Precise large deviations for statistical field theories with weak noise

LPTMC seminar, 03/25/2025

Timo Schorlepp

Courant Institute of Mathematical Sciences, New York University

Collaborators: Tobias Grafke (Warwick), Rainer Grauer (RUB), Shanyin Tong (Columbia), Georg Stadler (CIMS)

based on: J. Phys. A: Math. Theor. 54 235003 (2021) J. Stat. Phys. 190, 50 (2023) Stat. Comput. 33, 137 (2023) arXiv:2502.20114 (2025)

- 1. Motivation and introduction
- 2. Technical results and details
- 3. Applications of the theory

(about 15 minutes & 10 slides each)

T. Schorlepp (CIMS, NYU)

Precise LDT for weak noise theories

1

Motivation and introduction

Extreme events: rare, but high impact...

T. Schorlepp (CIMS, NYU)

... or maybe not so rare on a different timescale

T. Schorlepp (CIMS, NYU)

Extreme events in statistical physics: Intermittency in fluids

Incompressible 3D Navier–Stokes turbulence at high Re dominated by intense localized events of vortex stretching and energy dissipation

⁽Buaria, Pumir, Bodenschatz, Yeung 2019)

Goal: Use these structures to calculate tail statistics in turbulence Began with: Gurarie, Migdal, Falkovich, Kolokolov, Lebedev, Chernykh, Stepanov, ...in 1990s

T. Schorlepp (CIMS, NYU)

Extreme events in statistical physics: interface growth

Task: Find detailed height statistics for Kardar-Parisi-Zhang (KPZ) eq.

Question: How do non-Gaussian statistics start to arise at small times t?

Studied by: Kolokolov, Korshunov, Meerson, Katzav, Vilenkin, Kamenev, Sasorov, Smith, Krajenbrink, Le Doussal, ... since 2010s

T. Schorlepp (CIMS, NYU)

Extreme events in fluid dynamics: oil spill events

Thunder Horse PDQ offshore oil platform

After Hurricane Dennis 2005

- pollutant diffuses & advected by currents
- limited measurements \Rightarrow add randomness
- what is ℙ[pollutant concentration ≥ z]?

T. Schorlepp (CIMS, NYU)

Extreme events in fluid dynamics: oil spill events

2d advection-diffusion equation for pollutant concentration c(x, t)

with v given, w Gaussian random vector field (white-in-time, smooth in space)

 \Rightarrow want to estimate tail probability $P(z) := \mathbb{P}[c(target, T) \ge z] \ll 1$

T. Schorlepp (CIMS, NYU)

Estimating rare event probabilities $\mathbb{P}[F(\eta) \ge z] \ll 1$

T. Schorlepp (CIMS, NYU)

2. asymptotic approximations

large deviation theory (LDT), instanton calculus

⇒ systematic; provides insights into physics of rare events

LDT: how it works in finite dimensions

Setup:

- $\eta \sim \mathcal{N}(0, \mathsf{Id})$ random vector in \mathbb{R}^N
- want to calculate $\mathbb{P}[F(\eta) \ge z] \ll 1$
- approximate event set by most likely point

Requires:

1. most likely point η_z

Optimize $\eta_z = \arg \min \frac{1}{2} ||\eta||^2$ s.t. $F(\eta) = z$, then approximate

$$P(z) \asymp \exp(-I(z))$$

log-asymptotic estimate with rate function $I(z) = \frac{1}{2} \|\eta_z\|^2$

T. Schorlepp (CIMS, NYU)

Precise LDT: how it works in finite dimensions

Setup:

- $\eta \sim \mathcal{N}(0, \mathsf{Id})$ random vector in \mathbb{R}^N
- want to calculate $\mathbb{P}[F(\eta) \ge z] \ll 1$
- approximate event set by paraboloid Requires:
 - 1. most likely point η_z
 - 2. curvatures at η_z via $\nabla^2 F(\eta_z)$

First optimize $\eta_z = \arg \min \frac{1}{2} ||\eta||^2$ s.t. $F(\eta) = z$, **then**:

$$P(z) \sim (2\pi)^{-1/2} C(z) \exp(-I(z))$$

$$I(z) = \frac{1}{2} \|\eta_z\|^2 \quad \& \quad C(z) = \left[2I(z) \det\left(\mathsf{Id} - \lambda_z \mathsf{pr}_{\eta_z^{\perp}} \nabla^2 F(\eta_z) \mathsf{pr}_{\eta_z^{\perp}}\right)\right]^{-1/2}$$

T. Schorlepp (CIMS, NYU)

Can we calculate the same kind of **precise LDT estimates** in infinite dimensions, so for Langevin equations/field theories?

