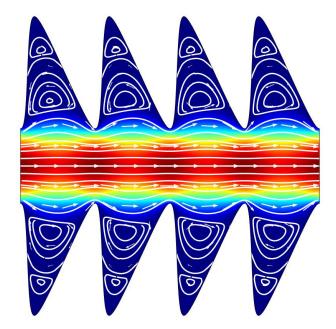
# Effective description of Taylor dispersion in strongly corrugated channels



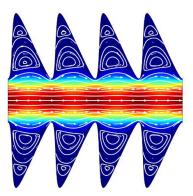
Arthur Alexandre<sup>1,2,3</sup>, Thomas Guérin<sup>1</sup>, David S. Dean<sup>1</sup>

<sup>1</sup> Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400, Talence, France.
 <sup>2</sup> Institute of Bioengineering, School of Life Sciences,
 École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
 <sup>3</sup> SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland

# Background

2019-2022: PhD, LOMA, University of Bordeaux, France Supervisors: David. S. Dean, Thomas Guérin Title: Dispersion in heterogeneous media: a study of hydrodynamic effects and surface-mediated diffusion

- Model of surface mediated diffusion [PRL 2022]
- Taylor dispersion in channels [Physics of Fluids 2021; Preprint 2025]
- Non Gaussian diffusion near surfaces [PRL 2022]
- Active matter: self phoretic motion [PRE 2024]



# Background

2019-2022: PhD, LOMA, University of Bordeaux, France Supervisors: David. S. Dean, Thomas Guérin Title: Dispersion in heterogeneous media: a study of hydrodynamic effects and surface-mediated diffusion

- Model of surface mediated diffusion [PRL 2022]
- Taylor dispersion in channels [Physics of Fluids 2021; Preprint 2025]
- Non Gaussian diffusion near surfaces [PRL 2022]
- Active matter: self phoretic motion [PRE 2024]

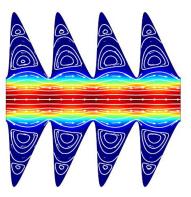
Since 2022: Postdoc, Bitbol lab, EPFL, Switzerland

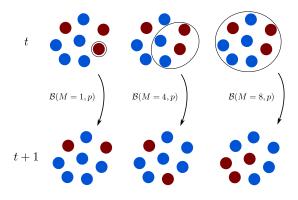
Supervisor: Anne-Florence Bitbol, collaboration with Claude Loverdo

(CNRS, LJP, Sorbonne Université, Paris)

Title: Modeling evolution of population

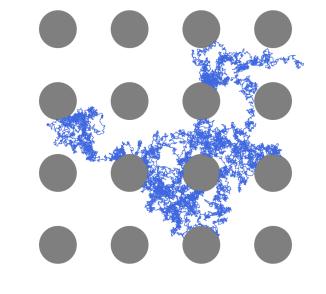
- Modeling expanding population, application to bacterial population in the gut
- Models of non expanding population, evolutionary graph theory [Evolution (in press) 2025; JTB 2025]





Transport properties are crucial quantities to evaluate in heterogeneous media

- Chemical engineering [Aminian et al., Science, 2016]
- Biochannels and nanopores [Marbach et. al., Nature Physics, 2018]
- Porous structures [Putzel et al., PRL, 2014]

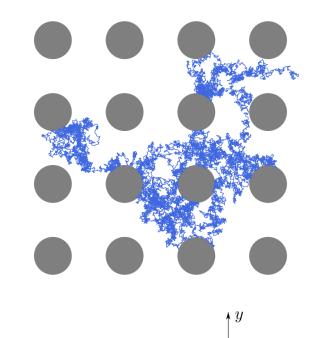


Transport properties are crucial quantities to evaluate in heterogeneous media

- Chemical engineering [Aminian et al., Science, 2016]
- Biochannels and nanopores [Marbach et. al., Nature Physics, 2018]
- Porous structures [Putzel et al., PRL, 2014]

Transport properties can be quantified at large time with an effective drift and **effective diffusivity** 

$$v_e = \frac{\overline{[x(t) - x(0)]}}{t}$$
$$D_e \underset{t \to \infty}{\simeq} \frac{\overline{[x(t) - x(0) - v_e t]^2}}{2t}$$

