Master CFP

THÉORIE QUANTIQUE DES CHAMPS

Parcours physique quantique 2006-2007

Feuille 2

1 Les rotations I

Dans l'espace euclidien à 3 dimensions, on considère deux bases $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$ et $(\hat{e}'_1, \hat{e}'_2, \hat{e}'_3)$, la seconde étant obtenue par rotation de la première d'un angle θ autour du vecteur unitaire \hat{n} . On souhaite déterminer comment se transforment les coordonnées d'un vecteur \vec{v} lors de ce changement de référentiel. On introduit la matrice R telle que $v'_i = R_{ij}v_j$ (où l'on utilise la convention d'Einstein sans se soucier de l'altitude des indices car on est dans un espace euclidien).

- 1. On considère le cas simple où \hat{n} correspond au vecteur \hat{e}_3 . Déterminez les éléments R_{ij} .
- 2. R_{ij} doit s'écrire comme une somme de tenseurs de rang deux. Faites la liste des tenseurs qui peuvent intervenir.
- 3. En comparant avec le cas particulier discuté en 1, déterminez le préfacteur apparaissant devant chaque tenseur, et déduisez R_{ij} pour une rotation quelconque.

2 Les rotations II

On souhaite retrouver la formule précédente par une autre méthode. On va utiliser la formule : $R(\theta, \hat{n}) = \exp(i\theta n_a J_a)$, où $J(k)_{ij} = -i\epsilon_{ijk}$.

- 1. Retrouvez les relations de commutation $[J_i, J_i]$.
- **2.** Calculez $(J_a n_a)^2$ et $(J_a n_a)^3$. Que vaut $(J_a n_a)^{\alpha}$, α entier?
- 3. Écrivez le développement en série de Taylor de $R(\theta, \hat{n})$ en puissance de θ^n . Simplifiez votre expression à l'aide des résultats de la question 2. Vous pouvez maintenant exprimer les séries de Taylor à l'aide de fonctions trigonométriques. Comparez l'expression finale à celle obtenue dans l'exercice précédent.

$3 \quad SU(2)$

On rappelle la définition des matrices de Pauli, qui forment une base des matrices hemitiennes de trace nulle :

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- 1. Montrez que $\sigma_i \sigma_j = \delta_{ij} \mathbf{1} + i \epsilon_{ijk} \sigma_k$.
- 2. Montrez que les $\sigma_i/2$ satisfont aux mêmes relations de commutation que les J_i de SO(3).
- **3.** Soit \hat{n} un vecteur unitaire. Calculez $(n_i \sigma_i)^2$. Que vaut $(n_i \sigma_i)^{\alpha}$, α entier?
- 4. Écrivez le développement de Taylor de $\exp(i \theta n_i \frac{\sigma_i}{2})$ en puissance de θ . En utilisant les résultats de la question précédente, simplifiez votre expression.

4 Relation entre SU(2) et SO(3)

Dans cet exercice, on veut approfondir la relation entre SU(2) et SO(3) qui a été signalée en cours. L'idée est d'associer à toute matrice a de SU(2) une rotation qui peut être représentée par une matrice de SO(3). On veut construire explicitement cette relation, et discuter ses propriétés. On introduit la notation "slash" qui sera utile dans la suite : \mathcal{V} est la matrice 2×2 définie par $\mathcal{V} = \sigma_i U_i$ où U_i est la i^e composante du vecteur \vec{U} .

