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Motivation and introduction



Extreme events: rare, but high impact. . .
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. . . or maybe not so rare on a different timescale
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Extreme events in statistical physics: Intermittency in fluids

Incompressible 3D Navier–Stokes turbulence at high Re dominated by

intense localized events of vortex stretching and energy dissipation

(Moisy, Jiménez 2004)

(Buaria, Pumir, Bodenschatz, Yeung 2019)

(Renner, Peinke, Friedrich 2000)

Goal: Use these structures to calculate tail statistics in turbulence

Began with: Gurarie, Migdal, Falkovich, Kolokolov, Lebedev, Chernykh, Stepanov, . . . in 1990s
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Extreme events in statistical physics: interface growth

Task: Find detailed height statistics for Kardar–Parisi–Zhang (KPZ) eq.
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h
(x
,t

)

t = 0

t = T

∂th = ν∂xxh + λ
2
(∂xh)

2 +
√
Dη

(Yunker, Lohr, Still, Borodin,

Durian, Yodh 2013)
(Huergo, Pasquale, Bolzán, Arvia 2010)

(Le Doussal, Majumdar, Schehr 2016)

Question: How do non-Gaussian statistics start to arise at small times t?

Studied by: Kolokolov, Korshunov, Meerson, Katzav, Vilenkin, Kamenev, Sasorov, Smith,

Krajenbrink, Le Doussal, . . . since 2010s
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Extreme events in fluid dynamics: oil spill events

Thunder Horse PDQ offshore oil platform

After Hurricane Dennis 2005
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• pollutant diffuses & advected by currents

• limited measurements ⇒ add randomness

• what is P[pollutant concentration ≥ z ]?
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Extreme events in fluid dynamics: oil spill events

2d advection-diffusion equation for pollutant concentration c(x , t)

∂tc = −(v(x) · ∇)c︸ ︷︷ ︸
advection

−(w(x , t)⊙∇)c︸ ︷︷ ︸
random advection

+D0∆c︸ ︷︷ ︸
diffusion

+s︸︷︷︸
source

with v given, w Gaussian random vector field (white-in-time, smooth in space)
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c(x ,T ) for w = 0

⇒ want to estimate tail probability P(z) := P[c(target,T ) ≥ z ] ≪ 1
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Estimating rare event probabilities P[F (η) ≥ z ] ≪ 1

1. rare event sampling

P[F (η) ≥ z ] ≈ 1

N

N∑

i=1

1{F (ηi )≥z}

⇒ use importance sampling or

subset simulation

(Chakroborty et al. 2023)

2. asymptotic approximations
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Set of noise realizations w/ F [η] ≥ z

Most likely point ηz
η ≡ 0

Parabolic approximation of {F ≥ z}

large deviation theory (LDT),

instanton calculus

⇒ systematic; provides insights into

physics of rare events
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LDT: how it works in finite dimensions
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Set of noise realizations w/ F [η] ≥ z

Most likely point ηz
η ≡ 0

Setup:

• η ∼ N (0, Id) random vector in RN

• want to calculate P[F (η) ≥ z ] ≪ 1

• approximate event set by most likely

point

Requires:

1. most likely point ηz

Optimize ηz = argmin 1
2∥η∥2 s.t. F (η) = z , then approximate

P(z) ≍ exp(−I (z))

log-asymptotic estimate with rate function I (z) = 1
2∥ηz∥2
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Precise LDT: how it works in finite dimensions
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Set of noise realizations w/ F [η] ≥ z

Most likely point ηz
η ≡ 0

Parabolic approximation of {F ≥ z}

Setup:

• η ∼ N (0, Id) random vector in RN

• want to calculate P[F (η) ≥ z ] ≪ 1

• approximate event set by paraboloid

Requires:

1. most likely point ηz

2. curvatures at ηz via ∇2F (ηz)

First optimize ηz = argmin 1
2∥η∥2 s.t. F (η) = z , then:

P(z) ∼ (2π)−1/2C (z) exp(−I (z))

I (z) = 1
2∥ηz∥2 & C (z) =

[
2I (z) det

(
Id− λzprη⊥

z
∇2F (ηz)prη⊥

z

)]−1/2
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Central question of this project

Can we calculate the same kind of precise LDT estimates in infinite

dimensions, so for Langevin equations/field theories?