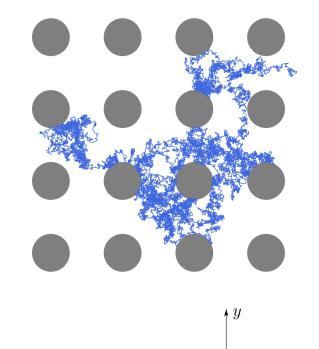


Transport properties are crucial quantities to evaluate in heterogeneous media

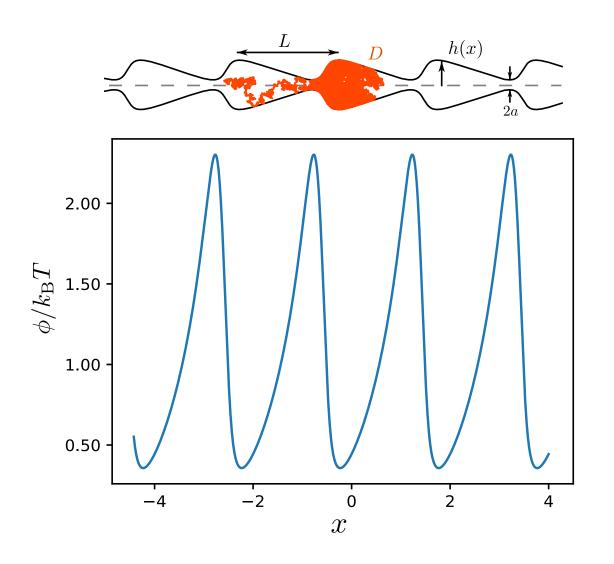
- Chemical engineering [Aminian et al., Science, 2016]
- Biochannels and nanopores [Marbach et. al., Nature Physics, 2018]
- Porous structures [Putzel et al., PRL, 2014]

Transport properties can be quantified at large time with an effective drift and **effective diffusivity** 

$$v_e = \frac{\overline{[x(t) - x(0)]}}{t}$$
$$D_e \underset{t \to \infty}{\simeq} \frac{\overline{[x(t) - x(0) - v_e t]^2}}{2t}$$



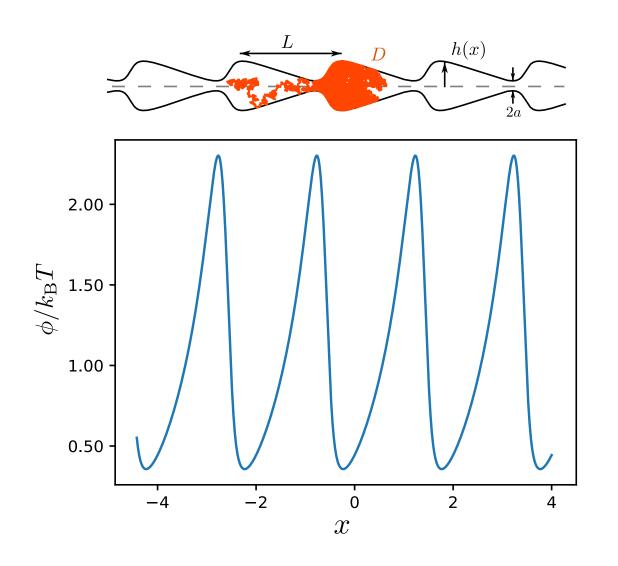
The effective diffusivity can **significantly** differ from the microscopic one (e.g. spatial heterogeneities, flow...)



#### **Example 1: Slowly undulated channel**

**Fick-Jacobs approximation**: fast equilibrium in the transverse direction to the channel

Approximation valid in the limit  $L \gg a$ 



#### **Example 1: Slowly undulated channel**

**Fick-Jacobs approximation**: fast equilibrium in the transverse direction to the channel

Approximation valid in the limit  $L \gg a$ 

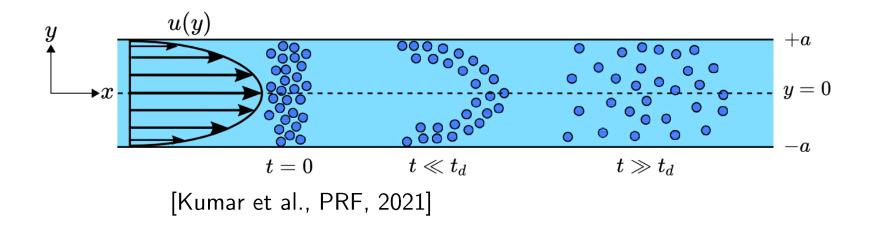
Effective potential  $\phi(x) = -TS(x) = -k_BT\log[h(x)]$ 

$$D_{e} = \frac{D}{\left\langle e^{-\phi/k_{\rm B}T} \right\rangle \left\langle e^{+\phi/k_{\rm B}T} \right\rangle} = \frac{D}{\left\langle h \right\rangle \left\langle h^{-1} \right\rangle} \le D$$