 \Rightarrow develop robust&general methods i.p. for prefactor computation

T. Schorlepp (CIMS, NYU)

Technical results and details

Setup: Extreme events for Langevin equations via LDT

Consider the Langevin equation

$$\begin{cases} \dot{\phi} &= b(\phi) + \sqrt{\varepsilon}\sigma(\phi)\eta(t) \,, \\ \phi(0) &= \phi_0 \in \mathbb{R}^n \,, \end{cases}$$

with small ε and final-time observable $f(\phi(T)) \in \mathbb{R}$. Our goal:

• Precise estimate for tail probability

$$P(z) \stackrel{\varepsilon\downarrow 0}{\sim} (\varepsilon/2\pi)^{1/2} C(z) \exp\left(-S[\phi_z]/\varepsilon\right)$$

of $f(\phi(T))$ with leading **pre-exponential** term C(z)

- Closed-form result for C(z), can evaluate for field theories $n \to \infty$
- For non-gradient system $b \neq -\nabla V$, finite times $T < \infty$

Setup: Extreme events for Langevin equations via LDT

T. Schorlepp (CIMS, NYU)

Setup: Extreme events for Langevin equations via LDT

T. Schorlepp (CIMS, NYU)

Semiclass. expansion of path integral for PDF $\rho(z) = \mathbb{E}[\delta(f(\phi(T)) - z)]$

$$\rho(z) = \int_{\phi(0)=\phi_0} \mathscr{D}\phi \ \delta(f(\phi(T)) - z) J[\phi] \exp\left(-S[\phi]/\varepsilon\right)$$

Expand path integral to second order around ϕ_z $\Rightarrow \rho(z) \sim \mathcal{N}J[\phi_z]e^{-\frac{S}{\varepsilon}}/\sqrt{\text{Det}(\delta^2 S)}$

T. Schorlepp (CIMS, NYU)

Our contributions: optimization algorithms and determinants

Formulated minimization as optimal control problem

$$\begin{split} \min_{\eta} \left\{ S[\eta] - \lambda(f(\phi[\eta](\mathcal{T})) - z) \right. \\ \left. + \frac{\mu}{2}(f(\phi[\eta](\mathcal{T})) - z)^2 \right\} \end{split}$$

to automate, apply to non-convex settings, and scale to large n

Derived 2 strategies to **compute prefactor** C(z) in practice:

- (i) solve n × n matrix Riccati
 diff. eq. initial value problem
- (ii) iteratively find largest eigenvalues for Fredholm det.

Extended results to zero modes

 \Rightarrow instanton calc. more robust, prefactor calc. now possible at all

T. Schorlepp (CIMS, NYU)

Details on the prefactor: (i) Riccati approach

Idea: Derive diff. eq. for covariance matrix of fluctuations around ϕ_z

Riccati equation for $Q: [0, T] \rightarrow \mathbb{R}^{n \times n}$ with Q(0) = 0 and

$$\dot{Q} = \sigma \sigma^{\top} + Q \nabla b(\phi_z)^{\top} + \nabla b(\phi_z) Q + Q \left\langle \nabla^2 b(\phi_z), \theta_z \right\rangle Q$$

(for additive noise $\sigma = \text{const.}$, generalization to multiplicative noise straightforward) S.t.

$$C(z) = |\lambda_z|^{-1} \exp\left\{\frac{1}{2} \int_0^T \operatorname{tr}\left[\langle \nabla^2 b(\phi_z), \theta_z \rangle Q\right] \mathrm{d}t\right\} \times \\ \times \left[\det\left(U_z\right) \langle \nabla f(\phi_z(T)), Q(T) U_z^{-1} \nabla f(\phi_z(T)) \rangle\right]^{-1/2}$$

Many roads to Rome: WKB analysis for KBE, Feynman–Kac, path integral discretization, Gel'fand–Yaglom method, Forman's theorem

See: Maier, Stein 1996; Lehmann, Reimann, Hänggi 2003; TS, Grafke, Grauer 2021; Bouchet, Reygner 2022; TS, Grafke, Grauer 2023; Grafke, Schäfer, Vanden-Eijnden 2024; Rosinberg, Tarjus, Munakata 2024

T. Schorlepp (CIMS, NYU)

Properties:

- $n \times n$ symmetric matrix diff. eq. for Langevin eq. in \mathbb{R}^n
- initial-value problem, solve once
- nonlinear, but can linearize by Radon transformation $Q = \gamma \zeta^{-1}$

