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Research themes
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Physical Models of
Learning

Biologically inspired 
learning systems

Interacting neurons with a complex 
dynamics

Artificial 
learning systems

Physical model with no biological 
constraints

GeneralizationLearning the distribution of the data and not the data.
MemorizationLearning the data.
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Outline of the Presentation

The concepts of Memorization and Generalization can be unified inside the same “thermodynamic” picture:
1. Biologically inspired learning systems.
2. Diffusion Models with structured data.

3. Future perspectives. 



Biologically inspired

learning systems
or

Recurrent Neural Networks
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[Wood (1993).]

Recurrent Neural Networks
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Complex (thermo)dynamics

Recurrent Neural Networks

[Pitts & McCulloch (1943).]
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[Peretto (1984)]

Recurrent Neural Networks

Matrix        defines an energy landscape
Assuming                 the pdf                                       samples states from the landscape.   

diffuse: quench:
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[Hinton et al. (1985)]

Recurrent Neural Networks

diffuse:

One can search for the         such that a Monte-Carlo dynamics at temperature tsamples “unseen” dogs.  
(generalization)

Generalization:
The dynamics samples “new” examples.  
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[Hopfield (1982), Gardner et al. (1988-1989), Amit (1990)]

Memorization:
The dynamics retrieves “known” examples.  

Generalization:
The dynamics samples “new” examples.  

Recurrent Neural Networks
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Memorization:
The dynamics retrieves “known” examples.  

Generalization:
The dynamics samples “new” examples.  

How do we find         ?

Recurrent Neural Networks



1/12/23Enrico Ventura - PhD Defense Page 11

11

We can derive the optimal       for both generalizing and memorizing using one single learning algorithm.
Moment-matching algorithms:

We just need to change the “temperature of learning”.

Generalization  
Memorization  

[Ventura et al. (2022), Ventura & Benedetti (2024), Ventura et al. (2024)]

Recurrent Neural Networks



Artificial

learning systems
or

Diffusion Models with Structured Data
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Data live in a space of dimension     . 
The Manifold Hypothesis

Data contain symmetries and correlations.

Manifold Hypothesis[Peyré (2009), Fefferman et al. (2016)]
Data live on a hidden low-dimensional manifold.How does this affect learning?[Goldt et al. (2019)]



Diffusion Models
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Forward
Backward

Score (drift)

is not known in real applications → I don’t know the exact Score → I use Machine Learning.
[Anderson (1982), Sohl-Dickstein et al. (2015), Yang et al. (2024)]

training example
new example

generalization



Diffusion Models
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memorization

implies an exact pdf                                                      
The empirical diffusion model memorizes the training examples. 

[Biroli et al. (2024), Raya et al. (2024)]

Forward
Backward



Diffusion Models
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Questions:1. How is memorization affected by the structure of the data?
2. Does the empirical diffusion model display any generalization? How is this property affected by the structure of the data?  

[Ventura et al. (2024), Achilli et al. (in preparation)]

[Ventura et al. (2025) accepted to ICLR 25, Achilli et al. (in preparation)]’



REM formalism for Diffusion Models
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Diffusion Models can be mapped into Random Energy Models (REM).   System with      degrees of freedom can assume                  energy levels                 and                 i.i.d.
partition function

free-energy function
condensed 

un-condensed 

[Derrida (1981), Biroli et al. (2024), Biroli & Mézard (2024), Lucibello & Mézard (2024)]



REM formalism for Diffusion Models
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Diffusion Models can be mapped into Random Energy Models (REM).   System with      degrees of freedom can assume                  energy levels                 and                 i.i.d.
partition function

free-energy function
condensed 

un-condensed 

[Derrida (1981), Biroli et al. (2024), Biroli & Mézard (2024), Lucibello & Mézard (2024)]

and condensation in REM is memorization.



Modeling the Manifold Hypothesis
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[Mei & Montanari (2019), Goldt et al. (2019), Gerace et al. (2020)]

The Hidden Manifold “recipe”: latent

visible



Diffusion Models under the Manifold Hypothesis
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We use REM formalism and compute the condensation/memorization time for structured data. 

The model benefits from data structure because memorization is “delayed”.



Diffusion Models under the Manifold Hypothesis
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 Generalization occurs while memorizing.

We study generalization also through a REM approach.                                                             with       a REM free-energy function to minimize.  
Diffusion is attracted by data-pointsMemorization phase



Take-home messages

22

1. In both recurrent neural networks and diffusion models, we can pass from memorization to generalization by changing the “temperature of learning”. 2.  Structure helps learning in Diffusion Models. (It is not clear if this holds in recurrent neural networks [Negri et al. (2023)]).



Future Projects: short-term
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Biologically-inspired learning systemsUsing moment-matching algorithms to solve a non rotationally-invariant extensive-rank matrix factorization problem                             .
[E. Ventura (in preparation)]Artificial learning systemsStudying the way artificial neural-networks fit the data manifold during the backward stochastic process via Approximate Message Passing tools. 
[Work in collaboration with B. Achilli, M. Mézard and C. Lucibello.]

[J. Barbier et al. (2024)]



Future Projects: long-term
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Unifying the concepts of generalization, memorization and classification in learning systems inside a statistical physics framework. 
Generalization

Memorization

Classification

Intelligence
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Thank you!
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2015 2018 2020 2023

Bachelor’s in Physics (La Sapienza)Dissertation:“Ising Model and Numerical Simulations”Supervised by G. Parisi. 

Master in Th. Physics (La Sapienza + Erasmus)Master Thesis:“Memory Storage and Retrieval in Sparsely Connected Balanced Networks”Supervised by G. Mongillo and G. Ruocco. 

