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Quantum Chromodynamics describes a strongly 
correlated system.
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Our activity benefits from ideas and techniques 
borrowed from condensed matter and  
statistical physics.



Ties protons and neutrons inside nuclei  
despite the repulsive electromagnetic  
forces between the protons.

The strong interaction

One of the fundamental forces of Nature.



The particles subjected to the strong interaction are called hadrons: 
protons, neutrons, pions, …

Hadrons, quarks and gluons

Our current understanding is that these 
are composite particles made of more 
elementary ones, the quarks.

The quarks interact via the exchange 
of gluons, pretty much like electrons 
exchange photons. 



2. The physical properties of these hadrons seem to have little to do  
with those of their constituent quarks taken individually.

Two big mysteries of the hadronic world

1. Under normal conditions, quarks are    
never observed: they are said to be 
confined within hadrons.

Ex: Proton mass is ~ 10^9 eV while u- and d-quark masses are just a few 10^6 eV. 
Mass generation mechanism more effective than the Higgs mechanism!



Quantum Chromodynamics

These mysteries should be solved within Quantum Chromodynamics (QCD), 
the accepted fundamental theory for strong interactions.

Gauge theory constructed in a way similar to Quantum Electrodynamics (QED): 
quarks carry a new type of charge dubbed as color and interact via the  
exchange of quanta of a gauge field known as gluons. 

Major difference with QED: gluons carry color and hence self-interact.

Intensity of the interaction: 
strong coupling  αS(Q)



Strong coupling

high energy = 
short distance

low energy = 
large distance

small : perturbative 
      techniques available

αS(Q)

   large : other 
approaches needed

αS(Q)



Some of the challenges

Hadronic structure:  
How do quarks and gluons conspire to give hadrons their physical properties?

Confinement: 
Why do quarks confine in the first place?

High energy regime: 
What happens at high energies? Do quarks deconfine?

These questions mobilize both experimental and theoretical effort.



From the experimental side …



Scattering experiments
Scattering of some simple probe (electron, …) off an hadron in order to probe  
its internal structure:

Observable    =     hard part     x    soft part  

Measured Computable perturbatively Extracted from data



Scattering experiments
Scattering of some simple probe (electron, …) off an hadron in order to probe  
its internal structure:

Observable    =     hard part     x    soft part  

Measured Computable perturbatively Extracted from data

The soft part contains universal 
information about the distribution of 
quarks (and gluons) within the hadrons. 

Can be used to: 
   - predict the outcome of  
      other scattering processes; 
   - understand the physical properties  
      of the hadrons from those of their 
      constituents.



High energy collision experiments
Collisions of ultra-relativistic heavy nuclei in view of exploring  
the high energy regime of the theory.

In particular, one aims at forcing the quarks into a deconfined state of matter  
known as the quark-gluon plasma.



QCD phase diagram



From the theory side …



Numerical simulations of QCD

The QCD functional integral 
(partition function) 

 

is discretized and evaluated on a “lattice”, 
using statistical Monte-Carlo algorithms. 

Z = ∫ 𝒟A𝒟ψ𝒟ψ̄ e−SQCD[A,ψ,ψ̄]

Immense source of knowledge about QCD.



The confining force between quarks

The lattice can for instance evaluate the “chromo-electric” force   

between a quark and an antiquark separated by a distance .

Fqq̄

L

Found to be radically different from, say, the electric force   
between an electron and a positron.

Fe−e+

L



The confining force between quarks
 is found not to depend on the separation L. It is essentially a constant,  

known as the string tension, of the order of (440 MeV)^2.
Fqq̄

In normal units, this is “just” the weight of a small truck ~ 10^5 N. But applied over 
the scale of the hadron (~ 10^-15 m), this gives an enormous pressure of 10^35 Pa! 

Other consequence: as one tries to separate the quark-
antiquark pair,  the mechanical work brought to the 
systems is very rapidly enough to create a new pair. 