Advantages :)

- can (always formally) solve exactly via time-ordered exponential
- can solve exactly for simple enough instanton
- can use perturbation theory in additional small parameters

Disadvantages :(

- numerical time integration can be tricky (pseudo-singularities)
- very hard to use in high dimensions $n \gg 1$, i.e. beyond (1+1) dim. field theories $\Rightarrow n \times n$ too large, and γ, ζ blow up

T. Schorlepp (CIMS, NYU)

Details on the prefactor: (ii) Fredholm determinant

Analogous to finite dim. for additive noise

$$\begin{cases} \dot{\phi} &= b(\phi) + \sigma \eta, \\ \phi(0) &= \phi_0 \in \mathbb{R}^n, \end{cases}$$

with e.g. final-time observable $f(\phi(T)) \in \mathbb{R}$. Then with $F: \eta \mapsto f(\phi(T))$ for $\eta = dW/dt$:

• keep noise variable as main object of interest:

$$P(z)\approx (2\pi)^{-1/2}C(z)\exp(-I(z))$$

with $I(z) = \frac{1}{2} \|\eta_z\|_{L^2}^2$; where $\eta_z = \arg \min \frac{1}{2} \|\eta\|_{L^2}^2$ s.t. $F(\eta) = z$

• prefactor with Fredholm determinant of trace-class operator

$$C(z) = \left[2I(z) \det \left(\mathsf{Id} - \lambda_z \mathsf{pr}_{\eta_z^{\perp}} \left. \frac{\delta^2 F}{\delta \eta^2} \right|_{\eta_z} \mathsf{pr}_{\eta_z^{\perp}} \right) \right]^{-1/2}$$

T. Schorlepp (CIMS, NYU)

Details on the prefactor: (ii) Fredholm determinant

This prefactor is easy to evaluate numerically, even for very large *n*!!!

$$C(z) = \left[2I(z) \det \left(\left| \mathsf{Id} - \lambda_z \mathsf{pr} \left| \frac{\delta^2 F}{\delta \eta^2} \right|_{\eta_z} \mathsf{pr} \right) \right]^{-1/2} \approx \left[2I(z) \prod_{i=1}^M (1 - \mu_i) \right]^{-1/2}$$

Need to find largest eigenvalues μ_i of (projected) second variation of noise-to-observable map F, can do that **iteratively**.

with
$$\begin{cases} \dot{\gamma} = \nabla b(\phi_z)\gamma + \sigma\delta\eta, \\ \dot{\zeta} = -\langle \nabla^2 b(\phi_z), \theta_z \rangle \gamma - \nabla b^\top(\phi_z)\zeta, \end{cases} & \& \begin{cases} \gamma(0) = 0, \\ \zeta(T) = \lambda_z \nabla^2 f(\phi_z(T))\gamma(T). \end{cases}$$

see also: Bureković, Schäfer, Grauer 2024, for an application to stochastic NLS

T. Schorlepp (CIMS, NYU)

What about multiplicative noise? arXiv:2502.20114 (2025)

Now consider

$$egin{array}{lll} \dot{\phi} &= b\left(\phi
ight) + \sigma(\phi)\eta\,, \ \phi(0) &= \phi_0 \in \mathbb{R}^n\,, \end{array}$$

- still have $P(z) \approx (2\pi)^{-1/2} C(z) \exp(-I(z))$ with same I(z)
- BUT: Hessian $A = \delta^2 F / \delta \eta^2$ no longer guaranteed to be trace-class!

A is still *Hilbert–Schmidt*; then natural replacement of Fredholm determinant is **Carleman–Fredholm determinant**

$$\mathsf{det}_2(\mathsf{Id}-A) := \mathsf{det}\left((\mathsf{Id}-A)\exp(A)\right)$$

 $[\mathsf{think} \, \det_2(\mathsf{Id} - A) \approx \det\left((\mathsf{Id} - A)(\mathsf{Id} + A)\right) = \det\left(\mathsf{Id} - A^2\right)]$

 \Rightarrow generalize C(z) w/ det₂ (cf. Ben Arous (1988)), idea: \pm tr A counter term

T. Schorlepp (CIMS, NYU)

Instantons and fluctuations can be observed in practice

T. Schorlepp (CIMS, NYU)

Precise LDT for weak noise theories

Applications of the theory

Burgers eq. for $u \colon [0, L] \times [0, T] \to \mathbb{R}$ with stochastic large-scale forcing

$$\begin{cases} \partial_t u + u \partial_x u - \partial_{xx} u = \sqrt{\varepsilon} \sigma * \eta, \\ u(\cdot, 0) = 0 \end{cases}$$