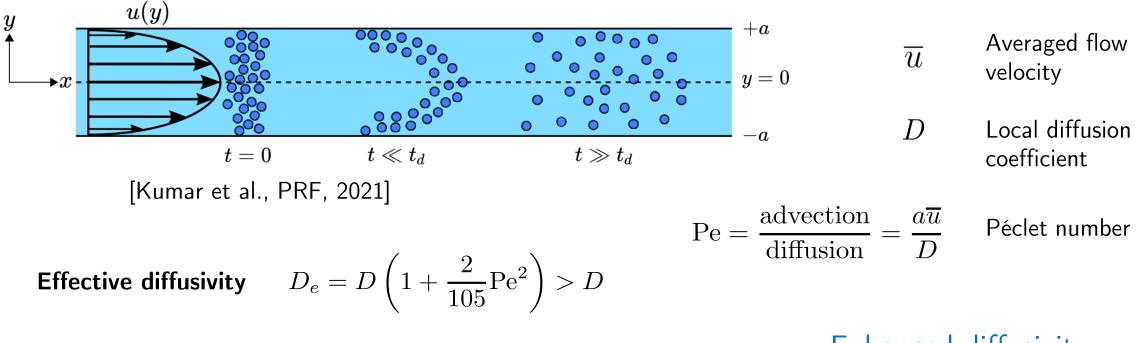
[Jacobs 1935; Lifson, & Jackson, JCP, 1962]

Reduction of diffusivity resulting from entropic trapping

**Example 2: Taylor dispersion** 



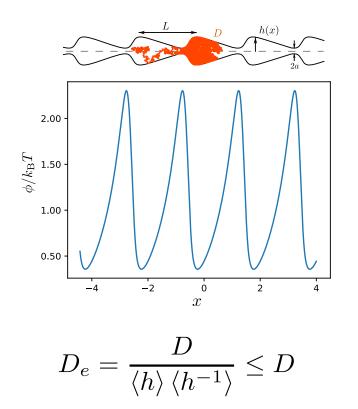
**Example 2: Taylor dispersion** 



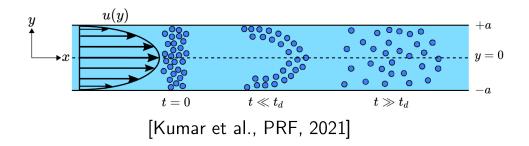
[Taylor 1953, Aris 1956]

Enhanced diffusivity due to the gradient of velocity

#### Slowly undulated channel



#### **Taylor dispersion**



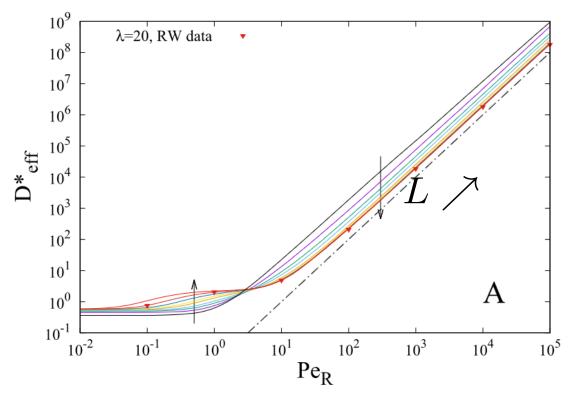
$$D_e = D\left(1 + \frac{2}{105} \mathrm{Pe}^2\right) > D$$

Taylor dispersion in slowly undulated channel

 $R_0$  r z L

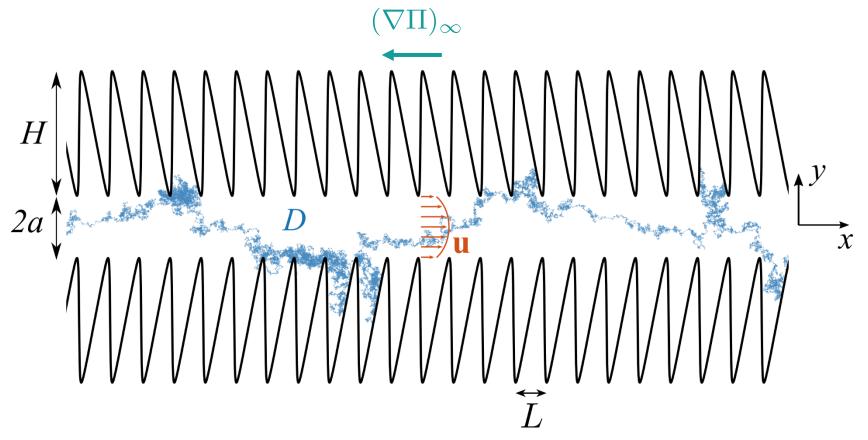
Flow determined in the **lubrication approximation** 

[Adrover et al., Laminar dispersion at low and high Peclet numbers in finite-length patterned microtubes. Physics of Fluids, 2017]



Interplay between advection and entropic effects in slowly undulated channels

## Question



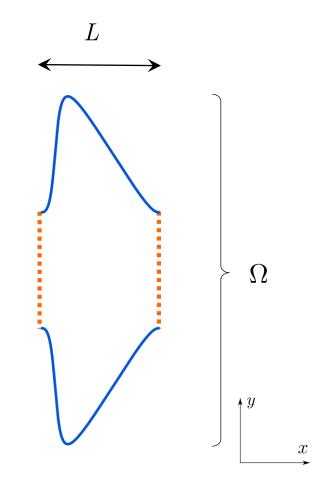
What happens in highly corrugated channel? Does any effective description exist for this problem?

