adsorption ap-
proaches presented above to include desorption.

(u

(t
=k. acabF(rã(r, z)) (75)

aeff and ã are themselves written as Padé approxi-
mants whose coefficients are determined by
matching the low density expansion coefficients
[80]. This method yields extremely accurate total
surface densities and reasonably accurate partial
densities when compared with computer
simulation.
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7.1. Multistep adsorption/depletion model

Protein adsorption need not always be con-
ducted as a single step process. Adsorption may
be interrupted by a buffer rinse or by exposure to
a surfactant or detergent solution. This usually
results in removal of a fraction of the adsorbed
proteins. Due to the non equilibrium nature of
protein adsorption, we suspect that when adsorp-
tion is resumed, the behavior may differ nontriv-
ially from an uninterrupted process.

We have investigated the effect of a desorption
(or depletion) step, separating two irreversible
adsorption steps, on the structure, kinetics, and
saturation density of adsorbed disks [83,84]. A
starting point is to consider the evolution of the
density distribution functions during a random
depletion from an initial density r1 as follows:

(r (n)(r1, r2,…,rn ;r1, r)
(t

=

−kdnr (n)(r1, r2,…,rn ; r1, r) (76)

It is straightforward to show that this leads to a
conservation of distribution functions, that is
g (n)(r1, r2,…,rn ; r1, r)=g (n)(r1, r2,…,rn ; r1, r1) for
all r25r5r1, where r1 and r2 are the densities
before and after depletion (g (n)=r (n)/rn) [83].
This result holds for depletion of any immobile
collection of particles, including those at equi-
librium. An interesting implication is that one
could create a low-density configuration that
would have the structure of one taken at a much
higher density. This result can be used to analyze
the kinetics and saturation density of a second
adsorption step beginning with the depleted
configuration. To third order,

F(r1, r2, r)=FRSA(r)+A32r2
2(r1−r2) (77)

where A32 is the contribution of the third order
coefficient of FRSA from the pair density [84].
Since A32\0 [12], the available surface function
for the multistep process is greater than that for
the simple RSA process and an enhancement in
the saturation density is expected.

Using an interpolation scheme, one can calcu-
late the saturation density and show that it is
always enhanced compared with the uninter-
rupted adsorption process and that the maximum
enhancement occurs when r2=2/3r1 [84]. An in-
teresting aspect of these results is that in order to
reach a certain surface density as rapidly as possi-
ble, it is sometimes most efficient to incorporate a
desorption step. This is shown in Fig. 14.

7.2. Partial re6ersibility

A number of experimental results suggest that
in some instances protein adsorption is partially
reversible, that is, a fraction of the adsorbed
molecules may be removed by a buffer rinse while
others cling to the surface irreversibly [37]. These
observations are consistent with the two-state ad-
sorption picture first put forth by Soderquist and
Walton where proteins adsorb initially in a re-
versible manner and then later become irre-
versibly adsorbed by changing conformation
and/or orientation [85]. We proposed a model of
partially reversible protein adsorption [37] incor-
porating Morrisey’s observation that neighboring
proteins can block this transition [86].

Fig. 13. Surface density of adsorbed fibronectin G as a func-
tion of time. Curves corresponding to bulk protein concentra-
tion of 0.05, 0.01, 0.005, 0.002 g l−1 are shown. Also displayed
are the curves predicted from Eq. (74) with k. a=1×
10−5cm s−1 and sa=20 nm. More details are given in Ref.
[81].
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Fig. 14. Influence of a depletion step on the adsorption
kinetics. The dashed line corresponds to a single-step RSA and
the full line to two RSA steps separated by a depletion step
(with kd=ka). In both cases, the process is stopped as soon as
a coverage of 0.5 is reached.

when cavities form due to desorption of neighbor-
ing a-particles. (In the special case of S=1, no
steric hindrance to spreading is present and an
even faster t−3/2 approach is found.)

To evaluate the above kinetic equations over all
times, computer simulation is required [37]. An
interesting result is that for certain parameter
values, both the total density and the a-particle
density may become non-monotonic in time. This
is due to the gradual replacement of initially
adsorbed a-particles by a smaller number of
larger, b-particles. This behavior is similar to
what is observed in experimental ‘overshoots’,
where the total density decreases at long times
[87]. Another interesting result is that saturation
densities tend to be higher than in purely irre-
versible adsorption. This is due to a more liquid-
like particle structure, as evidenced by the
secondary peaks in the radial distribution func-
tion, which leads to more efficient packing on the
surface.

