Nonequilibrium Transitions in a Template Copying Ensemble

LPTMC seminar

Arthur Genthon Max Planck Institute for the Physics of Complex Systems, Dresden

07/03/2025

My background

- 2015 2019 ENS Cachan, Physics
- Master 2 Physics of Complex Systems (PCS), Paris 2017 - 2018
- 2018 2019 Master 2 Logique, Philosophie, Histoire et Sociologie des Sciences (LOPHISS), Paris

Statistical Physics

Statistical Field Theory

Stochastic processes

Information theory

Complex Networks

Non-linear dynamics

Inference, Machine Learning

My background

- 2015 2019 ENS Cachan, Physics
- 2017 2018 Master 2 Physics of Complex Systems (PCS), Paris
- Master 2 Logique, Philosophie, Histoire et 2018 - 2019 Sociologie des Sciences (LOPHISS), Paris

PhD in theoretical physics 2019 - 2022 with David Lacoste, Gulliver lab, ESPCI

Teaching @Université de Paris (total 168,5 h ETD):

- Introductory computing, L1 TD/TP

- Lab work, L1 TΡ

- Thermodynamics, L2 TD

- Mathematics, L3 Lectures + TD

My background

- 2015 2019 ENS Cachan, Physics
- Master 2 Physics of Complex Systems (PCS), Paris 2017 - 2018
- 2018 2019 Master 2 Logique, Philosophie, Histoire et Sociologie des Sciences (LOPHISS), Paris
- 2019 2022 PhD in theoretical physics with David Lacoste, Gulliver lab, ESPCI
- Independent postdoc (Guest scientist status) 2023 - Now Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

Motivation: DNA replication (DNA \rightarrow DNA)

Impressively low error rates

 $\eta \sim 10^{-9}$ DNA replication

$$\eta \sim 10^{-4}$$
 | RNA transcription (DNA \rightarrow RNA)
RNA translation (RNA \rightarrow proteins)

This molecular machinery consumes **energy** in the form of ATP molecules (monomer activation)

Wikipedia

Which conditions for accuracy? What is the cost of accuracy?

Previous works

• • •

Polymer elongation models:

[Andrieux, Gaspard, PNAS (2008)] [Sartori, Pigolotti, Phys. Rev. Lett. (2013)] [Poulton et al., PNAS (2019)]

Previous works

• • •

Polymer elongation models:

[Andrieux, Gaspard, PNAS (2008)] [Sartori, Pigolotti, Phys. Rev. Lett. (2013)] [Poulton et al., PNAS (2019)]

Dependent on molecular details

Limitations:

- Coarse-graining over molecular details

- Coarse-graining over molecular details
- Two competing pathways: spontaneous and templated

VS

Our approach

- Coarse-graining over molecular details
- Two competing pathways: spontaneous and templated
- Explicit description of energy consumption and dissipation

Our approach

- Coarse-graining over molecular details
- Two competing pathways: spontaneous and templated
- Explicit description of energy consumption and dissipation

- Population level description

Statistical mechanics ensemble

Schematic m = 2

- T Template
- *L* Template length
- M_i Monomer of type i
- *m* **Number of monomer types**
- *n_{ii}* Stoichiometric coefficient
- F Fuel molecule
- W Waste molecule
- S_j Sequence $j = 1, ..., m^L$

- Templated assembly / disassembly

$$\sum_{i=1}^{m} n_{ij} \mathbf{M}_{i} + \mathbf{T} + L \mathbf{F} \quad \stackrel{k_{j}^{+}}{\rightleftharpoons} \quad \mathbf{S}_{j} + \mathbf{T} + L \mathbf{W}$$

- Spontaneous disassembly / assembly

Sequence selectivity

Micro-reversibility

$$\frac{k_r^+}{k_r^-} = e^{-\Delta\mu_r L}$$

 $\frac{k_j^+}{k_i^-} = e^{-k_j^+}$

Energy changes per monomer

 $\Delta \mu_r = \epsilon_S / L - \mu_M \qquad \qquad \Delta \mu_F = \mu_F - \mu_W > 0$

$$-(\Delta\mu_r - \Delta\mu_F)L$$

Sequence selectivity

Energy changes per monomer

$$\Delta \mu_r = \epsilon_S / L - \mu_M \qquad \qquad \Delta \mu_F = \mu_F - \mu_W > 0$$

[Ouldridge and Rein ten Wolde, PRL (2017)] Copies must be **persistent** → No lasting copy/template interactions \rightarrow For **autonomous** systems, selectivity must be kinetic

$$-(\Delta\mu_r - \Delta\mu_F)L$$

Sequence selectivity

Energy changes per monomer

$$\Delta \mu_r = \epsilon_S / L - \mu_M \qquad \Delta \mu_F =$$

[Ouldridge and Rein ten Wolde, PRL (2017)] Copies must be **persistent** → No lasting copy/template interactions \rightarrow For **autonomous** systems, selectivity must be kinetic