General expression

$$D_e = D + \frac{1}{\Omega} \int_{\Omega} \mathrm{d}\mathbf{r} \, \left( u_x f - D\partial_x f \right)$$

Incompressible flow  $\mathbf{u}$ 

Auxiliary field f



General expression

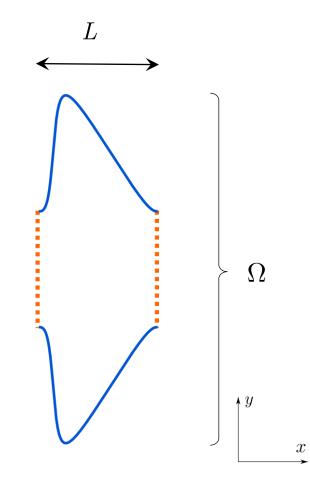
$$D_e = D + \frac{1}{\Omega} \int_{\Omega} \mathrm{d}\mathbf{r} \, \left( u_x f - D\partial_x f \right)$$

Incompressible flow  ${\bf u}$ 

Auxiliary field f

Bulk equation

$$\nabla \cdot \mathbf{u} = 0$$
  
$$\eta \nabla^2 \mathbf{u} - \nabla \Pi = 0$$
  
$$D\nabla^2 f - \mathbf{u} \cdot \nabla f = \langle u_x \rangle - u_x$$



General expression

$$D_e = D + \frac{1}{\Omega} \int_{\Omega} \mathrm{d}\mathbf{r} \, \left( u_x f - D\partial_x f \right)$$

Incompressible flow  ${\bf u}$ 

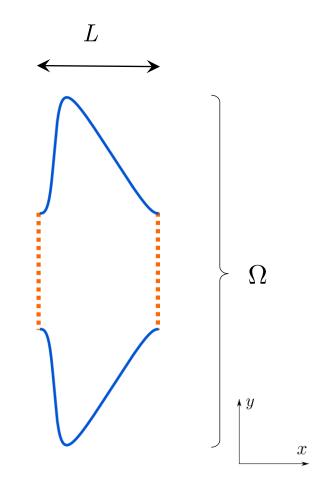
Auxiliary field f

Bulk equation

$$\nabla \cdot \mathbf{u} = 0$$
  
$$\eta \nabla^2 \mathbf{u} - \nabla \Pi = 0$$
  
$$D\nabla^2 f - \mathbf{u} \cdot \nabla f = \langle u_x \rangle - u_x$$

Boundary conditions

 $\mathbf{u} = 0 \qquad \mathbf{n} \cdot \nabla f = \mathbf{n} \cdot \mathbf{e}_x$  $\mathbf{u}(\mathbf{r} + L \, \mathbf{e}_x) = \mathbf{u}(\mathbf{r}) \qquad f(\mathbf{r} + L \, \mathbf{e}_x) = f(\mathbf{r})$ 



General expression

$$D_e = D + \frac{1}{\Omega} \int_{\Omega} \mathrm{d}\mathbf{r} \, \left( u_x f - D\partial_x f \right)$$

Incompressible flow  ${\bf u}$ 

Auxiliary field f

Bulk equation

 $\nabla \cdot \mathbf{u} = 0$  $\eta \nabla^2 \mathbf{u} - \nabla \Pi = 0$   $D\nabla^2 f - \mathbf{u}$ 

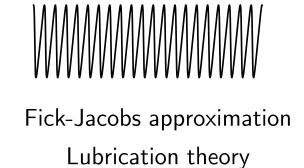
$$D\nabla^2 f - \mathbf{u} \cdot \nabla f = \langle u_x \rangle - u_x$$

Fick-Jacobs approximation Lubrication theory

Boundary conditions

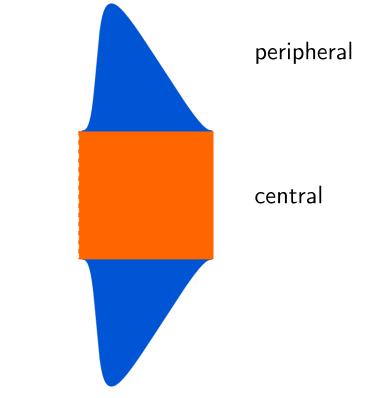
 $\mathbf{u} = 0 \qquad \mathbf{n} \cdot \nabla f = \mathbf{n} \cdot \mathbf{e}_x$  $\mathbf{u}(\mathbf{r} + L \, \mathbf{e}_x) = \mathbf{u}(\mathbf{r}) \qquad f(\mathbf{r} + L \, \mathbf{e}_x) = f(\mathbf{r})$ 

Problem: lubrication and Fick-Jacobs approximations break down in the limit  $L \to 0!$ 



 $\rightarrow$  Use matching asymptotics method!

