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A thermal bath

Small particles move as though alive in water.
(Brown, 1827)

Brownian motion is a consequence of many collisions.
(Einstein 1905, Perrin 1909)

…but what if the bath really is alive?
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An active bath +

An active bath can drive a ratchet

Di Lionardo et al. PNAS 2010

Chiral motion has collective benefits

Li, Chaté, et al. PRX 2024
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A passive object in a chiral active bath + +

I Irreversible ratchet motion
I Odd diffusion and odd mobility
I Long-range density modulations and

flows in the bath

How do the object’s shape, size, and
mass control these effects?
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Langevin dynamics in the adiabatic limit

Bath
(Chiral ABPs)

γṙi = f0u(θi) − Fi

θ̇i = ω0 +
√

2Drξi

`p = f0
γDr

, `g = f0
γ|ω0|

Object
(Rigid Newtonian dynamics)

Ṙ = 1
M

P ,

Ṗ = F

Θ̇ = 1
I

L,

L̇ = Γ

ε =
√

“m”/M =
√

γ/DrM .

In the adiabatic limit
of M → ∞:

[
Ṗ

L̇

]
=

[
〈F 〉b
〈Γ〉b

]
−

[
ζP P ζP L

ζLP ζLL

]
︸ ︷︷ ︸

ζ

[
M−1P
I−1L

]
+

[
ξP (t)
ξL(t)

]
︸ ︷︷ ︸

ξ
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γṙi = f0u(θi) − Fi

θ̇i = ω0 +
√

2Drξi

`p = f0
γDr

, `g = f0
γ|ω0|

Object
(Rigid Newtonian dynamics)
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Ṗ

L̇

]
=

[
〈F 〉b
〈Γ〉b

]
−

[
ζP P ζP L

ζLP ζLL

]
︸ ︷︷ ︸

ζ

[
M−1P
I−1L

]
+

[
ξP (t)
ξL(t)

]
︸ ︷︷ ︸

ξ

Cory Hargus 5 / 19

Mazur and Oppenheim, Physica 50 (1970)
Van Kampen and Oppenheim, Physica A 138 (1986)

Solon and Horowitz, J. Phys. A 55 (2022)



Langevin dynamics in the adiabatic limit

Bath
(Chiral ABPs)
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Langevin dynamics in the adiabatic limit

[
Ṗ

L̇

]
=

[
〈F 〉b
〈Γ〉b

]
−

[
ζP P ζP L

ζLP ζLL

]
︸ ︷︷ ︸

ζ

[
M−1P
I−1L

]
+

[
ξP (t)
ξL(t)

]
︸ ︷︷ ︸

ξ

,

where 〈A(t)〉b :=
∫

drN A(rN )ρb(rN |R, Θ; t),
and ξ(t) is Gaussian white∗ noise with 〈ξ(t) ⊗ ξ(t′)〉 = λδ+(t − t′) + λT δ−(t − t′)

where δ−(t − t′) + δ+(t − t) = 2δ(t − t′).

λ =
∫ ∞

0
dτ

[
〈δF (τ) ⊗ δF (0)〉b 〈δF (τ)δΓ(0)〉b
〈δΓ(τ)δF T (0)〉b 〈δΓ(τ)δΓ(0)〉b

]
,

ζ =
∫ ∞

0
dτ

[
〈δF (τ) ⊗ ∇R log ρb(0)〉b 〈δF (τ)∂Θ log ρb(0)〉b

〈δΓ(τ)∇T
R log ρb(0)〉b 〈δΓ(τ)∂Θ log ρb(0)〉b

]
.
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Object symmetries determine the dynamics

[
Ṗ

L̇

]
=

[
〈F 〉b
〈Γ〉b

]
−

[
ζP P ζP L

ζLP ζLL

]
︸ ︷︷ ︸

ζ

[
M−1P
I−1L

]
+

[
ξP (t)
ξL(t)

]
︸ ︷︷ ︸

ξ

,

ζdisk =

 ζ‖ ζ⊥ 0
−ζ⊥ ζ‖ 0

0 0 0

 , ζrod =

ζxx ζxy 0
ζyx ζyy 0
0 0 ζΘΘ

 , ζwedge =

ζxx ζxy ζxΘ
ζyx ζyy ζyΘ
ζΘx ζΘy ζΘΘ


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Passive disk in a chiral active bath
fixed disk
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Passive disk in a chiral active bath
lightweight disk (M = 1)
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Passive disk in a chiral active bath
heavy disk (M = 100, 10x faster)
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Passive disk in a chiral active bath

Momentum correlations match the Langevin prediction at M → ∞
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Einstein relations

Diffusion

D = 1
M2

∫ ∞

0
dt 〈P (t)P (0)〉

= 1
M2

∫ ∞

0
dt e−ζt/M 〈P (0)P (0)〉︸ ︷︷ ︸

MTeffδ

= Teffζ−1 =:
[

D‖ D⊥
−D⊥ D‖

]
.