- 1. Soient \vec{U} , \vec{V} et \vec{W} trois vecteurs, calculez $\frac{1}{2} \text{Tr}(\not U \not V)$, $-\frac{i}{2} \text{Tr}(\not U \not V W)$.
- - 3. Montrez que $(U_i')^2 = U_i^2$. À quel type de transformation géométrique ceci correspond?
- **4.** On note $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ une base de l'espace euclidien, et $\{\vec{e}_1', \vec{e}_2', \vec{e}_3'\}$ obtenue après transformation des vecteurs de base¹. Calculez $\text{Tr}(\mathscr{E}_1\mathscr{E}_2\mathscr{E}_3)$. La transformation peut-elle correspondre à une symétrie par rapport à un plan?
- 5. Montrez que lors du changement de base, les composantes d'un vecteur se transforment comme $U'_i = R_{ij}U_j$, $R_{ij} = \hat{e}'_i \cdot \hat{e}_j$.
 - **6.** Exprimez R_{ij} en fonction de a.
- $7\star$. En utilisant la paramétrisation des matrices de SU(2) obtenue dans l'exercice 3, et en utilisant la formule précédente, montrez que l'on retrouve la paramétrisation des matrices de SO(3) obtenue dans les exercices 1 et 2.
- 8. On décide de paramétrer le matrices de SO(3) et SU(2) par un vecteur à 4 composantes $\underline{S} = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \hat{n})$ Vérifiez que ce quadrivecteur est de norme unité (avec une métrique euclidienne). Pour SU(2), les rotations sont représentées par un point sur la sphère à 3 dimensions S_3 plongée dans un espace à 4 dimensions, alors que pour les matrices SO(3), elles sont représentées par un point sur S_3 avec les points diamétralement opposés identifiés. Cet espace s'appelle RP_3 , et peut être vu comme l'hémisphère nord de la sphère S_3 où l'on identifie les points diamétralement opposés de l'équateur.
- 9. Il est difficile de se représenter S_3 . Pour simplifier, on va étudier la différence entre RP_2 et S_2 . Représentez ces deux espaces. Montrez qu'il existe dans RP_2 un chemin fermé qui ne peut pas être continûment déformé en un chemin trivial. Que se passe-t'il si l'on combine (en collant bout à bout) deux chemins topologiquement non triviaux? Que se passe-t'il dans S_2 ?
- 10 \star . Étudiez les chemins fermés non triviaux sur la sphère S_1 .

5 Décomposition en représentations irréductibles

On considère un tenseur T_{ij} (i variant de 1 à 3) qui se transforme, lors d'un changement de base comme : $T'_{ij} = R_{ik}R_{jl}T_{kl}$ où R est une matrice de SO(3). On veut mettre en évidence que certaines combinaisons des composantes du tenseur se transforment entre elles, sans influencer d'autres combinaisons.

- 1. Vérifiez que la trace de T est invariant. Conclusion?
- 2. Vérifiez que les composantes de la partie antisymétrique $A_{ij} = \frac{1}{2}(T_{ij} T_{ji})$ se transforment entre eux. On introduit $V_i = \epsilon_{ijk}A_{jk}$. Comment se transforment ces quantités sous une rotation infinitésimale?
- **3.** Vérifiez que les composantes de la partie symétrique $S_{ij} = \frac{1}{2}(T_{ij} + T_{ji})$ se transforment entre elles.
- 4. Pour construire une représentation irréductible à partir de S, il faut enlever la trace (qui forme une représentation irréductible). On introduit donc $s_1 = S_{11} S_{33}$, $s_2 = S_{12}$, $s_3 = S_{13}$, $s_4 = S_{22} S_{33}$ et

¹Comme on travaille dans le point de vue passif, on utilise la transformation précédente pour construire la nouvelle base en fonction de l'ancienne. Ainsi $a^{\dagger} \not\in a = \not\in a$. En revanche, les vecteurs physiques ne sont pas changés.

 $s_5 = S_{23}$ qui forment une base pour les tenseurs symétriques de trace nulle. Déterminez les générateurs J_i des rotations dans les directions x, y et z dans cette base. Vérifiez qu'on retrouve les relations de commutation attendues.

5. Calculez J_i^2 quel est le spin de cette représentation?

6 Permutation de trois éléments

On considère l'ensemble des permutations de trois éléments. On note {213} l'opération de permutation des deux premiers éléments, {231} l'opération où 1 est remplacé par 2, 2 par 3 et 3 par 1, etc.

- 1. Vérifiez que l'ensemble des permutations muni de la loi de composition forme un groupe. Combien y a-t'il d'éléments? Est-ce un groupe commutatif?
- **2.** Une représentation naturelle de ce groupe est donné par des matrices 3×3 , telles que $\{213\}$ est associé à :

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

etc. On se demande si cette représentation est réductible. Pour cela, vérifiez qu'il existe un vecteur inchangé par toutes les matrices de la représentation. Conclusion?

- ${\bf 3.}$ Construisez une matrice unitaire S correspondant à un changement de base, telle que dans la nouvelle base la représentation est bloc-diagonale.
- $4\star$. Quelle interprétation géométrique peut-on donner à notre groupe? Comment interpréter le fait que la représentation est réductible?