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Context

Transport properties are crucial quantities to evaluate in heterogeneous media
- Chemical engineering [Aminian et al., Science, 2016]

- Biochannels and nanopores [Marbach et. al., Nature Physics, 2018]
- Porous structures [Putzel et al., PRL, 2014]
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The effective diffusivity can significantly differ from the microscopic one
(e.g. spatial heterogeneities, flow...)
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Example 1: Slowly undulated channel

Fick-Jacobs approximation: fast equilibrium in the
transverse direction to the channel
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Context

Example 1: Slowly undulated channel

Fick-Jacobs approximation: fast equilibrium in the
transverse direction to the channel

500 - Approximation valid in the limit L > a
Effective potential  ¢(z) = —T'S(x) = —kpT log [h(x)]
2 150
= D, = D __DP _p
- e <6_¢/szT> <e+¢/szT> - <h> (h—1> >~
1.00~ [Jacobs 1935; Lifson, & Jackson, JCP, 1962]
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3 Reduction of diffusivity resulting
x from entropic trapping



Context

Example 2: Taylor dispersion
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[Kumar et al., PRF, 2021]



Context

Example 2: Taylor dispersion
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Pe = advection _au Péclet number
9 diffusion D
Effective diffusivity D, = (1 + 1—05Pe2> > D

Enhanced diffusivity

[Taylor 1953, Aris 1956] due to the gradient of velocity



Context

Slowly undulated channel
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Context

Taylor dispersion in slowly undulated channel

A=20, RW data ~ 1

*
D™ ¢

Flow determined in the lubrication approximation

o | | Interplay between advection and entropic
[Adrover et al., Laminar dispersion at low and high Peclet numbers in ]
finite-length patterned microtubes. Physics of Fluids, 2017] effects in SlOle undulated channels



Question
(VII) o

7
What happens in highly corrugated channel?
Does any effective description exist for this problem?
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Effective diffusivity in the limit L — 0

1
General expression D, =D+ 5 / dr (U;cf — Daxf)
Q

Incompressible flow u Auxiliary field f
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Effective diffusivity in the limit L — 0

General expression D, =D+ % / dr (U;cf — Daxf)
Q)

Incompressible flow u

Bulk equation V-u=0
n Viu— VII =0

Auxiliary field f

DV?f —u-Vf = (uy)
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Effective diffusivity in the limit L — 0

1
General expression D, =D+ a / dr (u:,;f — D@xf)
Q
Incompressible flow u Auxiliary field f
Bulk equation V-u=0

2 — . — _
V2 — VIT = 0 DV f—u-Vf = (ug) — ug

Boundary u=>0 n-Vf=n-e

conditions - - " f(r+ Le,) = f(r)
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Effective diffusivity in the limit L — 0

1
General expression D, =D+ a / dr (uxf — D&,;f)
Q
Incompressible flow u Auxiliary field f
Bulk equation V-u=0

2 — . — _

Boundary u =0 nvf —1n-e;

conditions

Problem: lubrication and Fick-Jacobs approximations break down
in the limit L — 0!

/ Fick-Jacobs approximation
/ Lubrication theory

x Fick-Jacobs approximation
x Lubrication theory



Effective diffusivity in the limit L — 0

peripheral
— Use matching asymptotics method!
(
fo(X,y) + LY (X ) + ... (lyl > a)
Auxiliary field [ = < central
oKX y) + L (X y)+ .o (lyl <a)

X =uxz/L




Effective diffusivity in the limit L — 0

— Use matching asymptotics method!

Auxiliary field

[ fP(X,y) + LIP(X,y) + ...
f=9 fi(X,Y)+LfF(X,Y)+ ...
\fS(Xay)JrLff(X,y)Jr...

X =x/L Y=(wy—a)/L

(
(
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Effective diffusivity in the limit L — 0

— Use matching asymptotics method!