Essentially impossible to pull apart a quark from  
an hadron in the vacuum.



The deconfinement transition
What happens as one brings energy into 
the system, for instance by contact with a 
thermostat?  

The strong coupling decreases and so 
does the string tension. It becomes  
simpler and simpler to separate  
a quark from an antiquark. 

In the high temperature limit, one actually 
expects a deconfined phase of matter 
where quarks are liberated. Tc~ 150 MeV of the order of 10^12 K



Limitations of the lattice simulations
Monte-Carlo simulations require a statistical 
interpretation of the functional integral 

 

and thus a real action.
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and thus a real action.

Z = ∫ 𝒟A𝒟ψ𝒟ψ̄ e−SQCD[A,ψ,ψ̄]

This is the case along the temperature  
axis of the QCD phase diagram. 

But in many other cases, the action is 
complex and Monte-Carlo techniques 
become inapplicable: “sign problem.”
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Compute correlation functions instead 
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Contain the same information 
as the partition function. 

Solutions to integro-differential equations  
so no statistical interpretation needed.
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Beyond the numerical simulations?
Compute correlation functions instead 

 

 

Infinite tower of equations that  
needs to be truncated. 

At low energies, no systematic truncation 
and thus no real control over the error.

[ χ = A, ψ, ψ̄ ]

⟨χ1⋯χn⟩ ∝ ∫ 𝒟χ χ1⋯χn e−SQCD[χ]
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Could one imagine a third possible way into low energy QCD that allows one to  
circumvent some of the limitations of the lattice simulations while providing  
a better control over the error?

We believe that some of the results obtained over these past 20 years  
in the lattice simulations point at that possibility.

This talk aims at reporting our progress towards this goal. 
[M. Peláez, U. Reinosa, J. Serreau, M. Tissier, N. Wschebor, Rept. Prog.Phys. 84 (2021)]
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Quarks and gluons in the ultraviolet
QCD is a gauge theory: 

  

with    the gluon field-strength tensor.

SQCD = ∫ d4x{−
1
2

tr Fμν Fμν + ψ̄f (i γμ∂μ + g γμAμ − mf) ψf}, αS =
g2

4π

Fμν ≡ ∂μAν − ∂νAμ − ig [Aμ, Aν]

Its action is invariant under gauge transformations:  

 

Express a redundancy in the description:  
  is physically equivalent to .

ψ → U ψ ≡ ψU and Aμ → UAμU† +
i
g

U∂μU† ≡ AU
μ

(ψ, Aμ) (ψU, AU
μ )



Quarks and gluons in the ultraviolet
QCD is a gauge theory: 

  

with    the gluon field-strength tensor.

SQCD = ∫ d4x{−
1
2

tr Fμν Fμν + ψ̄f (i γμ∂μ + g γμAμ − mf) ψf}, αS =
g2

4π

Fμν ≡ ∂μAν − ∂νAμ − ig [Aμ, Aν]

This has a number of important consequences: 
    1.  no gluonic mass term in the microscopic (ultraviolet) action; 



Quarks and gluons in the ultraviolet
QCD is a gauge theory: 

  

with    the gluon field-strength tensor.

SQCD = ∫ d4x{−
1
2

tr Fμν Fμν + ψ̄f (i γμ∂μ + g γμAμ − mf) ψf}, αS =
g2

4π

Fμν ≡ ∂μAν − ∂νAμ − ig [Aμ, Aν]

This has a number of important consequences: 
    1.  no gluonic mass term in the microscopic (ultraviolet) action; 
    2. all colored fields  are universally coupled in the ultraviolet; 



Quarks and gluons in the ultraviolet
QCD is a gauge theory: 

  

with    the gluon field-strength tensor.