The chief utility of this model is its applicability
to experimental situations in which desorption
and post-adsorption transitions occur. Good
quantitative predictions of the adsorption kinetics
and the reversible fraction of lysozyme on silica
are obtained (see Fig. 15) [37,87].

7.3. Parking lot model

In the adsorption–desorption model, particles
are placed in a D-dimensional space according to
the RSA rules at a constant rate ka and in which
an additive uniform desorption process takes
place such that all objects in the system are sub-
ject to removal (desorption) at random with a
constant rate kd. In the parking lot model, the
substrate is a line and the objects are hard rods.
This one-dimensional model has been solved in
some limiting cases. When kd=0, the adsorption
is totally irreversible and the process corresponds
to the car parking problem. When ka=0, starting
with any configuration of particles, the process
corresponds to the desorption model studied in
Section 7.2. The limit kd�0+ allows a slow but
eventual rearrangement of particles on the line
leading to a final coverage of unity. (It is worth
noting the finite discontinuity of the final satura-

In this model, proteins are modeled as disks of
diameter sa that adsorb onto the surface sequen-
tially and without overlap at a rate ka=k. ac. Once
adsorbed, the proteins desorb at rate kd or spread
to a larger diameter sb at a rate ks (the latter is
subject to no overlap with other adsorbed
proteins). The rate laws are as follows:

(ra

(t
=k. acFa(r, S, Ks, Kd)−ksraCab(r, S, Ks, Kd)

−kdra (78)

(rb

(t
=ksraCab(r, S, Ks, Kd) (79)

where Fa and Cab are, respectively, the probabili-
ties of adsorbing and spreading without overlap,
S= sb

s a
, Ks=

ks
k. aca a

, and Kd= kd
k. aca a

where aa=
psa

2/4 .
Because the adsorption is not strictly reversible

in this model, a density expansion approach as
introduced in Sections 2.2 and 3.2 is not likely to
succeed. However, the asymptotic regime may be
analyzed by again considering the time evolution
of isolated targets on the surface for a- and
b-particles. Using this approach, one can show
that both ra and rb approach saturation as t−1/2

[37]. The change from a faster exponential ap-
proach to a slower algebraic approach for the
b-particles when Kd becomes non-zero is because,
in this case, a-particles may spread at long times
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tion density between the case kd�0+ and kd=0,
i.e. RSA). Moreover, the final density is indepen-
dent of the initial configuration of particles on the
line it depends only on the ratio of desorption and
adsorption rates. For kd�0+ , accurate descrip-
tions have been obtained [88,89]. In this case, the
process cleanly divides into two sub-processes.
The initial phase consists of an irreversible ad-
sorption and is followed by an infinite sequence of
desorption–adsorption events in which a rod de-
taches from the surface and the gap that is created
is immediately filled by one or two new rods. The
latter possibility causes the system to evolve con-
tinuously to the close-packed state with rs=1, as

[88,89] 1−sr(t)#1/ln (t) where t now represents
a resealed time. For the general case, where both
ka and kd are non zero, a complete solution is not
yet available.

The properties of the parking lot model depend
only on the ratio K=ka/kd. Large values of K
correspond to small desorption rates. With an
appropriate resealed time, the kinetics is given by

((rs)
(t

=F(t)−
rs

K
, (80)

where F(t), the insertion probability at time t (or
density r), is the fraction of the substrate that is
available for the insertion of a new particle. The
presence of a relaxation mechanism, even infi-
nitesimally small, implies that the system eventu-
ally reaches a steady-state that corresponds to an
equilibrium configuration of hard particles with
reqs=KFeq(reqs), where req denotes the equi-
librium density. At equilibrium, the insertion
probability is given exactly by

Feq(r)= (1−rs)exp (−rs/(1−rs)) (81)

Inserting Eq. (81) into Eq. (80) leads to the fol-
lowing expression for the equilibrium density:

reqs=
Lw(K)

1+Lw(K)
(82)

where LW(x) (the Lambert-W function) is the
solution of x=yey. In the limit of small K, the
isotherm takes the Langmuir form (reqs�K/
(1+K)), while for large K, reqs�1−1/ln (K). At
small values of K, equilibrium is rapidly obtained,
but at large values the densification displays a
dramatic slowing down. An adiabatic (mean-field)
treatment consists of assuming that, at any den-
sity p(t), the structure of the adsorbate follows an
equilibrium form. This means that F is similar to
Eq. (81) with r(t) in place of req. Denoting
dr(t)=r(t)−r�, with r�=req(K), one per-
forms a first order density expansion of Eq. (80)