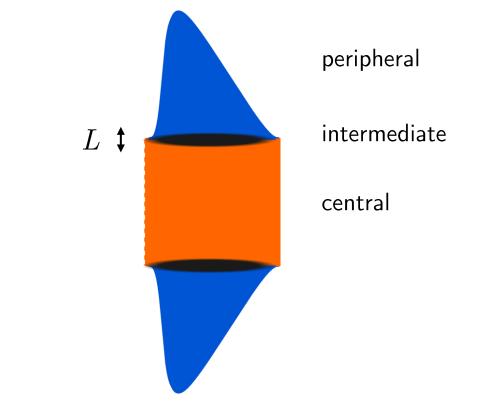
Auxiliary field  $f = \begin{cases} f_0^p(X, y) + L f_1^p(X, y) + \dots & (|y| > a) \\ f_0^c(X, y) + L f_1^c(X, y) + \dots & (|y| < a) \\ X = x/L \end{cases}$ 



 $\rightarrow$  Use matching asymptotics method!

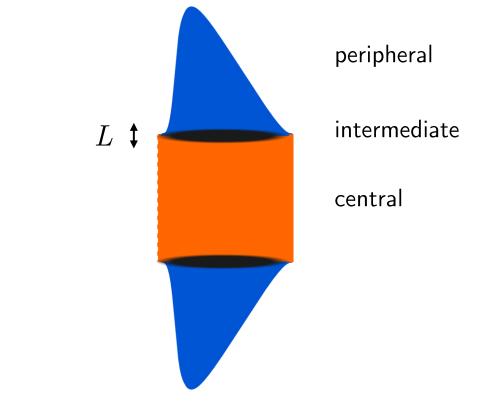
Auxiliary field  $f = \begin{cases} f_0^p(X, y) + Lf_1^p(X, y) + \dots & (|y| > a) \\ f_0^*(X, Y) + Lf_1^*(X, Y) + \dots & (|y| \sim a) \\ f_0^c(X, y) + Lf_1^c(X, y) + \dots & (|y| < a) \end{cases}$ 

$$X = x/L \qquad Y = (y-a)/L$$



 $\rightarrow$  Use matching asymptotics method!

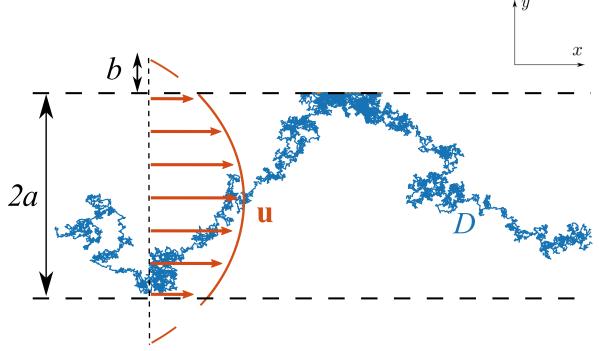
Flow 
$$\mathbf{u} \underset{L \to 0}{\simeq} \begin{cases} 0 & (|y| > a) \\ L \mathbf{u}^*(X, Y) + \dots & (|y| \sim a) \\ \mathbf{u}_0(X, y) + L \mathbf{u}_1(X, y) + \dots & (|y| < a) \end{cases}$$
  
$$X = x/L \qquad Y = (y - a)/L$$



Flow in the central region  $\mathbf{u} = \mathbf{u}_0 + u_s \mathbf{e}_x$ 

Leading order 
$$\mathbf{u}_0 = U\left(1 - \frac{y^2}{a^2}\right)\mathbf{e}_x$$

First order correction  $u_s = UL\beta/a$ 



$$U = -\frac{a^2 (\nabla \Pi)_\infty}{2\eta}$$

 $\beta\simeq 0.1772$ 

[Luchini, J. Fluid. Mech., 1991; Jeong, Phys. Fluids, 2001]

Flow in the central region  $\mathbf{u} = \mathbf{u}_0 + u_s \mathbf{e}_x$ 

Leading order 
$$\mathbf{u}_0 = U\left(1 - \frac{y^2}{a^2}\right)\mathbf{e}_x$$

First order correction  $u_s = UL\beta/a$ 

[Luchini, J. Fluid. Mech., 1991; Jeong, Phys. Fluids, 2001]

Highly corrugated channel with reflecting boundaries

$$H \longrightarrow D_{a} \longrightarrow D_{a} \longrightarrow T_{x} \longrightarrow$$

Highly corrugated channel with reflecting boundaries

Highly corrugated channel with reflecting boundaries

$$H \longrightarrow D_{a} \longrightarrow D_{a} \longrightarrow T_{x} \longrightarrow$$