SQCD = ∫ d4x{−
1
2

tr Fμν Fμν + ψ̄f (i γμ∂μ + g γμAμ − mf) ψf}, αS =
g2

4π

Fμν ≡ ∂μAν − ∂νAμ − ig [Aμ, Aν]

This has a number of important consequences: 
    1.  no gluonic mass term in the microscopic (ultraviolet) action; 
    2. all colored fields  are universally coupled in the ultraviolet; 
    3. the theory is asymptotically free in the ultraviolet.

~ 1
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Quarks and gluons in the infrared

What do these properties become at low energies? 

To answer one needs access to the exact correlation functions of the theory 

 ⟨AA⟩, ⟨ψψ̄⟩, ⟨AAA⟩, ⟨Aψψ̄⟩, …

Two-point functions tell how quarks and gluon propagate and higher-point 
functions tell how quarks and gluons interact with each other.



Quarks and gluons in the infrared

Subtle point: the definition of correlation functions requires fixing the gauge.

From now on: all correlators shown will be those of the Landau gauge . ∂μAμ = 0

Good news: the Landau gauge can be easily implemented on the lattice.



(Non-)universality of the coupling
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[Skullerud et al, JHEP 0304 (2003) 047]
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In the infrared, quarks interact stronger with the glue than the glue itself! 
                                  
                             αquarks

S ≃ 4 αglue
S

[Skullerud et al, JHEP 0304 (2003) 047]
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New perturbative sector?

 [I.L. Bogolubsky, E.M. Ilgenfritz, M. Müller-Preussker, A. Sternbeck, PLB 676, 69 (2009)]
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Coupling strength in the glue sector

Hints at the possibility that gluons are weakly coupled!

QCD would remain strongly coupled since λquark ≃ 4 λglue > 1

but with weakly coupled glue at its core. “Weakly coupled glue” scenario.

In fact the perturbative expansion parameter is not  but rather αglue
S λglue ≡

αSNc

4π



But wait …
We have two seemingly contradictory pictures for the glue sector.
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According to the first, perturbation theory is valid over all scales.

According to the second, perturbation theory predicts its own failure.
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Yet, the first is the outcome of a first-principle lattice calculation.

The second actually results from an uncontrolled implementation of the gauge fixing.



Gauge fixing
To set up the perturbative expansion in the Landau gauge,  
one should in principle consider: 

SQCD[A, ψ, ψ̄] with ∂μAμ = 0

In practice, however, one uses the Faddeev-Popov action 

SFP = SQCD + 2∫x
tr {ih ∂μAμ + ∂μc̄ (∂μc − ig[Aμ, c])}

These two ways of proceeding are often thought to be equivalent.  
They are not!



Gauge fixing

Indeed, the Faddeev-Popov construction relies 
on a mathematically incorrect assumption.

Gribov copy problem or ambiguity.

In fact: 
- at high energies, the FP construction is seen to hold; 
- At low energies, we have tangible evidence that it does not.



Scaling vs decoupling solutions

When the FP action is taken seriously at all scales, one deduces a specific 
behavior for the correlation functions in the infrared.

Scaling solution: 

 

                                                              

J(q2) ≡ q2⟨c(−q)c̄(q)⟩ → ∞
as q → ∞

D(q2) ≡ ⟨A(−q)Ā(q)⟩ → 0



Scaling vs decoupling solutions
At odds with the decoupling solution found on the lattice:
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“massive” behavior of  
Landau-gauge gluons

 [I.L. Bogolubsky, E.M. Ilgenfritz, M. Müller-Preussker, A. Sternbeck, PLB 676, 69 (2009)]
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Weakly coupled glue scenario
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Beyond the Faddeev-Popov action?

How to find the appropriate extension of the Faddeev-Popov action? 