(

(t
dr= −GMF(K)dr+O(dr2) (83)

with

GMF(K)# ln(K)2/K when K is large (84)

Fig. 15. A comparison between the model of partially re-
versible adsorption and the lysozyme adsorption experiments
of Walgren et al. [87]. Simulated total (solid line) and b-parti-
cle (dashed line) densities are shown along with the experimen-
tal total amount for two bulk protein concentrations. (For the
determination of the parameters, see Ref. [37].) We note good
agreement in the total amount adsorbed before rinsing (at
3600 s). The amount remaining after rinsing is well approxi-
mated by the b-particle density at the time (indicated by
squares).
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Fig. 16. Relaxation rate G for the final exponential approach
to equilibrium in the parking lot model. Upper curve: mean-
field approximation (Eq. (84)). Intermediate curve (Eq. (85))
open circles, simulation results.

7.4. Scaled particle theory

The parking lot model described in the previous
section shows both that when the desorption rate
is very small, the relaxation kinetics is very slow
and the whole process is not well described by a
mean-field approximation. On the other hand, if
desorption is not too small, an adiabatic approxi-
mation provides a fair description of the process.
The final state is an equilibrium one and the
difference between the transient states and the
corresponding equilibrium states at the same cov-
erage is small. This property is useful when one
considers the adsorption of complex systems, such
as mixtures, because it allows a drastic simplifica-
tion of the analysis by using an approximation
which essentially requires the knowledge of equi-
librium properties. The scaled particle theory
(SPT) introduced by Reiss et al. [94] is particu-
larly convenient since it yields simple analytic
expressions for the available surface functions for
systems at equilibrium.

The kinetic equation generalized to mixtures is

(ui

(t
=ka, icFi({uj})−kd, iui (86)

where Fi ({uj}) is the available surface function of
species i. To apply SPT one first approximates F
by Feq and then the connection to the equation of
state of the equilibrium mixture is provided by the
relation [21].

ln Fi
eq= −m i

R/kT (87)

where m i
R is the residual chemical potential of

component i.
For a two-component mixture of hard disks of

diameter s1 and s2 the explicit equations are:

F1
eq= (1−u1−u2)

×exp
�

−
3u1+g−1(g−1+2)u2

1−u1−u2

−
(u1+g−1u2)2

(1−u1−u2)2

n
, (88)

where g=s2/s1 is the size ratio.

equivalent to a relaxation time of K/ln (K)2 for
large K [90]. However, a careful analysis of the
kinetic equations for the gap distribution function
has been done [92] and it has shown that the
relaxation rate G is actually given by

G#2
(ln K)3

K2 +O(
(ln K)2

K2 ) (85)

and thus much smaller than the mean-field predic-
tion, Eq. (84); simulation results are compared
with both the mean field result and with the
prediction from the gap distribution approach,
Eq. (85), in Fig. 16. (It is worth noting that the
difference between a mean-field treatment [89] and
a more detailed description leads to a difference
which only occurs in subdominant terms of the
kinetics.) In addition to the anomalous relaxation
behavior of this model, the power spectrum of
fluctuations exhibits two frequency scales [91]
which could be a general feature of models with
very slow relaxation. Similar power spectra have
been observed in densification of monodisperse
glass beads during a long series of vibrations [93].
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F2
eq= (1−u1−u2)

× exp
�

−
3u2+g(g+2)u1

1−u1−u2

−
(u2+gu1)2

(1−u1−u2)2

n
(89)

The time-dependent coverages obtained by inte-
grating Eq. (86) with Eqs. (88) and (89) agree very
well with numerical simulations of the adsorption
process. For certain parameter values, the model
exhibits an ‘overshoot’ in the time dependent cov-
erage — a phenomenon that has been observed
experimentally.

Adsorbed configurations of a single species that
can adsorb in two or more orientations with
respect to the surface can be considered as a
two-dimensional mixture. Kinetic and isotherms
based on SPT have been developed to describe this
situation [95–97]. The equations presented above
can be readily generalized to continuous multicom-
ponent mixtures and some interesting kinetic phe-
nomena have been reported [98]. Finally, kinetic
equations based on SPT have also been developed
for the spreading model [99].