⇒ develop robust&general methods i.p. for prefactor computation

T. Schorlepp (CIMS, NYU) Precise LDT for weak noise theories 11



Technical results and details



Setup: Extreme events for Langevin equations via LDT

Consider the Langevin equation



ϕ̇ = b (ϕ) +

√
εσ(ϕ)η(t) ,

ϕ(0) = ϕ0 ∈ Rn ,

with small ε and final-time observable f (ϕ(T )) ∈ R.
Our goal:

• Precise estimate for tail probability

initial position

sample paths

final positions

event set

f−1 ([z,∞))

mean

sample paths

instanton

initial position

event set

f−1 ([z,∞))

P(z)
ε↓0∼ (ε/2π)1/2C (z) exp (−S [ϕz ]/ε)

of f (ϕ(T )) with leading pre-exponential term C (z)

• Closed-form result for C (z), can evaluate for field theories n → ∞
• For non-gradient system b ̸= −∇V , finite times T < ∞

T. Schorlepp (CIMS, NYU) Precise LDT for weak noise theories 12



Setup: Extreme events for Langevin equations via LDT

Consider the Langevin equation



ϕ̇ = b (ϕ) +

√
εσ(ϕ)η(t) ,

ϕ(0) = ϕ0 ∈ Rn ,

with small ε and final-time observable f (ϕ(T )) ∈ R.
Our goal:

• Precise estimate for tail probability

initial position

sample paths

final positions

event set

f−1 ([z,∞))

mean

sample paths

instanton

initial position

event set

f−1 ([z,∞))

P(z)
ε↓0∼ (ε/2π)1/2C (z) exp (−S [ϕz ]/ε)

of f (ϕ(T )) with leading pre-exponential term C (z)

• Closed-form result for C (z), can evaluate for field theories n → ∞
• For non-gradient system b ̸= −∇V , finite times T < ∞

initial position

sample paths

final positions

event set

f−1 ([z,∞))

T. Schorlepp (CIMS, NYU) Precise LDT for weak noise theories 12



Setup: Extreme events for Langevin equations via LDT

Consider the Langevin equation



ϕ̇ = b (ϕ) +

√
εσ(ϕ)η(t) ,

ϕ(0) = ϕ0 ∈ Rn ,

with small ε and final-time observable f (ϕ(T )) ∈ R.
Our goal:

• Precise estimate for tail probability

initial position

sample paths

final positions

event set

f−1 ([z,∞))

mean

sample paths

instanton

initial position

event set

f−1 ([z,∞))

P(z)
ε↓0∼ (ε/2π)1/2C (z) exp (−S [ϕz ]/ε)

of f (ϕ(T )) with leading pre-exponential term C (z)

• Closed-form result for C (z), can evaluate for field theories n → ∞
• For non-gradient system b ̸= −∇V , finite times T < ∞

mean

sample paths

instanton

initial position

event set

f−1 ([z,∞))

T. Schorlepp (CIMS, NYU) Precise LDT for weak noise theories 12



The approximation: Instanton & Gaussian fluctuations

Semiclass. expansion of path integral for PDF ρ(z) = E[δ(f (ϕ(T ))− z)]

ρ(z) =

∫

ϕ(0)=ϕ0

Dϕ δ(f (ϕ(T ))− z)J[ϕ] exp (−S [ϕ]/ε)

Step 1: instanton
A

B

Find ϕz = argminϕ S [ϕ]

under boundary conditions

⇒ ρ(z) ≍ exp (−S [ϕz ]/ε)

Step 2: fluctuations
A

B

Expand path integral to

second order around ϕz

⇒ ρ(z) ∼ N J[ϕz ]e
−S
ε /
√
Det(δ2S)
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Our contributions: optimization algorithms and determinants

Step 1: instanton
A

B

Formulated minimization as

optimal control problem

minη
{
S [η]− λ(f (ϕ[η](T ))− z)

+µ
2 (f (ϕ[η](T ))− z)2

}

to automate, apply to non-convex

settings, and scale to large n

Step 2: fluctuations
A

B

Derived 2 strategies to compute

prefactor C (z) in practice:

(i) solve n × n matrix Riccati

diff. eq. initial value problem

(ii) iteratively find largest

eigenvalues for Fredholm det.

Extended results to zero modes

⇒ instanton calc. more robust, prefactor calc. now possible at all
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Details on the prefactor: (i) Riccati approach

Idea: Derive diff. eq. for covariance matrix of fluctuations around ϕz

Riccati equation for Q : [0,T ] → Rn×n with Q(0) = 0 and

Q̇ = σσ⊤ + Q∇b (ϕz)
⊤ +∇b (ϕz)Q + Q

〈
∇2b(ϕz), θz

〉
Q ,

(for additive noise σ = const., generalization to multiplicative noise straightforward) s.t.