- first-principle approach: not known; 

- semi-first-principle approach: Gribov-Zwanziger framework; 

- phenomenological approach: add new operators to the Faddeev-Popov      
action and constraint their couplings or even discard them                                                          
using experiments/numerical simulations.
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The Curci-Ferrari model
The Curci-Ferrari model is one example of such phenomenological extension: 

  SCF = SQCD + 2∫x
tr (ih∂μAμ + ∂μc̄Dμc)

incomplete FP gauge-fixing

+ ∫x
m2 tr A2

μ

IR, pheno term

Please, bear in mind that: 

-  pheno approach motivated by the decoupling behavior as observed on the 
lattice. No ambition to provide the final answer to the gauge-fixing problem. 

- still, the model is renormalizable and thus predictive. Once the mass is fixed, 
its predictions can be compared to experiments or to simulations of QCD.



A frequent confusion
The Curci-Ferrari model is often confused with Proca theory which 
amounts to adding a mass term prior to fixing the gauge: 

              vs        SProca = SQCD + ∫x
m2 tr A2

μ SCF = SFP + ∫x
m2 tr A2

μ

Non-renormalizable 
Breaks gauge symmetry 
Modifies a fundamental theory

Renormalizable 
Gauge symmetry broken by FP 
Models the missing terms beyond FP

Quite different models actually!



Flow diagram of the Curci-Ferrari model
Main attractive feature: its renormalization group flow
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Good candidate for testing the 
weakly coupled glue scenario.



Testing the weakly coupled glue scenario

We use the quark masses as a tunable external 
parameter to progressively include more  
and more layers of complexity.

Infinite quark masses: only gluons are present.  
Perturbation theory should apply. 

Large quark masses: small departure from the previous case.            
Perturbation theory should also apply. 

        Physical quark masses: the actual QCD case. 
    Perturbation theory is not applicable but we should                                
    be able to exploit the weakly coupled glue hypothesis.



Infinite quark masses 
First one-loop calculations of the gluon and ghost propagators in the CF model  
and comparisons to Landau gauge lattice data by Tissier and Wschebor in 2010:
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[Tissier and Wschebor, Phys. Rev. D82 (2010) & Phys. Rev. D84 (2011)]



Infinite quark masses 
One-loop running coupling:
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Infinite quark masses 
Two loop calculation is more involved (19 diagrams) but doable:
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[J.A. Gracey, M. Peláez, U. Reinosa, M. Tissier, Phys. Rev. D100 (2019)]



Infinite quark masses 
Two-loop running coupling:
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Large quark masses 
In addition to the gluon and ghost propagators we have now access 
to the form factors of the quark propagator: 

S(q) = ⟨ψψ̄⟩ =
Z(q2)

iγμqμ + M(q2)

Quark dressing function  and quark mass function .Z(q2) M(q2)

Evaluated at one- and two-loop orders of the perturbative expansion.



Large quark masses 
The glue sector is still pretty well described by the perturbative CF model: 
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[N. Barrios, J.A. Gracey, M. Peláez, U. Reinosa, Phys. Rev. D104 (2021)]



Large quark masses 
The perturbative CF model also accounts for the quark form factors: 

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●
● ●

● ● ●

--

--

--

--

--

--

--

--

--

--

--

--
--

--
--

--
--

-- --
--

--
-- -- -- -- --

--

--

--

--

--

--

--

--

--

--

--

--
--

--
--

--
--

-- --
--

--
-- -- -- -- --

2 loop

1 loop

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4 M (k )

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●

● ● ● ● ● ● ● ●

--

--

--

--

--

--

--
--

--

--

-- --
--

--
--

--
---- -- -- ---- -- -- -- --

--

--

--

--

--

--

--
--

--

--

-- --
--

--
--

--
---- -- -- ---- -- -- -- --

2 loop

1 loop

0.5 1.0 1.5 2.0 2.5 3.0
0.7

0.8

0.9

1.0

1.1

1.2

Z (k )

NB: this is not a trivial result since the quark dressing function   
is only accurately reproduced starting at two-loop order. 