8. Multilayer formation

The rules of the RSA model and its extensions
discussed thus far allow only for a single adsorbed
layer to be placed on a surface. In fact, a number
of experimental situations exist where adsorption
does not stop at one layer but instead continues
with later arriving particles adhering to previously
adsorbed ones. The fabrication of thin film materi-
als via solution deposition of macromolecular
building blocks is an important example of multi-
layer adsorption and is currently used to make
sensors, superconducting materials, and cathode
ray tubes. The physical, electrical, and optical
properties of these thin film materials depends
strongly on their structure and density. Models are
thus needed to predict thin film structure and
density in terms of the particle properties and
deposition conditions. In this section, we discuss
multilayer adsorption models developed for this
purpose.

A number of lattice and continuum studies of
multilayer deposition have appeared recently.
[7,100,101]. Our work focuses on the first layers
(typically less than 20–30) and incorporates all
three events that can occur when a particle contacts
a growing interface: it may stick to the interface
(i.e. adsorb), it may diffuse away from the interface
(i.e. desorb), or it may remain in contact while
descending further toward the surface (i.e. roll)
[102,103].

Particles are modeled as (D+1)-dimensional
spheres that descend vertically onto a D-dimen-
sional substrate. If a particle lands on the surface,
it remains there permanently. If it lands on a
previously placed particle, an overhang amount d

is calculated either with respect to the surface or to
the contacting particle (see Fig. 8). The overhang
extent is compared with two parameters, an ad-
sorption parameter d1 and a rolling parameter d2.
If dBd1, then the particle will adsorb and remain
permanently in its place. If d1BdBd2, then the
particle will desorb. If d\d2, then the particle will
roll toward the surface and, if its path is un-
blocked, will adsorb to the surface. If the path is
blocked by another particle, then the rolling parti-
cle desorbs. The rationale behind these deposition
rules is that particles landing directly on top of
other particles will tend to adhere more strongly
due to a greater contact area. By adjusting the
values of d1 and d2, one can perhaps mimic most
experimental situations.

In one dimension, an analytical solution is avail-
able for the lowest (surface contacting) layer when
overhangs are calculated with respect to the surface
(Fig. 17). This is of particular importance since in
certain experimental situations, higher layer parti-
cles can be removed by rinsing and changing the
solution conditions. To arrive at the solution, we
introduce the gap distribution function, G(h, t),
defined so that G(h, t)dh is the density of gaps of
length between h and h+dh at time t. The time
evolution of this function obeys the following:

(G(h, t)
((kat)

= − (h+s+2(d1−d2))G(h, t)

+2
& h+d1

h

G(h %, t)dh %+2
&�

h+s

G(h %, t)

+2ka(s−d2)G(h+s, t) (90)
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where ka is the rate of deposition and s is
the particle diameter. By taking G(h, t)=
e−ka(h+s+2(d1−d2))tF(kast)/s2, the integrodifferen-
tial equation reduces to an ordinary differential
equation in t. Its solution is then used to find the
surface density via

(r

((kat)
=
&�

s

(h+s−2d1)G(h, t)dh (91)

For higher layer particles and for particle over-
hang rules, computer simulation is required. The
simulation procedure follows the above deposi-
tion rules and involves a line of length 256s (1-D)
or a plane of size 256s×256s (2-D).

We find that the saturation density of the low-
est layer increases with decreasing d1 or d2. In the
former case, screening of the surface by higher
layer particles is reduced. In the latter case, the
rolling mechanism (a very efficient way to fill the
surface) is enhanced due to the screening effect.
An interesting result is that the radial distribution
function of the lowest layer shows only a weak
correlation between particles and decays to zero
at r=2s [102].

When either d1 or d2 is unity, the use of surface
or particle overhang rules leads to the same result
[104]. Otherwise, particle overhang rules always
result in a more dense lowest layer. 1-D and 2-D
results are qualitatively similar. The density
profile of higher layer particles exhibits density
oscillations whose form may vary markedly de-
pending on the values of the parameters used. For
example, when d1=d2=1, the oscillations decay
within 4 particle diameters of the surface [104],
whereas for d1= .75, d2=1, the oscillations con-
tinue past a height of more than 8 particle diame-
ters (Fig. 18).
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Fig. 17. (a) Depiction of the surface and particle overhangs. (b) Schematic of the three possible events that can occur when an
incoming particle contacts a previously placed particle.
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Fig. 18. Density of higher-layer particles as a function of
height above the surface in two dimensions for different values
of d1 and d2.
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