 $b \diamondsuit D_{s}$   $2a \swarrow ka \checkmark kd$   $b \lor ka \checkmark kd$   $D_{s} \lor kd$ 

Flat channel with sticky boundaries

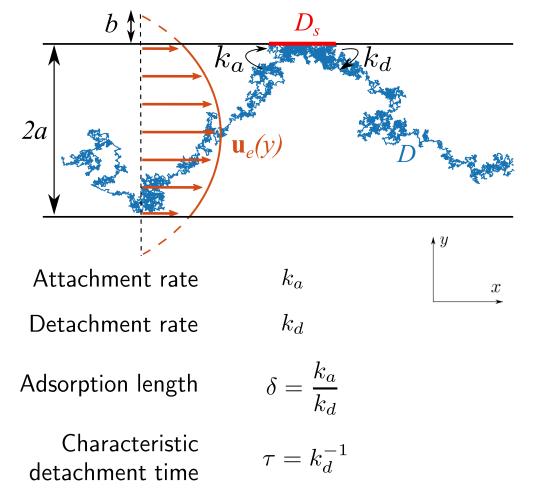
Fokker–Planck equation

$$\partial_t p_b = -u_e(y)\partial_x p_b + D(\partial_x^2 + \partial_y^2)p_b \qquad (|y| < a)$$
  
$$\partial_t p_s = D_s \partial_x^2 p_s - k_d p_s + k_a p_b, \qquad (|y| = a)$$

Attachment rate  $k_a$ 

Detachment rate  $k_d$ 

Flat channel with sticky boundaries



Fokker–Planck equation

$$\partial_t p_b = -u_e(y)\partial_x p_b + D(\partial_x^2 + \partial_y^2)p_b \qquad (|y| < a)$$
  
$$\partial_t p_s = D_s \partial_x^2 p_s - k_d p_s + k_a p_b, \qquad (|y| = a)$$

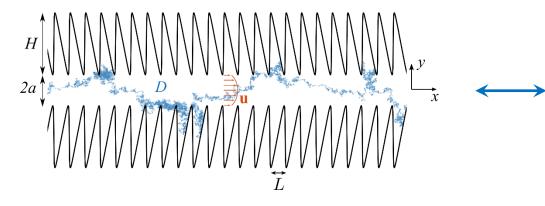
By taking 
$$u_e(y) = U\left(1 - \frac{y^2}{a^2}\right) + u_s$$

$$D_{e} = \frac{Da + D_{s}\delta}{a + \delta} + \frac{4U^{2}a^{2}}{9D(a + \delta)^{3}} \left\{ \frac{17a\delta^{2}}{35} + \frac{6a^{2}\delta}{35} + \frac{2a^{3}}{105} + \tau D\delta \right\} + \frac{4a^{2}Uu_{s}}{45D(a + \delta)^{3}} \left\{ 6a\delta^{2} + a^{2}\delta + 15D\tau\delta \right\}$$

[Levesque et al., PRE, 2012; Berezhkovskii, JCP, 2013]

Highly corrugated channel with reflecting boundaries

Flat channel with sticky boundaries



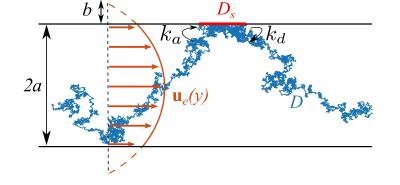


 $\delta = \langle h - a \rangle$ 

Mean escape time

$$\tau = \int_{a}^{h_{m}} \frac{dy}{\delta DW(y)} \left[ \int_{y}^{h_{m}} dy' W(y') \right]^{2}$$