Z(q2)
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Physical quark masses  
The perturbative CF model is doomed to fail for at least two reasons: 

- even though  is perturbatively small,                                          
 is not; 

-  no perturbative treatment can                                                                                     
account for mass generation:

λglue ≃ 0.3
λquark ≃ 1.2

Spontaneous breaking  
of chiral symmetry



Physical quark masses  
This does not mean that the CF model should be abandoned, however, since 

- quantities that are little impacted by chiral symmetry breaking               
could still admit a perturbative description within the CF model; 

- quantities that are governed by chiral symmetry could still admit                   
a good description within the CF model, beyond perturbation theory.



Physical quark masses  
The perturbative CF model is still good at describing quantities that are not 
directly impacted by chiral symmetry breaking:

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

● ●
● ●

●

●
●
●

●●

●

● ●

●

●
●

●
●● ●

●

●●
● ●● ●

●
●

● ●
●●

●

--

--

--

--

--

--
--

--

--

--

-- --

--
--

-- -- --
--

--
--

--
----

----
--

-- --

--
--

--
-- ---- --

--
----

-- ---- --

-- --
-- --

----
--

--
--

--

--

--

--
--

--

--

--

-- --
--

-- --

--
--
-- -- --

-- --
--

----
--

--
--

--

-- --
--

---- --
--

----

-- ---- --
--

--
-- -- ----

--

2 loop

1 loop

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

D(k )

●

●

●

●

●

●

●

●

●

● ●

--

--

--

--

--

--

--

--

--

-- --

--

--

--

--

--

--

--

--

--

-- --

2 loop

1 loop

0.5 1.0 1.5 2.0 2.5 3.0

1.5

2.0

2.5

3.0

3.5

4.0 F (k )

●

●

●

●

●

●

●

●

●

●

● ●
●

● ● ●
● ● ● ● ● ●

--
--

--

--

--

--

--

--

--

--

-- --
--

-- -- -- -- -- -- -- -- --

--

--

--

--

--

--

--

--

--

--

-- --
--

-- -- --
-- -- -- -- -- --

2 loop

1 loop

0.5 1.0 1.5 2.0 2.5 3.0
0.7

0.8

0.9

1.0

1.1

1.2

Z (k )
[N. Barrios, J.A. Gracey, M. Peláez, U. Reinosa, Phys. Rev. D104 (2021)]



Physical quark masses  
As expected, the quark mass function is poorly reproduced perturbatively:
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Calls for a non-perturbative treatment.
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the weakly coupled glue scenario.
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Physical quark masses  
−1

( ) =
−1

( ) −

+ + + +

+ +

+ ...]

How do we decide which diagrams 
dominate the quark propagator  
when the coupling is not small? 

Neglect diagrams suppressed by . 

Treat the rest in a  expansion.

λglue

1/Nc



Physical quark masses  
At LO, this double expansion in  and 

  leads to the subclass of diagrams:
λglue

1/Nc

Resummed into an integral equation 
that can easily be solved:

=
− 1

( ) − +

+ + +
...

− 1
( )

=
− 1

( ) −
− 1

( )

The benefit with respect to other truncations is that the error is controlled  
by two small parameters  and .λglue 1/Nc



Physical quark masses  
Good account of chiral symmetry breaking:
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[M. Peláez, U. Reinosa, J. Serreau, M. Tissier, N. Wschebor, Phys. Rev. D96 (2017)]



Physical quark masses  
Entry into the study of hadronic structure.

Using the same expansion, we were able to find a closed integral equation  
for the pion-quark-antiquark vertex:

= +

q
′

q

q
′

q

p p

This allowed us to perform an ab-initio calculation of the pion decay constant 
within the CF model that compares well with other QCD estimates.