T. Schorlepp (CIMS, NYU)

Gradient statistics in 1D Burgers: instanton computation

$$\min_{\eta,u} \frac{1}{2} \int_0^T \mathrm{d}t \int_0^L \mathrm{d}x \ \eta(x,t)^2 \quad \text{s.t.}$$

$$\begin{cases} \partial_t u + u \partial_x u - \partial_{xx} u = \sigma * \eta, \\ u(\cdot, 0) = 0, \\ \partial_x u(0, T) = z \end{cases}$$

PDF of $\partial_x u(0, T)$ Instanton fields $z = \partial_{-}u(0, 1) = -255$ $z = \partial_{-}u(0, 1) = -12$ $z = \partial_{-}u(0, 1) = 11$ $\varepsilon = 0.1$ 10^{0} $\varepsilon = 1.0$ $\varepsilon = 10.0$ 10^{-2} $\epsilon = 100.0$ $\overset{(z)}{\overset{n_{v_{Q}}}{\overset{n_{v_{Q}}}{\overset{n=0}}}} 10^{-4}$ 10^{-6} 10^{-1} - 7 $-\frac{\pi}{2}$ $-\pi$ -5 ÷. -5-5 -10Ó

 \Rightarrow log-asymptotic PDF estimate $\propto \exp\{-S[u_z]/\varepsilon\}$, fit constant prefactor

T. Schorlepp (CIMS, NYU)

20

10

Gradient statistics in 1D Burgers: prefactor computation

Application: Extreme average growth events in 1D KPZ eq.

Consider KPZ eq. $\partial_t h = \nu \partial_{xx} h + \frac{\lambda}{2} (\partial_x h)^2 + \sqrt{\mathcal{D}\eta}$ on ring of length L with h(x, 0) = 0, and analyze tail statistics of $\frac{1}{L} \int_0^L h(x, T) dx$ at small T.

Instantons (with multiple DPTs here, depending on *L*):

(Joint work with P. Sasorov and B. Meerson; further analysis of DPT with O. Shpielberg)

T. Schorlepp (CIMS, NYU)

Rate function at small L (2nd order dynamical phase transition to slight modulation):

Interesting L-z phase diagram in system, but no time to talk about it

T. Schorlepp (CIMS, NYU)

Gaussian fluctuations at small *L* after Cole–Hopf transform

(analytical result below DPT, numerical result including zero mode w/ Riccati afterwards):

T. Schorlepp (CIMS, NYU)

T. Schorlepp (CIMS, NYU)

First: optimization, finding the instanton

T. Schorlepp (CIMS, NYU)

Precise LDT for weak noise theories

Use dominant eigenvalues μ_i

$${\sf det}_2({\sf Id}-{\cal A})pprox \prod_{i=1}^M (1-\mu_i) e^{\mu_i}$$

found iteratively and matrix-free with 2nd order adjoints in JAX

scaling $\mu_i \propto 1/i$, indeed not trace-class but Hilbert–Schmidt

T. Schorlepp (CIMS, NYU)

Resulting estimates compared to direct sampling

at different noise strengths ε of the random advecting field

T. Schorlepp (CIMS, NYU)

Application: Extreme strain events in 3D Navier–Stokes eq.

 \Rightarrow correct prediction $\mathbb{P}[\partial_3 u_3(0, T) \leq -25] \approx 1.5 \cdot 10^{-5}$ at $\text{Re}_{\lambda} = 6.4$

T. Schorlepp (CIMS, NYU)

Conclusion

Conclusion & Outlook

Results:

- Robust numerical optimization to find instantons
- Gaussian fluctuations computed by Riccati eq. or Fredholm det.
- $\bullet\,$ Also for non-unique instantons w/ zero modes
- For non-eq. statistical field theories such as Navier–Stokes and KPZ, good agreement to Monte Carlo

What's next?

- Asymptotic analytical predictions/scaling of prefactor
- Higher-order fluctuations around instanton: loop expansion or FRG
- Extend to more general stochastic and dynamical systems
- Spectrum of Hessians: spectral gaps & asymptotic density of states?
- Incorporating renormalization of field theory into prefactor

T. Schorlepp (CIMS, NYU)

Thank you for your attention!

Read more e.g. in: T. Schorlepp and T. Grafke (2025) "Scalability of the second-order reliability method for stochastic differential equations with multiplicative noise" (arXiv:2502.20114)