$$D_s = \frac{DL\ln 2}{\pi\delta}$$



$$\delta = \frac{k_a}{k_d}$$

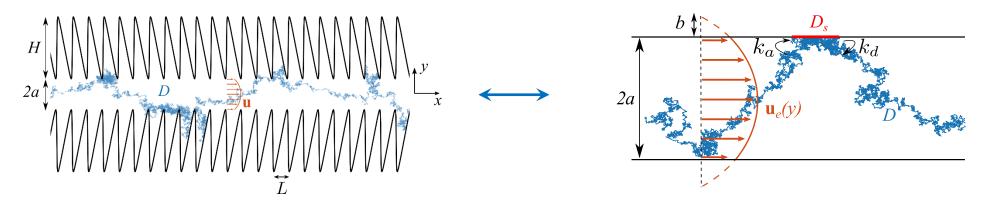
$$\tau = k_d^{-1}$$

 $D_s$ 

Highly corrugated channel with reflecting boundaries

Flat channel with sticky boundaries

 $\delta = \frac{k_a}{k_d}$ 



Adsorption length

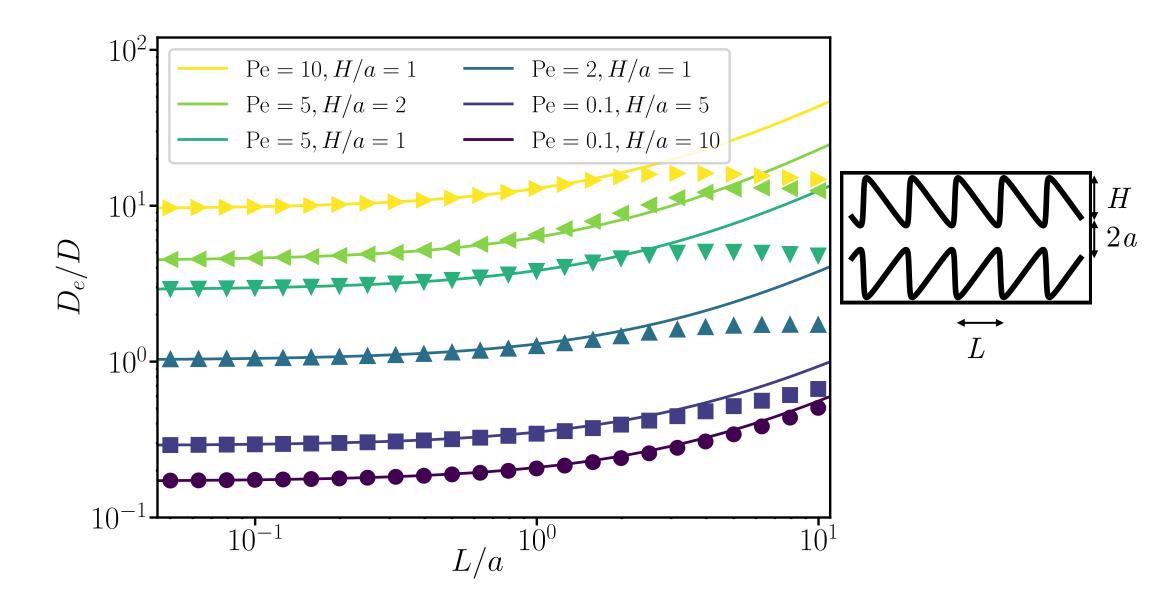
 $\delta = \langle h - a \rangle$ 

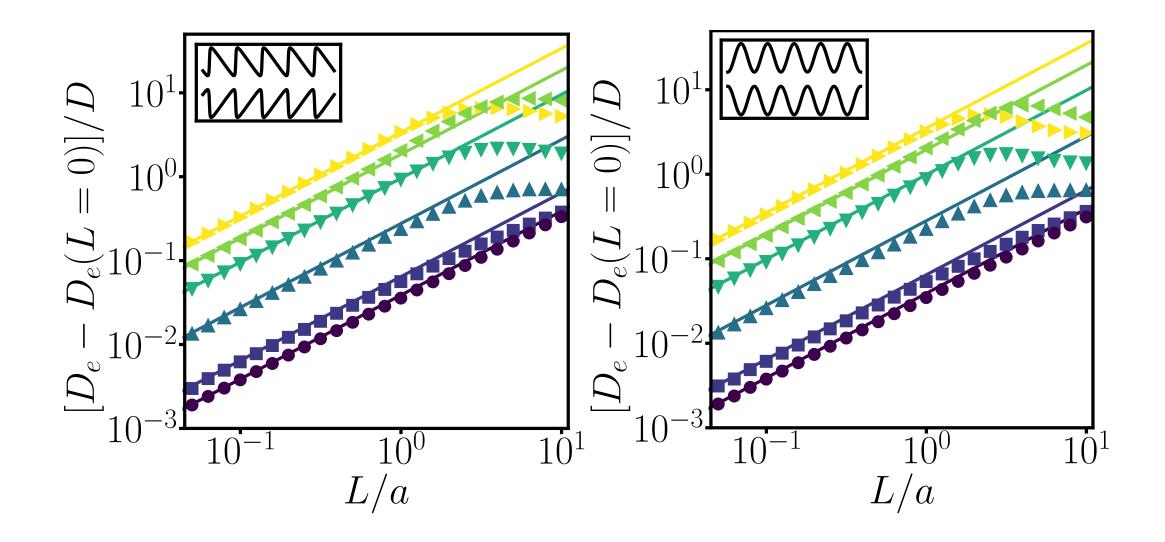
Mean escape time

Surface diffusion

$$\tau = \int_{a}^{h_{m}} \frac{dy}{\delta DW(y)} \left[ \int_{y}^{h_{m}} dy' W(y') \right]^{2} \qquad \qquad \tau = k_{d}^{-1}$$

$$D_{s} = \frac{DL \ln 2}{\pi \delta} \qquad \qquad \ell = L \ln 2/\pi \qquad \qquad D_{s}$$





**Effective** description of **Taylor dispersion** in a corrugated channel in the limit  $L \rightarrow 0$  using matching asymptotics technique