(0 (ly| > a)

Flow 1 = 4 Lu"(X,Y)+.. (ly| ~ a)
—

| wo(X,y) + Lui(X,y) +... (Jyl <a)

X =x/L Y=(wy—a)/L
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Effective diffusivity in the limit L — 0

Flow in the central region U = ug + us€,

2
Leading order ug =U (1 — —) e,

First order correction us =ULfS/a

[Luchini, J. Fluid. Mech., 1991 B ~0.1772

Jeong, Phys. Fluids, 2001]



Effective diffusivity in the limit L — 0

Flow in the central region U = ug + us€,

2
Leading order ug =U (1 — —) e,

First order correction us =ULfS/a

— Effective slip length
7 _aQ(VH)OO
h_ Ug _ BL B 2n
|0y Uz |y=a 2
B ~0.1772

[Luchini, J. Fluid. Mech., 1991;
Jeong, Phys. Fluids, 2001]



Effective diffusivity in the limit L — 0

Highly corrugated channel with reflecting boundaries
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Effective diffusivity in the limit L — 0

Highly corrugated channel wi

reflecting boundaries
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Effective diffusivity in the limit L — 0

Highly corrugated channel with reflecting boundaries
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Analogy with surface-mediated diffusion

Flat channel with sticky boundaries
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Bulk diffusion coefficient 1)

Surface diffusion coefficient s

Attachment rate Fka

Detachment rate kg

Fokker—Planck equation

Oy = —uc(y)Oupy + D (02 + 05D
atps — Dsa;%ps - kdps + kapba



Analogy with surface-mediated diffusion

Flat channel with sticky boundaries
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Attachment rate ka .
Detachment rate kg
. ko
Adsorption length J = 2
ka
Characteristic 1
. T =k,
detachment time

Fokker—Planck equation

Oy = —uc(y)Oupy + D (02 + 05D
atps — Dsa;%ps - kdps + kapba

(lyl <a)
(lyl = a)
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[Levesque et al., PRE, 2012; Berezhkovskii, JCP, 2013]




Analogy with surface-mediated diffusion

Highly corrugated channel Flat channel with sticky boundaries
with reflecting boundaries
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Analogy with surface-mediated diffusion

Highly corrugated channel Flat channel with sticky boundaries
with reflecting boundaries

AL
WA
- .
ka
Adsorption length § = (h—a) = T
d
hom hom 2
Mean escape time T = /a 5D$(y) {/y dy’W(y’)]  Diffecive 7=k
DT 1m0 incursion length
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Effective diffusivity in the limit L — 0
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Effective diffusivity in the limit L — 0
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Conclusion

Effective description of Taylor dispersion in a corrugated channel in the limit L — 0
using matching asymptotics technique
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Effective description of Taylor dispersion in a corrugated channel in the limit L — 0
using matching asymptotics technique

Two phenomena near the entrance of protrusions:
- a non vanishing flow

: : s L
— effective slip length b “ b

 Oyusly=a 2

- diffusion along the channel axis is not completely suppressed
— diffusive incursion length ¢ = LIn2/7
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Effective description of Taylor dispersion in a corrugated channel in the limit L — 0
using matching asymptotics technique

Two phenomena near the entrance of protrusions:
- a non vanishing ﬂo-w . " 8L
— effective slip length b

B | Oyt | y=a 2
- diffusion along the channel axis is not completely suppressed
— diffusive incursion length ¢ = L1n2/7

Mapping with a model of surface-mediated diffusion with flow, determination of effective
attachment and detachment rates, and effective surface diffusion coefficient
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Conclusion

Effective description of Taylor dispersion in a corrugated channel in the limit L — 0
using matching asymptotics technique

[Alexandre, Guérin, & Dean (2025).

Two phenomena near the entrance of protrusions: Scilive deserisiion of Teyllor daserser
- a non vamshlr;% ﬂo-w . ) g BL in strongly corrugated channels. arXiv
— effective slip fength - b= 15 e~ 2 preprint arXiv:2502.07464)

- diffusion along the channel axis is not completely suppressed
— diffusive incursion length ¢ = L1n2/7

Mapping with a model of surface-mediated diffusion with flow, determination of effective
attachment and detachment rates, and effective surface diffusion coefficient
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Kubo formula

General expression D.=D — / dit [V;c (I‘(t)> — Vax] [Vx* (r(O)) — Vi
0
V =u+ Dnd,(r)
V* = —u(r) + Dis(r)n
Auxiliary function / dt/ dro P(r,t|ro)[V, (ro) — V_J]

— De:D—I—l/dI’(Uxf_Daxf)
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