[M. Peláez, U. Reinosa, J. Serreau, N. Wschebor, Phys. Rev. D107 (2023)]



I. Motivation ✓

II. Quarks and gluons in the infrared ✓

III. The Curci-Ferrari model ✓

IV. Probing the QCD phase diagram from the CF model



QCD phase structure
What are the predictions of the CF model regarding the QCD phase diagram?
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QCD phase structure
Vary the quark masses
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QCD phase structure
Vary the quark masses

phys.
point

0
0

N  = 2

N  = 3

N  = 1

f

f

f

m s

s
m

Gauge

 m   , mu

1st

2nd order
O(4) ?

chiral
2nd order
Z(2)

deconfined
2nd order
Z(2)

crossover

1st

 d 

tric

∞

∞

Pure

Use order parameters



QCD phase structure
Vary the quark masses
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QCD phase structure
Vary the quark masses
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Polyakov loop :  
confinement/deconfinement 
breaking of center symmetry

Quark mass function M(p) : 
dynamical generation of mass  
breaking of chiral symmetry



Pure glue 
We have evaluated the thermodynamical potential for the Polyakov loop at  
one-loop order of the perturbative expansion. It does a pretty good job in  
reproducing known features of the phase structure:

 
(vs 270 MeV in the simulations)
Tc ≃ 268 MeV

[D.M. van Egmond, U. Reinosa, J. Serreau, M. Tissier, SciPost Phys. 12 (2022)]



Pure glue 

We can test the quality  
of the one-loop order  
by comparing different 
renormalization schemes 
and studying the spurious 
renormalization scale 
dependence of various 
observables.
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[U. Reinosa, V. T. Mari Surkau, Phys. Rev. D109 (2024)]



Heavy-quark QCD 
The CF model does also a good job in retrieving the phase structure in  
the heavy-quark limit, already at one loop order:

Two-loop results improve the results further.  1 0.9 0.8
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[U. Reinosa, J. Serreau, M. Tissier, Phys. Rev. D92 (2015)]

[J. Maelger, U. Reinosa, J. Serreau, Phys. Rev. D97 (2018)]



Heavy-quark QCD 

Mc (μ)
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Access to interesting observables such 
as the total quark number of a medium 
as one tries to bring in an extra quark.  

The system reacts rather differently  
at low and high temperatures, in 
agreement with the confinement/
deconfinement picture.

[U. Reinosa, V. T. Mari Surkau, in preparation]



Physical QCD 
Requires the resolution of the integral equation 

at finite temperature and density, possibly coupled to the Polyakov loop.

=
− 1

( ) −
− 1

( )

Full resolution: in progress.  

So far: approximate resolution  
              assuming M(q) ≃ M(0)

[J. Maelger, U. Reinosa, J. Serreau, Phys. Rev. D101 (2020)]



Physical QCD 
Another option is to couple our accurate Polyakov loop potential to well tested 
effective models for the matter sector (Nambu-Jona Lasinio model, quark-
meson model, …)

This allows for a low computational 
cost assessment of the interplay 
between the deconfinement  
and chiral transitions.
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[U. Reinosa, V. T. Mari Surkau, in preparation]



Conclusions
- Over the past 20 years, lattice simulations of Landau-gauge correlation 

functions have revealed unexpected aspects of the dynamics of                
quarks and gluons in the infrared. 

- This allows one to contemplate a new path into QCD that treats the            
pure glue interactions perturbatively, while dealing with the                  
remaining interactions via a well tested 1/N_c-expansion. 

- These ideas cannot be put into practice via the standard perturbative      
set-up since the latter relies on the FP Landau gauge-fixed action,              
valid only in the ultraviolet.



Conclusions
- Lattice results for the gluon propagator suggest to model the unknown    

part of the Landau gauge-fixed action in the infrared via the                        
Curci-Ferrari model. 

- Within this model, the new strategy appears to be well under control and 
allows one to reproduce a number of lattice QCD results (correlators, 
hadronic properties, phase structure, …). 

- These results point to the idea that a better understanding of the gauge 
fixing in the infrared could open new pathways into infrared QCD.



THANK YOU!


