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A thermal bath %

Small particles move as though alive in water.

(Brown, 1827)
Grains of pollen

very evidently in motion

not limited to organic bodies

Brownian motion is a consequence of many collisions.
(Einstein 1905, Perrin 1909)

...but what if the bath really is alive?



An active bath 4 + %

An active bath can drive a ratchet

Chlral motion has coIIectlve bneflts

Li, Chaté, et al. PRX 2024
Di Lionardo et al. PNAS 2010
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An active bath 4 + %

Chiral motion has collective benefits

Di Lionardo et al. PNAS 2010
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Cory Hargus

» Irreversible ratchet motion
» Odd diffusion and odd mobility

» Long-range density modulations and
flows in the bath

How do the object’s shape, size, and
mass control these effects?



Langevin dynamics in the adiabatic limit

(Chiral ABPs)

v = fou(0;) — F;

0; = wo + 2Dy

Mazur and Oppenheim, Physica 50 (1970)
Van Kampen and Oppenheim, Physica A 138 (1986)
Solon and Horowitz, J. Phys. A 55 (2022)
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Langevin dynamics in the adiabatic limit
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Langevin dynamics in the adiabatic limit
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Langevin dynamics in the adiabatic limit

Object

(Chiral ABPs) (Rigid Newtonian dynamics)
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Langevin dynamics in the adiabatic limit

-8k el
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where (A(t))p := [drN A(rM)p(rV|R, ©;1),
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Langevin dynamics in the adiabatic limit

-8k el
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[ — ———
< 13

where (A(t))p := [drN A(rM)p(rV|R, ©;1),
and &(t) is Gaussian white* noise with (£(¢) ® €(t')) = Aoy (t — ') + ATo_(t — )
where d_(t —¢') + 64 (t —t) = 25(t — t').

*Chun, Durang and Noh, PRE (2018)



Langevin dynamics in the adiabatic limit

-8k el
L (b ¢ G| | I7'L )]’
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where (A(t))p := [drN A(rM)p(rV|R, ©;1),
and &(t) is Gaussian white* noise with (£(¢) ® €(t')) = Aoy (t — ') + ATo_(t — )
where d_(t —¢') + 64 (t —t) = 25(t — t').
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Object symmetries determine the dynamics
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Passive disk in a chiral active bath

fixed disk
. o = (F(0)F:(1))s
o ° o o i < T £
<§OO %O - e, @O PR o °, 15 == (Fy(0)Fy(t))s
N ° o (@) - OOO OQ 1.0 - — <Fz(0)Fy(t))b
5 Oo - 0 ® 00 oo e = (F,(0)Fu(t))s
° ® ° 0.5
) o %0 OO o
o @) —
Ce ) ) ° ®ee © o ° . ' ' ' '
(SIS (©] @) 0 5 10 15 20 25
® @0 o ©
o oS0 g o t
o o) o
o5 2 )
° 00
] @ o O
)
© o ® © Ro'o oo ©
© o
%o o @] ]
@
o O 8 OO OO 1) @ o
® @) [OIN5Y o d
(@] o °© o ; N °
@ [0 %
S0)
)% ° o ? oo 008, ©
© o 0g © é>o
@) o (@] @)
® 6}
@ O @]
OO 8 © o a0



Passive disk in a chiral active bath
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Passive disk in a chiral active bath

heavy disk (M = 100, 10x faster)
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Passive disk in a chiral active bath

Momentum correlations match the Langevin prediction at M — oo

even correlation function

odd correlation function
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Einstein relations

Diffusion
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Einstein relations

Diffusion
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Einstein relations

Diffusion _ Mobility
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Einstein relations

Diffusion _ Mobility
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Einstein relations

Diffusion _ Mobility
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Even and odd thermometers for 7 ¢
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Even and odd thermometers for 7 ¢
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Even and odd thermometers for 7 ¢
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Even and odd thermometers for 7 ¢
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Even and odd thermometers for 7 ¢

10!

st ¥_ . Adiabatic steady state is
Boltzmann-distributed
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Odd circulation of the disk is a signature of nonec

Position (R)

(adiabatic)

Cory Hargus 12/19



Odd circulation of the disk is a signature of n

Position (R)

Momentum (P)

M=100

(adiabatic)

X Px
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Rotational dynamics of the rod
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Measures of rod adiabaticity
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Measures of rod adiabaticity
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Wedge dynamics
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Wedge dynamics
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How does the object affect the bath itself?

Baek et al., PRL (2018)
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(F), = /dr dp(r)VV
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How does the object affect the bath itself?

Equilibrium Bath op
(F)p = /dr Sp(r)VV SRULUE 0.003

(M) = /dr dp(r)r x VV 0.002

0.001
> 0.000
—0.001

—0.002
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How does the object affect the bath itself?

Equilibrium Bath op
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How does the object affect the bath itself?

(F), = /dr dp(r)VV

(D) = /dr dp(r)r x VV

Baek et al., PRL (2018)
Granek et al., J. Stat. Mech. (2022)



How does the object affect the bath itself?

(F)y — / dr Sp(r)VV
(M) = /dr dp(r)r x VV

What is the effect of chirality?