Kinetic sequence selectivity:

$$k_j^+, k_j^- \propto e^{-aq}$$

- Number of errors $0 \le q \le L$ Hamming distance $q = |\mathbf{T} - \mathbf{S}_i|$
 - Specificity a

+ Sequence-independent energetics:

 $\mu_M, \mu_F, \mu_W \perp M$ $\epsilon_{S} \perp S$

Statistics of errors

$$\partial_t p(N_S, t) = k_a p(N_S - 1, t) - (k_a + Nk_d) p(N_S, t) + (N_S + N_d) p(0, t) = -k_a p(0, t) + k_d p(1, t)$$

Solution

$(+1)k_d p(N_S + 1,t)$

 $k_a = k_i^+ + k_r^+$ Total assembly rate $k_d = k_j^- + k_r^-$ Total disassembly rate

Statistics of errors

$$\begin{split} \partial_t p(N_S,t) &= k_a p(N_S-1,t) - (k_a + Nk_d) p(N_S,t) + (N_S+1)k_d p(N_S+1,t) \\ \partial_t p(0,t) &= -k_a p(0,t) + k_d p(1,t) \end{split} \quad k_s = k_s^+ + k_r^+ \quad \text{Total assembly rates} \\ k_d &= k_j^- + k_r^- \quad \text{Total disassembly} \end{split}$$

Solution

$$p(N_S, t) = \frac{\lambda_q^{N_S}}{N_S!} e^{-\lambda_q}$$
$$\lambda_q = \frac{k_a}{k_d} \left(1 - e^{-k_d t}\right)$$

$$\langle N_S \rangle \xrightarrow[t \to \infty]{} \frac{k_r^+ + k_j^+}{k_r^- + k_j^-}$$

Rate parametrisation matters:

$$k_r^+ = k_r e^{-\Delta \mu_r L} \qquad k_j^+ = k_0 e^{-aq} e^{-(\Delta \mu_r - \Delta \mu_F)L}$$

$$k_r^- = k_r \qquad k_j^- = k_0 e^{-aq}$$

Choice: Polymers disassemble only spontaneously for large L

Statistics of errors

$$\partial_t p(N_S, t) = k_a p(N_S - 1, t) - (k_a + Nk_d) p(N_S, t) + (N_S + 1)k_d p(N_S + 1, t)$$

$$\partial_t p(0, t) = -k_a p(0, t) + k_d p(1, t)$$

Solution

$$p(N_S, t) = \frac{\lambda_q^{N_S}}{N_S!} e^{-\lambda_q}$$
$$\lambda_q = \frac{k_a}{k_d} \left(1 - e^{-k_d t}\right)$$

$$\langle N_S \rangle \xrightarrow[t \to \infty]{} \frac{k_r^+}{k_r^-}$$

Rate parametrisation matters:

$$k_r^+ = k_r e^{-\Delta \mu_r L} \qquad k_j^+ = k_0 e^{-aq} e^{-(\Delta \mu_r - \Delta \mu_F)L}$$

$$k_r^- = k_r \qquad k_j^- = k_0 e^{-aq}$$

Choice: Polymers disassemble only spontaneously for large L

 $k_a = k_i^+ + k_r^+$ Total assembly rate $k_d = k_i^- + k_r^-$ Total disassembly rate

 $+ k_{j}^{+}$ $+ k_{i}^{-}$

Number of copies with an error fraction $x = \frac{q}{L}$ $\langle N_x \rangle = \lambda_{xL} \Omega_{xL}$

Number of sequences with q errors

$$\Omega_q = \binom{L}{q} (m-1)^q$$

Phase diagram Finite L

$$\Delta \mu_F^{*,\infty} = \ln m + O(L^{-1})$$

x = q/L: monomeric error fraction

$$x_r = \frac{m - 1}{m} + O(L^{-1})$$

Accurate copies:

$$x_a = \frac{1}{1 + e^a/(m-1)} + O(L^{-1})$$

 $0 \le x_a \le x_r$

Phase transition from randomness to accuracy When varying energy drive

Mean error fraction

$$\overline{x} = \frac{\sum_{x} x \langle N_{x} \rangle}{\sum_{x} \langle N_{x} \rangle}$$

$$\begin{array}{c}
x_{r} \\
x_{r} \\
0.5 \\
-L = 25 \\
-L = 50 \\
-L = 150 \\
x_{a} \\
1 \\
\Delta \mu_{F}^{*} \\
\Delta
\end{array}$$

$$\Delta \mu_F^* = \ln\left(\frac{m}{1 + (m-1)e^{-a}}\right)$$

Accurate copies dominate in the large *L* limit for all values of specificity if: $\Delta \mu_F \ge \max_a \Delta \mu_F^* = \ln m$ Akin to Landauer's principle

 μ_F

 $+O\left(\frac{1}{L}\right)$

Phase diagram Large L

Can the population participating in this phase transition vanish?

