

Quantum coherent effects in the hydrodynamics of low-temperature 1D gases

stefano.scopa@phys.ens.fr CNRS & LPENS, Paris

1 April 2025 – LPTMC, Paris

Stefano Scopa

Invitation to nonequilibrium physics

Statistical Mechanics

*describe many-body quantum systems

exponential complexity ~ e^N

1 spín: $|\uparrow\rangle$ or $|\downarrow\rangle$ states N spins on a lattice $\sim 2^N$ states $2^{20} = 1 \ 048 \ 576$

Equilibrium Physics:

Statistical Ensembles 🗸

 $\hat{\rho} \propto e^{-\sum_n \beta_n \hat{Q}_n}$

Conserved quantities

Invitation to nonequilibrium physics

Nonequilibrium Physics: There is no unique framework for nonequilibrium processes

Quantum quench:

- Prepare the system at equilibrium of $\hat{H}(V_0)$
- Sudden change of $\hat{H}(V_0) \rightarrow \hat{H}(V_1)$

$$|\mathrm{GS}\rangle \longmapsto |\Psi_t\rangle = e^{-itt}$$

 $\hat{H}|\mathsf{GS}\rangle$

Emergent Hydrodynamics

Look for an **effective description** at large space & time scales

Scales separation hypothesis

Assume local stat phys ensembles

Local charges

$$\langle \hat{Q}_n \rangle = \int dx \, \mathbf{q}_n(x, t)$$

<u>Current (*need eq of state*)</u>

$$\mathbf{j}_n = \mathbb{F}[\{\mathbf{q}\}, t]$$

IV. Continuity equation
$$\partial_t \mathbf{q}_n + \partial_x \mathbf{j}_n = 0$$

Integrable models

Importance of exact solutions \leftrightarrow infer general mechanisms on nonequilibrium physics

- Diffusive transport
- Ballistic transport \rightarrow Integrable models

- Models featuring ∞ cons. laws $[\hat{H}, \hat{Q}_n] = 0$

- Many-body wavefunction: $|\Psi\rangle = |\theta_1, ..., \theta_N\rangle$

Thermodynamic limit:

Realizations in Cold-Atom Experiments

<u>Ultracold atom gases</u>

- Quasi-1D geometries
- tunable interaction and trapping potentials
- temperatures up to nK

Reference model:

Lieb-Liniger model [Lieb, Liniger 1963]

*Describe Bose gases in 1D with contact (repulsive) interactions

$$\hat{H} = -\frac{\hbar^2}{2m} \sum_{i=1}^N \frac{\partial^2}{\partial x_i^2} + g \sum_{1 \le i < j \le N} \delta(x_i - x_j) + \sum_{i=1}^N V(x_i)$$

Atom chips

magnetic fields generated by micro-fabricated wire patterns on a chip to trap and manipulate cold atoms very close to the chip surface

Optical lattices

interfering laser beams used to create periodic potentials that trap neutral atoms at the (anti)nodes of the standing wave. This generates an array of quasi 1D tubes

Setup of the problem

• Quantum coherent effects (e.g. one-body correlations and entanglement)

Why?

Goal:

- **Theory prediction** for some experimental measurm. (beyond current hydrodynamic results)
- Better understand the nonequilibrium dynamics of low-temperature 1D gases

Protocol:

- Prepare the system at equilibrium with some potential $V_0(x)$

Low temperature: $|\Psi(0)\rangle \approx |\mathbf{GS}\rangle$

- At t = 0 sudden change of the confining trap

$$|\operatorname{GS}\rangle \longmapsto |\Psi(t)\rangle = e^{-it\hat{H}}|\operatorname{GS}\rangle$$

nonequilibrium dynamics

Hydrodynamics of Integrable models

\swarrow Integrability is lost $V \neq 0 \rightarrow \text{Emergent Hydrodynamics}$
\bigwedge ∞ cons. laws: $\partial_t \mathbf{q}_n + \partial_x \mathbf{j}_n = 0$ not a good strategy!