Baek et al., PRL (2018)
Granek et al., J. Stat. Mech. (2022)

Cory Hargus 16 /19



A multipole expansion connects ratchet forces to the far field

In steady state V - J = 0. Defining J = dJ — DV p then yields

D\V?p=-V-48J,
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A multipole expansion connects ratchet forces to the far field

In steady state V - J = 0. Defining J = dJ — DV p then yields

D||V2p =-V. 5.],

which admits the multipole solution

)z p-r r-q-r _3
= @
o) = po+ g { P+ Tl o,

with the dipole and quadrupole moments
p=- /dr p(r)VV(r) =

q= Traceless( — 2/dr [p(r)r @ VV + viDm(r) ® VV])
0



A multipole expansion connects ratchet forces to the far field

In steady state V - J = 0. Defining J = dJ — DV p then yields

D||V2p =-V. 5.],

which admits the multipole solution

)z p-r r-q-r _3
= @
o) = po+ g { P+ Tl o,

with the dipole and quadrupole moments
p=— [ dr pr)VV(r) =~ (F), -

q= Traceless( — 2/dr [p(r)r @ VV + viDm(r) ® VV])
0



A multipole expansion connects ratchet forces to the far field

In steady state V - J = 0. Defining J = dJ — DV p then yields

D||V2p =-V. 5.],

which admits the multipole solution

)z p-r r-q-r _3
= @
o) = po+ g { P+ Tl o,

with the dipole and quadrupole moments
p=- [ dr p(®)VV(r) = (F)y = [ dr T(r)

q= Traceless( — 2/dr [p(r)r @ VV + viDm(r) ® VV])
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A multipole expansion connects ratchet forces to the far field

In steady state V - J = 0. Defining J = dJ — DV p then yields

D||V2p =-V. 5.],

which admits the multipole solution

)2 p-r r-q-r _3
= @
o) = po+ g { P+ Tl o,

with the dipole and quadrupole moments
p=— [ dr pr)VV(r) = ~(F)y =7 [ dr J(r)
q= Traceless< — 2/dr [p(r)r @ VV + viDm(r) ® VV]>
0

Asymm(a) = —(D)y + () =7 [ dr v x J(r)



A multipole expansion connects ratchet forces to the far field

In steady state V - J = 0. Defining J = dJ — DV p then yields

D\V?p=-V-48J,

which admits the multipole solution

po (p-r  T-q-T _3
= @
o) = oo+ g B+ Tl o,
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Currents in the bath

Near field: chirality drives circulation
Far field: V x J =0

Achiral (wy =0)
4

OH = arctan(DR/Dh)), Jp=1xJ/|r|
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Conclusions

In a chiral active bath, how do a passive tracer’s shape, mass,
and size control odd transport and ratchet effects?
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Conclusions

In a chiral active bath, how do a passive tracer’s shape, mass,
and size control odd transport and ratchet effects?

» Shape: Object symmetry + bath chirality determines the
dynamics

» Mass: Effective equilibrium at M — oo retains odd signatures
of the nonequilibrium bath

» Size: Odd dynamics are maximized for £, ~ liracer

Future directions: tracer interactions and self-assembly, chiral
nematic bath, application to bacterial ratchets




Backup slides



A nice active bath 4 +

An active bath can drive assembly
00:00:30

Molecular motors are chiral

Bacterial Flagellum, Smart Biology

(https:/ /www.youtube.com /watch?v=dYt5135_0bs)

Feric et al. Cell 2016
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The adiabatic limit: M — o

Define the small parameter Object: rigid Newtonian dynamics

. 1
=4/“m"/M = D, M . = _—_P, —_L
=/ m"/M = |~/ R=—P 6

P=F L=F

van Kampen and Oppenheim, Physica A 138 (1986)



The adiabatic limit: M — o

Define the small parameter Object: rigid Newtonian dynamics
. 1
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Vemo M =y R=
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van Kampen and Oppenheim, Physica A 138 (1986)



The adiabatic limit: M — o

Define the small parameter Object: rigid Newtonian dynamics
. 1
e=1/“m”/M = D, M . —_— ] @——L
Vemo M =y R=
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The adiabatic limit: M — o

Define the small parameter Object: rigid Newtonian dynamics
. 1
e=1/“m”/M = D, M . —_— ] @——L
Vemo M =y R=
Rescale: P=¢'P*, L =¢ 10" P=F L= F

For simplicity, set “m” = 1.

R = CP*7 C';) = GL*7
atp = (f‘cobject + Ebath) P P* =eF L* el’

p(rV, 0N R, P*,0, L") evolves as

van Kampen and Oppenheim, Physica A 138 (1986)



The adiabatic limit: M — o

Define the small parameter Object: rigid Newtonian dynamics
. 1
e=1/“m”/M = D, M . —_— ] @——L
Vet /M =y R=
Rescale: P=¢'P*, L =¢ 10" P=F L= F

For simplicity, set “m” = 1.

R = GP*7 C';) = GL*7
atp = (f‘cobject + Ebath) P P* =eF L* el’

p(rV, 0N R, P*,0, L") evolves as

Adiabatic approximation for ¢ — 0:
p(rY 0N, R, P* 0, L%, 1) = pracer(R, P*, 0, L* ) pparn (r" , 0" | R, ©)

van Kampen and Oppenheim, Physica A 138 (1986)



Fast variable treatment

Define the projection operator P where
Pp(R, P,L,0,r" 0V 1) = ppn(r", 0V |R,0)po(R, P,O, L,1).

noting that PLz = LgP = 0, because Lgppn = 0.
Then define the orthogonal projector @ = 1 — P to decouple the evolution as

(9{Pp = €P£T7Dp + €P£T Qp
3tQp = €Q£TPP + EQETQP + OLg QP .

Perturbative solution: Qp = ¢ + eV + O(e2) =  QLsqi + QL Pp = 0.

OPp = Possdipo = PLIPp + PLQ ( / dse%EBS) QL Py + O().
0



There is no FDT connecting A and (.
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Disk mobility

gdisc
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Wedge pulling
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Rotational symmetry
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