C (z) = |λz |−1 exp

{
1

2

∫ T

0

tr
[〈
∇2b(ϕz), θz

〉
Q
]
dt

}
×

×
[
det (Uz)

〈
∇f (ϕz(T )),Q(T )U−1

z ∇f (ϕz(T ))
〉]−1/2

Many roads to Rome: WKB analysis for KBE, Feynman–Kac, path

integral discretization, Gel’fand–Yaglom method, Forman’s theorem

See: Maier, Stein 1996; Lehmann, Reimann, Hänggi 2003; TS, Grafke, Grauer 2021; Bouchet, Reygner 2022;

TS, Grafke, Grauer 2023; Grafke, Schäfer, Vanden-Eijnden 2024; Rosinberg, Tarjus, Munakata 2024
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Discussion of the prefactor: (i) Riccati approach

Properties:

• n × n symmetric matrix diff. eq. for Langevin eq. in Rn

• initial-value problem, solve once

• nonlinear, but can linearize by Radon transformation Q = γζ−1

Advantages :)

• can (always formally) solve exactly via time-ordered exponential

• can solve exactly for simple enough instanton

• can use perturbation theory in additional small parameters

Disadvantages :(

• numerical time integration can be tricky (pseudo-singularities)

• very hard to use in high dimensions n ≫ 1, i.e. beyond (1+1) dim.

field theories ⇒ n × n too large, and γ, ζ blow up
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Details on the prefactor: (ii) Fredholm determinant

Analogous to finite dim. for additive noise



ϕ̇ = b (ϕ) + ση ,

ϕ(0) = ϕ0 ∈ Rn ,

with e.g. final-time observable f (ϕ(T )) ∈ R.
Then with F : η 7→ f (ϕ(T )) for η = dW /dt:

• keep noise variable as main object of interest:
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Set of noise realizations w/ F [η] ≥ z

Most likely point ηz
η ≡ 0

Parabolic approximation of {F ≥ z}

P(z) ≈ (2π)−1/2C (z) exp(−I (z))

with I (z) = 1
2∥ηz∥2L2 ; where ηz = argmin 1

2∥η∥2L2 s.t. F (η) = z

• prefactor with Fredholm determinant of trace-class operator

C (z) =

[
2I (z) det

(
Id− λzprη⊥

z

δ2F

δη2

∣∣∣∣
ηz

prη⊥
z

)]−1/2

T. Schorlepp (CIMS, NYU) Precise LDT for weak noise theories 17



Details on the prefactor: (ii) Fredholm determinant

This prefactor is easy to evaluate numerically, even for very large n!!!

C (z) =

[
2I (z) det

(
Id− λzpr

δ2F

δη2

∣∣∣∣
ηz

pr

)]−1/2

≈
[
2I (z)

M∏

i=1

(1− µi )

]−1/2

Need to find largest eigenvalues µi of (projected) second variation of

noise-to-observable map F , can do that iteratively.

δ2F

δη2

∣∣∣∣
ηz

δη = σ⊤ζ

with

{
γ̇ = ∇b(ϕz)γ + σδη ,

ζ̇ = −
〈
∇2b(ϕz), θz

〉
γ −∇b⊤(ϕz)ζ ,

&

{
γ(0) = 0 ,

ζ(T ) = λz∇2f (ϕz(T ))γ(T ) .

see also: Bureković, Schäfer, Grauer 2024, for an application to stochastic NLS
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What about multiplicative noise? arXiv:2502.20114 (2025)

Now consider



ϕ̇ = b (ϕ) + σ(ϕ)η ,

ϕ(0) = ϕ0 ∈ Rn ,

• still have P(z) ≈ (2π)−1/2C (z) exp(−I (z)) with same I (z)

• BUT: Hessian A = δ2F/δη2 no longer guaranteed to be trace-class!

A is still Hilbert–Schmidt; then natural replacement of Fredholm

determinant is Carleman–Fredholm determinant

det2(Id− A) := det ((Id− A) exp(A))

[think det2(Id− A) ≈ det ((Id− A)(Id + A)) = det
(
Id− A2

)
]

⇒ generalize C (z) w/ det2 (cf. Ben Arous (1988)), idea: ± trA counter term
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Instantons and fluctuations can be observed in practice
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Applications of the theory



Application: Gradient statistics in viscous 1D Burgers eq.

Burgers eq. for u : [0, L]× [0,T ] → R with stochastic large-scale forcing

{
∂tu + u∂xu − ∂xxu =

√
εσ ∗ η ,

u(·, 0) = 0

Shock formation by nonlinear advection

(Feo and Celico 2021)

PDF of ∂xu(x = 0, t = T )
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Gradient statistics in 1D Burgers: instanton computation

min
η,u

1

2

∫ T

0

dt

∫ L

0

dx η(x , t)2 s.t.