Phase-space distribution of quasiparticles = 0:

Phase-space dynamics \rightarrow Euler equation

$$(\partial_t + v^{\text{eff}}[n]\partial_x)n_t(x,\theta) = 0$$

effective velocity :

(t > 0 : t

$$v^{\text{eff}}(\theta) = \theta - \int d\theta' \rho_s(\theta') n(\theta') \varphi(\theta - \theta') [v^{\text{eff}}(\theta) - v^{\text{eff}}(\theta')]$$

[Bertini et al, 1605.09790] [C.-Alvaredo et al, 1605.07331]

X

delay

 $\boldsymbol{\chi}$

Missing Quantum Fluctuations

Missing fluctuations in the hydrodynamic theory

- Equal-time correlation functions
- Quantum corrections to charge/currents profiles

Incorporating Quantum Fluctuations

back to equilibrium:

Ground state of integrable models

- Fermionic quasiparticles \rightarrow Fermi sea
- Relevant quantum fluctuations are particle-hole excitations
- effective description with fluctuating fields at the Fermi edges

• Bosonization
$$\hat{\psi}^{\dagger} = B_0 : \exp\left(\frac{i\hat{\varphi} + i\hat{\varphi}}{2\sqrt{K}}\right) : + \dots$$

+ Wick's theorem:

$$g_1(x) = \langle \hat{\psi}^{\dagger}(x)\hat{\psi}(0)\rangle \sim |x|$$

K =compressibility of the gas

 $\hat{\varphi}, \hat{\varphi} = \text{fluctuating fields with 1D effective Hamiltonian}$

• $\langle \hat{\varphi}(x)\hat{\varphi}(x')\rangle = \log[-i(x-x')]$: 2pt function fixed by CFT

*algebraic decay of correlations

Incorporating Quantum Fluctuations

Quantum Fluctuating Hydrodynamics

Incorporating Quantum Fluctuations

(2) t = 0: Ground state of inhomogeneous gas

$$\nabla 4K(\mathbf{x}) \nabla G_0^{[\Theta\Theta]}(\mathbf{x},\mathbf{y}) =$$

$$g_1(x,y) = e^{-G_0^{[\Theta\Theta]}(s_x,s_y)} \prod_{z=x,y} \frac{|B_0(z)|^2 \rho(z)^{\frac{2K(z)-1}{4K(z)}}}{(v_z)^{\frac{1}{4K(z)}}} e^{-\frac{1}{4K(z)}}$$

0.50

0.25

0.00 **-**0.0

 \bar{g}_1

1 n K

0.2

0.1

0.0

0.3 *x/R*

0.0

0.4

0.2

0.5

0.4

0.6

The strong repulsion limit

- <u>Tonks-Girardeau limit ($K \equiv 1$)</u>
- gas of hardcore bosons
- $\langle \hat{\varphi}(s)\hat{\varphi}(s') \rangle =$ boundary CFT in *s* space

 $\langle \hat{\varphi}(s)\hat{\varphi}(s') \rangle_{t=0} = \langle \hat{\varphi}(s)\hat{\varphi}(s') \rangle_{t>0}$

 $x_t(s)$

• Gaussian correlations are comovingly transported with the background:

analytical calculations

Bosonization Out of Equilibrium

Summarizing:

One-Body Correlations and Momentum distribution

Entanglement dynamics

$$S_{1}(t,x) = \lim_{n \to 1} \frac{1}{1-n} \log \left[\left| \prod_{\alpha} \frac{dx_{t}(s_{\alpha})}{ds} \right|^{-\Delta_{n}} \langle \prod_{\alpha} \hat{\tau}_{n}^{+}(s_{\alpha}) \hat{\tau}_{n}^{-}(s_{\alpha+1}) \rangle \right] +$$

$$S_{1}(|x| \le t) = \frac{1}{6} \log \left(\frac{L}{2\pi} \sqrt{\left| \frac{x}{t} (1 - \frac{x^{2}}{t^{2}}) \right|} \left| \sqrt{1 + \sqrt{1 - \frac{x^{2}}{t^{2}}}} - \operatorname{sgn}(x) \sqrt{1 - \sqrt{1 - \frac{x^{2}}{t^{2}}}} \right| \left| \sin \frac{\pi(x - t)}{2t} \right|$$

Summary and Conclusions

Study the nonequilibrium dynamics of one-dimensional gases through hydrodynamic methods

One-dimensional Bose gas: quasi-integrable description \rightarrow **Generalized Hydrodynamics** -

Quantitative results for local transport properties (density and currents)

X Non-local correlations coming from quantum fluctuations

Quantum Fluctuating theory on top of the hydrodynamic background **

One-body correlations and Momentum distribution out of equilibrium

Entanglement dynamics

TNANK