Mobility

Ṗ = −M−1ζP + F ext + ξ

=⇒ µ = ζ−1

µTeff = D

Cory Hargus 10 / 19
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Even and odd thermometers for Teff

ρR(R, t) = 〈δ(R − R(t))〉 ,

0 = ∂tρ
ss
R = −∇ ·

[
(Teffµ − D)∇Rρss

R

]︸ ︷︷ ︸
J ss

R

ρP (P , t) = 〈δ(P − P (t))〉 ,

0 = ∂tρ
ss
P = −∇ ·

[
(Teffζ − λ)∇P ρss

P

]︸ ︷︷ ︸
J ss

P 6=0 even when adiabatic
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Even and odd thermometers for Teff

Adiabatic steady state is
Boltzmann-distributed

ρss
o = ρss

R(R)ρss
P (P ) ∝ e−

(
V (R)+ 1

2M
|P |2

)
/Teff
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Odd circulation of the disk is a signature of nonequilibrium
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Odd circulation of the disk is a signature of nonequilibrium
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Rotational dynamics of the rod
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Measures of rod adiabaticity
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Measures of rod adiabaticity
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Wedge dynamics
Achiral: `g/`wedge → ∞
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Wedge dynamics
Chiral: `g/`wedge = 1
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How does the object affect the bath itself?

What is the effect of chirality?
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Baek et al., PRL (2018)
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How does the object affect the bath itself?

〈F 〉b =
∫

dr δρ(r)∇V

〈Γ〉b =
∫

dr δρ(r)r × ∇V
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A multipole expansion connects ratchet forces to the far field

In steady state ∇ · J = 0. Defining J = δJ − D∇ρ then yields
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Currents in the bath

Near field: chirality drives circulation
Far field: ∇ × J = 0

φH = arctan(Db
⊥/Db

‖) , Jφ = r × J/|r|
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Conclusions

In a chiral active bath, how do a passive tracer’s shape, mass,
and size control odd transport and ratchet effects?

I Shape: Object symmetry + bath chirality determines the
dynamics

I Mass: Effective equilibrium at M → ∞ retains odd signatures
of the nonequilibrium bath

I Size: Odd dynamics are maximized for `g ∼ `tracer

Future directions: tracer interactions and self-assembly, chiral
nematic bath, application to bacterial ratchets
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Backup slides



A nice active bath +

Molecular motors are chiral

Bacterial Flagellum, Smart Biology

(https://www.youtube.com/watch?v=dYt5135_0bs)

An active bath can drive assembly

Feric et al. Cell 2016
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The adiabatic limit: M → ∞

Define the small parameter

ε =
√

“m”/M =
√

γ/DrM .

Rescale: P = ε−1P ∗ , L = ε−1L∗.
For simplicity, set “m” = 1.

ρ(rN , θN , R, P ∗, Θ, L∗, t) evolves as

∂tρ =
(
εLobject + Lbath

)
ρ

Object: rigid Newtonian dynamics

Ṙ = 1
M

P ,

Ṗ = F

Θ̇ = 1
I

L,

L̇ = Γ

⇓
Ṙ = εP ∗,

Ṗ ∗ = εF

Θ̇ = εL∗,

L̇∗ = εΓ

Adiabatic approximation for ε → 0:

ρ(rN , θN , R, P ∗, Θ, L∗, t) = ρtracer(R, P ∗, Θ, L∗, t)ρbath(rN , θN |R, Θ)
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Ṗ = F

Θ̇ = 1
I

L,

L̇ = Γ

⇓
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Fast variable treatment

Define the projection operator P where

Pρ(R, P , L, Θ, rN , θN , t) = ρbath(rN , θN |R, Θ)ρo(R, P , Θ, L, t).

noting that PLB = LBP = 0, because LBρbath = 0.
Then define the orthogonal projector Q ≡ 1 − P to decouple the evolution as

∂tPρ = εPLTPρ + εPLTQρ

∂tQρ = εQLTPρ + εQLTQρ + QLBQρ .

Perturbative solution: Qρ = q(0) + εq(1) + O(ε2) ⇒ QLBq1 + QLTPρ = 0.

∂tPρ = ρbath∂tρo = PLTPρ + PLTQ
(∫ ∞

0
dse

1
ε

LBs
)

QLTPρ + O(ε2) .
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There is no FDT connecting λ⊥ and ζ⊥.
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Disk mobility
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Wedge pulling
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Rotational symmetry
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