PhD in Physics (Cotutelle) (La Sapienza & ENS-PSL)PhD Thesis:“Demolition and Reinforcement of Memories in Spin-Glass like Neural Networks”Supervised by F. Zamponi (Ex-ENS) and G. Ruocco (La Sapienza). 

Post-Doc(Bocconi University)Supervised by C. Lucibello. 

STUDIES
(physics, specialized in statistical mechanics)

RESEARCH
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Bachelor’s in Physics (La Sapienza)Dissertation:“Ising Model and Numerical Simulations”Supervised by G. Parisi. 

Master in Th. Physics (La Sapienza + Erasmus)Master Thesis:“Memory Storage and Retrieval in Sparsely Connected Balanced Networks”Supervised by G. Mongillo and G. Ruocco . 

PhD in Physics (Cotutelle) (La Sapienza & ENS-PSL)Teaching: Mission D’Einsegnement de l’ENSE-OGS examination (Gendermerie Nationale).(29 hours).

Post-Doc(Bocconi University)Teaching:TA to the course:“Complex Systems and Physical Models”(23 hours). 

STUDIES
(physics, specialized in statistical mechanics)

RESEARCH
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Deterministic dynamics

Recurrent Neural Networks

[Peretto, 1984; Amit, 1989]
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Recurrent Neural Networks
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[Girardeau et al. (2020), Hoel (2021)]



Diffusion Models
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Data-set

ground-truth/true 
“doggies” pdf

inferred
“doggies” pdf

new examplesdata-set



REM formalism
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Diffusion Models can be mapped into Random Energy Models (REM).   System with      degrees of freedom can assume                  energy levels                 and                 i.i.d.

partition function

[Derrida (1981)]

concentrates when
entropy

free-energy function



REM formalism
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Diffusion Models can be mapped into Random Energy Models (REM).   System with      degrees of freedom can assume                  energy levels                 and                 i.i.d.
partition function

free-energy function
condensed 

un-condensed 

[Derrida (1981), Biroli et al. (2024), Biroli & Mézard (2025), Lucibello & Mézard (2024)]

Condensation when      is sub-leading with respect to 



Diffusion Models under the Manifold Hypothesis
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One can map the problem of computing the Kullback-Leibler distance between                 and               into the free-energy function of a REM.

Random Matrix Approach (        )
 sub-manifolds
We are interested in computing the eigenspectrum of the Jacobian of the Score function, because 
Gaps in the eigenspectrum reveal forbidden diffusive directions. 



Diffusion Models under the Manifold Hypothesis
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One can map the problem of computing the Kullback-Leibler distance between                 and               into the free-energy function of a REM.

Random Matrix Approach (        )
 Matrix

Steltjes transform



Diffusion Models under the Manifold Hypothesis
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One can map the problem of computing the Kullback-Leibler distance between                 and               into the free-energy function of a REM.

Random Matrix Approach (        )
 



Diffusion Models under the Manifold Hypothesis
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 Generalization occurs while memorizing and the system benefits from structure.

One can map the problem of computing the Kullback-Leibler distance between                 and               into the free-energy function of a REM.

We study generalization through two analytical approaches:1. Random Matrix study of the geometry of the score                                with respect to the manifold.2.                                                              With       a REM free-energy function to minimize.  
Manifold consolidation phaseDiffusion starts being attracted by data-points

The model learns to generalize by exploring hierarchical sub-manifolds. 

Memorization phase



Diffusion Models under the Manifold Hypothesis
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One can map the problem of computing the Kullback-Leibler distance between                 and               into the free-energy function of a REM.

Random Matrix + REM approach:As sub-manifolds with different variances are progressively reconstructed during the backward process, they are also memorized with the same ordering (dynamics of memorization). 
●                  with      arbitrary                            memorization depends on topology. 
● The eigenspectrum of the Jacobian of the score can be computed inside the memorization phase 
 



Diffusion Models under the Manifold Hypothesis
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One can map the problem of computing the Kullback-Leibler distance between                 and               into the free-energy function of a REM.

Random Matrix + REM approach:As sub-manifolds with different variances are progressively reconstructed during the backward process, they are also memorized with the same ordering (dynamics of memorization). 
●                  with      arbitrary                            memorization depends on topology. 
● The eigenspectrum of the Jacobian of the score can be computed inside the memorization phase 
 



Emergence of Attractors
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Full Picture
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One can map the problem of computing the Kullback-Leibler distance between                 and               into the free-energy function of a REM.



Memorization in Moment-Matching Algorithms

42

Theorem [Ventura (in preparation, 2024)]: Given                       and                             then                                 holds if and only if the only local minima of the energy function correspond to the data-points.Proof:Follows from the absence of rotational invariance on the N-dimensional hypercube.  



Heuristics
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● In both RNNs and Diffusion Models we can pass from memorization to generalization by increasing the “temperature of learning” of a certain amount.  Heuristics:I can achieve memorization with any pdf                             such that:

● Diffusion Models can memorize whatever number of data-points.
● Recurrent Neural Networks can memorize up to a sub-exponential number of data-points (               ). No proof of the storage capacity yet.   



Heuristics
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● In both RNNs and Diffusion Models we can pass from memorization to generalization by increasing the “temperature of learning” of a certain amount.  Heuristics:

  
Generalization depends on the way such pdf converges to the mixture of Dirac deltas:
● Diffusion Models are “rigid” learning systems. 
● Recurrent Neural Networks are “liquid” learning systems. Question: What about deep neural network-trained Diffusion Models?



AMP approach to Diffusion
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One can map the problem of computing the Kullback-Leibler distance between                 and               into the free-energy function of a REM.

Understanding “microscopically” how a trained diffusion model fits the data-manifold.

This problem can be mapped in a Generalized Linear Model solvable through AMP.
Then one can compute, for different parameters of a neural network:

where          is the trained score function

exact score
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