Random copies

Accurate copies

Non-equilibrium steady-state current

 $\langle J \rangle \sim k_r \langle N_{x_a} \rangle$

Dissipation but no useful information transmitted from template to copy

$$\bigvee \uparrow \langle J \rangle = L \sum_{j=1}^{m^{L}} (k_{j}^{+} - \langle N_{S_{j}} \rangle k_{j}^{-})$$
$$\sim Lk_{0} \exp\{[\Delta \mu_{F} - \Delta \mu_{r} + \ln(1 + (m-1)e^{-\alpha})]\}$$

Freedom in the parametrisation of kinetic rates

Kinetic barriers matter even in steady-state!

Templated disassembly dominates spontaneous disassembly for $ax < \gamma \Delta \mu_F$

$$\langle N_S \rangle \xrightarrow[t \to \infty]{} \frac{k_r^+ + k_j^+}{k_r^- + k_j^-}$$

Spontaneous

$$\Delta \mu_r - \Delta \mu_F)L \qquad \qquad \frac{k_r^+}{k_r^-} = e^{-\Delta \mu_r L}$$

 $\gamma \in \mathbb{R}$ $\$ Changes the relative timescale of the two processes

ted	Spontaneous
$\mu_r L + (1 + \gamma) \Delta \mu_F L$	$k_r^+ = k_r e^{-\Delta \mu_r L}$
$_FL$	$k_r^- = k_r$

Speeding up templated disassembly: finite L $\gamma > 0$

4 new phases: E-H

New error fraction

$\gamma > 0$

Speeding up templated disassembly: large L $\gamma > 0$

Take-home messages

- General framework to investigate energy-consuming information copying
- Allows for a discussion of cost-accuracy trade (in particular with number m of building blocks)
- Discussion of processes that are not tightly-coupled is possible (e.g. kinetic proofreading)

Stephan Grill

[Genthon, Modes, Jülicher, Grill, Phys. Rev. Lett. (2025)]

-offs
$$L\Delta\mu_F^*$$
 vs x_a

Carl Modes

Frank Jülicher

Backup slides

Cost-accuracy trade-off in number of monomer types m (Large L)

Accuracy

$$x_a = \frac{1}{1 + e^a/(m-1)}$$

Error fraction of accurate copies

Cost

Energy cost per monomer $\Delta \mu_F^* = \ln\left(\frac{m}{1+(m-1)e^{-a}}\right)$ Total energy cost $E_{\text{tot}}^* = L(m)\Delta \mu_F^* = \left(1 - \frac{\ln\left(1+(m-1)e^{-a}\right)}{\ln m}\right)$

 $\Omega = m^L$ Number of "messages" of length L in base m

$$\left(\frac{-a}{2}\right) \ln \Omega$$

Cost-accuracy trade-off in number of monomer types m (Large L)

Accuracy

$$x_a = \frac{1}{1 + e^a/(m-1)}$$

Error fraction of accurate copies

Cost

Energy cost per monomer $\Delta \mu_F^* = \ln\left(\frac{m}{1+(m-1)\rho^{-a}}\right)$ Total energy cost $E_{\text{tot}}^* = L(m)\Delta\mu_F^* = \left(1 - \frac{\ln\left(1 + (m-1)e^{-a}\right)}{\ln m}\right)\ln\Omega$

Number of "messages" of length L in base m $\Omega = m^L$

18

Trade-off:

m = 50

General phase diagram

Templated:

$$k_j^- = k_0 e^{-axL} e^{-((1+\alpha)\Delta\mu_r - (1+\gamma)\Delta\mu_F)L}$$
$$k_j^- = k_0 e^{-axL} e^{-(\alpha\Delta\mu_r - \gamma\Delta\mu_F)L}$$

Spontaneous:

$$k_r^- = k_r e^{-\beta \Delta \mu_r L}$$
$$k_r^- = k_r e^{-(1+\beta)\Delta \mu_r L}$$

Arbitrary splittings:

$$\alpha, \beta, \gamma \in \mathbb{R}$$

19

 $\Delta \mu_F$ (

Kinetic proofreading

- Random number N of fuel-consuming proofreading cycles

 \rightarrow distribution of values for $\Delta \mu_F$

- Explicit coarse-graining over proofreading pathways

 \rightarrow effective specificity a(x, L) \rightarrow effective per-monomer energy $\Delta \mu_F(L)$

- Weak proofreading limit (single-state polymerase backtracking)

 \rightarrow increase of the specificity $a_{KP} > a$ \rightarrow decrease of the error fraction $(x_a)_{KP} < x_a$

 $\Delta \mu_F = \Delta \mu_0 + N \Delta \mu$

 $p(N) \rightarrow p(\Delta \mu_F)$