∂tu + u∂xu − ∂xxu = σ ∗ η ,
u(·, 0) = 0 ,

∂xu(0,T ) = z

Instanton fields
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⇒ log-asymptotic PDF estimate ∝ exp {−S [uz ]/ε} , fit constant prefactor

T. Schorlepp (CIMS, NYU) Precise LDT for weak noise theories 22



Gradient statistics in 1D Burgers: prefactor computation

instanton instanton + fluctuations

now possible
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∂tQ(x , y , t) = σ∗2(x − y)− [∂x (uz(x)·) + ∂y (uz(y)·)]Q(x , y , t)

+ [∂xx + ∂yy ]Q(x , y , t) +

∫ L

0

Q(x , x ′, t)∂x′pz(x
′, t)Q(x ′, y , t)dx ′
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Application: Extreme average growth events in 1D KPZ eq.

Consider KPZ eq. ∂th = ν∂xxh + λ
2 (∂xh)

2 +
√
Dη on ring of length L

with h(x , 0) = 0, and analyze tail statistics of 1
L

∫ L

0
h(x ,T )dx at small T .

Instantons (with multiple DPTs here, depending on L):

Spatially uniform growth Soliton

(Joint work with P. Sasorov and B. Meerson; further analysis of DPT with O. Shpielberg)
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Application: Extreme average growth events in 1D KPZ eq.

Rate function at small L (2nd order dynamical phase transition to slight modulation):
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Interesting L-z phase diagram in system, but no time to talk about it
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Application: Extreme average growth events in 1D KPZ eq.

Gaussian fluctuations at small L after Cole–Hopf transform

(analytical result below DPT, numerical result including zero mode w/ Riccati afterwards):
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2d advection-diffusion example: reminder

∂tc = −(v(x) · ∇)c︸ ︷︷ ︸
advection

−(w(x , t)⊙∇)c︸ ︷︷ ︸
random advection

+D0∆c︸ ︷︷ ︸
diffusion

+s︸︷︷︸
source

, P[c(target,T ) ≥ z ] =?
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First: optimization, finding the instanton
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Then: computing prefactor C (z) as Carleman–Fredholm det
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Eigenvalues of prη⊥z Aλzprη⊥z for z = 0.15
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1− µ(i)

z

)
exp

{
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nx = 64, nt = 512

nx = 128, nt = 1024

nx = 256, nt = 2048

∝ i−1

Use dominant eigenvalues µi

det2(Id− A) ≈
M∏

i=1

(1− µi )e
µi

found iteratively and matrix-free

with 2nd order adjoints in JAX

scaling µi ∝ 1/i , indeed not trace-class but Hilbert–Schmidt
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Resulting estimates compared to direct sampling
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T. Schorlepp (CIMS, NYU) Precise LDT for weak noise theories 30



Application: Extreme strain events in 3D Navier–Stokes eq.

Step 1: Find instanton
(most probable velocity field u in 3D space and

time leading to given observable value z

starting from u(·, t = 0) = 0)

−100 −80 −60 −40 −20 0 20 40 60

z = ∂3u3(x = 0, t = T )

0

1
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3

S
[u

z
]

×104

C
F B

D
E

A

3D code

Axisymmetric 2D code

A: ∂3u3(0, T ) = 19.0 B: ∂3u3(0, T ) = 40.0 C: ∂3u3(0, T ) = 46.4

D: ∂3u3(0, T ) = −45.4 E: ∂3u3(0, T ) = −48.5 F: ∂3u3(0, T ) = −81.4

Then: Results for

∂3u3(0,T ) = −25
(including fluctuations)
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positive eigenvalues
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instanton ∇ × uz (·, T ) spectrum of second variation dominant fluctuation

⇒ correct prediction P[∂3u3(0,T ) ≤ −25] ≈ 1.5 · 10−5 at Reλ = 6.4
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Conclusion



Conclusion & Outlook

Results:

• Robust numerical optimization to find instantons

• Gaussian fluctuations computed by Riccati eq. or Fredholm det.

• Also for non-unique instantons w/ zero modes

• For non-eq. statistical field theories such as Navier–Stokes and KPZ,

good agreement to Monte Carlo

What’s next?

• Asymptotic analytical predictions/scaling of prefactor

• Higher-order fluctuations around instanton: loop expansion or FRG

• Extend to more general stochastic and dynamical systems

• Spectrum of Hessians: spectral gaps & asymptotic density of states?

• Incorporating renormalization of field theory into prefactor
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Thank you for your attention!

instanton instanton + fluctuations

now easy
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Read more e.g. in: T. Schorlepp and T. Grafke (2025) “Scalability of

the second-order reliability method for stochastic differential

equations with multiplicative noise” (arXiv:2502.20114)
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