**Effective** description of **Taylor dispersion** in a corrugated channel in the limit  $L \rightarrow 0$  using matching asymptotics technique

Two phenomena near the entrance of protrusions:

- a non vanishing flow  

$$\rightarrow$$
 effective slip length  $b = \frac{u_s}{|\partial_y u_x|_{y=a}} = \frac{\beta L}{2}$ 

- diffusion along the channel axis is not completely suppressed

 $\rightarrow$  diffusive incursion length  $\ell = L \ln 2/\pi$ 

**Effective** description of **Taylor dispersion** in a corrugated channel in the limit  $L \rightarrow 0$  using matching asymptotics technique

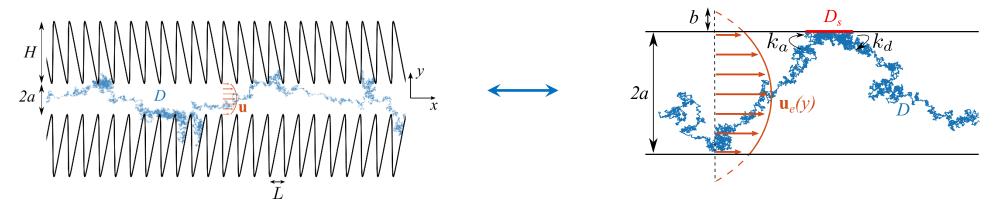
Two phenomena near the entrance of protrusions:

- a non vanishing flow  

$$\rightarrow$$
 effective slip length  $b = \frac{u_s}{|\partial_y u_x|_{y=a}} = \frac{\beta L}{2}$ 

- diffusion along the channel axis is not completely suppressed  $\rightarrow$  diffusive incursion length  $\ell = L \ln 2/\pi$ 

**Mapping** with a model of **surface-mediated diffusion** with flow, determination of effective attachment and detachment rates, and effective surface diffusion coefficient



- a r

**Effective** description of **Taylor dispersion** in a corrugated channel in the limit  $L \rightarrow 0$  using matching asymptotics technique

Two phenomena near the entrance of protrusions:

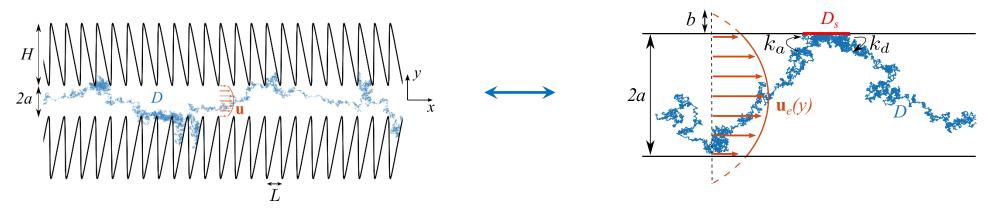
hon vanishing flow  

$$\rightarrow$$
 effective slip length  $b = \frac{u_s}{|\partial_y u_x|_{y=a}} = \frac{\beta L}{2}$ 

[Alexandre, Guérin, & Dean (2025). Effective description of Taylor dispersion in strongly corrugated channels. *arXiv preprint arXiv:2502.07464*]

- diffusion along the channel axis is not completely suppressed  $\rightarrow$  diffusive incursion length  $\ell = L \ln 2/\pi$ 

**Mapping** with a model of **surface-mediated diffusion** with flow, determination of effective attachment and detachment rates, and effective surface diffusion coefficient



# Acknowledgment





Thomas Guérin

David S. Dean



People of the lab

Alumni

Anne-Florence Bitbol

Cecilia Fruet Cyril Malbranke Damiano Sgarbossa Alexandre Littiere Anamay Samant Gionata Zalaffi Olivier Mouche Damien Ribière Alia Abbara Umberto Lupo Luca Biggio Celia García-Pareja Richard Servajean Nicola Dietler

#### Kubo formula

General expression

$$D_e = D - \int_0^\infty \mathrm{d}t \ \overline{\left[V_x(\mathbf{r}(t)) - \overline{V_x}\right]\left[V_x^*(\mathbf{r}(0)) - \overline{V_x^*}\right]}$$

 $\mathbf{V} = \mathbf{u} + D\,\mathbf{n}\,\delta_s(\mathbf{r})$ 

$$\mathbf{V}^* = -\mathbf{u}(\mathbf{r}) + D\,\delta_s(\mathbf{r})\,\mathbf{n}$$

Auxiliary function  $f(\mathbf{r}) = -\int_0^\infty \mathrm{d}t \int_\Omega \mathrm{d}\mathbf{r}_0 \ P(\mathbf{r}, t | \mathbf{r}_0) [V_x^*(\mathbf{r}_0) - \overline{V_x^*}]$ 

$$\implies D_e = D + \frac{1}{\Omega} \int_{\Omega} d\mathbf{r} \, \left( u_x f - D \partial_x f \right)$$