# PRECISION FIELD THEORY FOR CONDENSED MATTER SYSTEMS

Simon Metayer



#### Introduction

- Precision anomalous elasticity in flat membranes
- 3 New fixed point in quenched disordered flat membranes
- Metal-insulator transition in graphene and super-graphene
- Bonus) Precision optical conductivity in graphene and super-graphene

#### Outro

| Sumon | Mota   |  | 6.44 | CODUDDE |
|-------|--------|--|------|---------|
|       | IVIELA |  |      | Seminar |
|       |        |  |      |         |

크

## Introduction

TOPIC: Perturbative and non-perturbative approaches to condensed matter systems. EXPERTISE: Higher-orders renormalization-group techniques.

BACKGROUND:

- 2025: Post-Doctoral position LAPTh Annecy
- 2023-2024: Post-Doctoral position INPAC Shanghai Jiao Tong University
- 2020-2023: PhD thesis LPTHE SU Supervisor: S. Teber

TODAY'S GOALS:

- Precision interaction effects
- Benchmark less controlled approaches
- New physics beyond leading order

 $\operatorname{TODAY}{}^{\prime}\mathrm{S}$   $\operatorname{SUBJECT}{}^{\cdot}$  higher-order elastic and electronic interactions in membranes.



< □ > < 同 > < 回 > < 回 >

#### Introduction

#### Precision anomalous elasticity in flat membranes

3 New fixed point in quenched disordered flat membranes

Metal-insulator transition in graphene and super-graphene

(Bonus) Precision optical conductivity in graphene and super-graphene

Outro

크

#### Model – Flat crystalline membranes

Low-temperature action: A scalar derivative field theory

In-plane (phonon)  $\vec{u}(\vec{x})$  and out-of-plane (flexuron)  $\vec{h}(\vec{x})$  fields

$$S = \int \mathrm{d}^d x \left[ \frac{\kappa}{2} (\partial^2 h_\alpha)^2 + \mu T_{ab}^2 + \frac{\lambda}{2} T_{aa}^2 \right]$$

Strain tensor  $\equiv T_{ab} \approx \frac{1}{2} (\partial_a u_b + \partial_b u_a + \partial_a h_\alpha \partial_b h_\alpha)$  $\kappa \equiv$  Bending rigidity,  $\mu \equiv$  Shear modulus,  $\lambda \equiv 2^{nd}$  Lamé coef.



| Introduction<br>00 | Flat Membranes<br>0000000 | Quenched Disordered Membranes | Self-consistent Large-N (S)QED <sub>3</sub><br>000000 | $(S)$ QED $_{4,3}$ | Outro<br>000 |
|--------------------|---------------------------|-------------------------------|-------------------------------------------------------|--------------------|--------------|
|                    |                           |                               |                                                       |                    |              |

### 1 & 2 loop approach

One loop: 3 diagrams,  $\sim 10$  integrals, can be done by hand

[Aronovitz, Lubensky '88]



Two-loops: 7 diagrams,  $\sim 1000$  integrals, need some automatization [Coquand, Mouhanna, Teber '20]



2/18

• • • • • • • • • •



### 3 loop approach

Three loops: 42 diagrams,  $\sim 200000$  integrals, need full automatization [SM, Mouhanna, Teber '21]



Highly automated computation using software from high-energy physics: Qgraf [Nogueira '93], Fire [Smirnov '16], LiteRed [Lee '12], Form [Vermaseren '89] ...

Flat Membranes

#### 4 loop approach

00000000

Four loops: 337 diagrams,  $\sim 60$  million integrals, full automatization + supercomputer [SM '24]

AA D & A D ~~DDD 4444 \$\$\$\$~\$\$~\$\$~\$\$~\$ DDDDD AAAAA \* \* ~ ~ ~ ~ ~ ~  $\checkmark$   $\checkmark$   $\checkmark$   $\checkmark$ VAVAA 000000 AAVAA AAAYY VI AR VY VY VY  $\diamond \diamond \diamond \diamond \diamond \sim$ AN VI DE AL DE AVADU AD AT AD AD DDDDDD AMMAA ADDINA  $\Delta \triangleleft \triangleleft \triangleleft \gg$ AMAAA THATA ALVAA a ba bb AAAA M In A har har har 500 ۱D. BAO APBOO PAP () B D HPAQAD R Q. d a P ADD Aλ Π A B A 🗘 🗠 🗛 🗛 🖓 🗛 🗛

Field theory

| Introduction | Flat Membranes | Quenched Disordered Membranes | Self-consistent Large-N (S)QED <sub>3</sub> | (S)QED <sub>4,3</sub> | Outro |
|--------------|----------------|-------------------------------|---------------------------------------------|-----------------------|-------|
| 00           | 00000●00       |                               | 000000                                      | 00000                 | 000   |
|              |                |                               |                                             |                       |       |

### Results

Analytical result at the stable fixed point in  $d = 4 - 2\varepsilon$ :

$$\eta = \frac{24\varepsilon}{25} - \frac{144\varepsilon^2}{3125} - \frac{4(1286928\zeta_3 - 568241)\varepsilon^3}{146484375} - \frac{4(139409079893 + ...)\varepsilon^4}{54931640625} + \mathcal{O}(\varepsilon^5)$$

Numerically:

$$\eta = 0.96\varepsilon - 0.046\varepsilon^2 - 0.027\varepsilon^3 - 0.020\varepsilon^4 + \dots \approx_{\varepsilon \to 1} \frac{0.867}{\varepsilon \to 1}$$

Smaller and smaller corrections! (unexpected)





2

3/18

[SM '24]

#### Benchmark less controlled methods

NPRG and SCSA provide non-perturbative results:

NPRG: 
$$\frac{(d-1)(d+8)(d-\eta+4)(4-d-2\eta)}{2\eta(d-\eta+8)} - d_c = 0$$
 [Kownacki, Mouhanna '09]

 $\mathsf{SCSA:} \quad \frac{d(d-1)\Gamma(2-\eta)\Gamma(2-\eta/2)\Gamma(\eta/2)\Gamma(\eta+d)}{\Gamma(2-\eta-d/2)\Gamma((4-\eta+d)/2)\Gamma((\eta+d)/2)\Gamma(\eta+d/2)} - d_c = 0 \quad \text{[Le Doussal, Radzihovsky '92]}$ 

And non-perturbative answers  $\eta_{NPRG} = 0.849$  and  $\eta_{SCSA} = 0.821$ . Can we trust them?

We can benchmark numerically in  $d = 4 - 2\varepsilon$ :

$$\begin{split} &\eta_{\text{4-loop}} = 0.96\varepsilon - 0.046\varepsilon^2 - 0.027\varepsilon^3 - 0.020\varepsilon^4 + \mathcal{O}(\varepsilon^5), & \text{[SM '24]} \\ &\eta_{\text{NPRG}} = 0.96\varepsilon - 0.037\varepsilon^2 - 0.027\varepsilon^3 - 0.018\varepsilon^4 + \mathcal{O}(\varepsilon^5), & \text{[Kownacki, Mouhanna '09]} \\ &\eta_{\text{SCSA}} = 0.96\varepsilon - 0.048\varepsilon^2 - 0.028\varepsilon^3 - 0.018\varepsilon^4 + \mathcal{O}(\varepsilon^5), & \text{[Le Doussal, Radzihovsky '92]} \end{split}$$

They are numerically extremely successful for this model!

э

イロン イ団 とくほとう ほとう

### Literature – A 30 years old story

|              | $\eta$          | Method                                  | Year/ref                     |
|--------------|-----------------|-----------------------------------------|------------------------------|
|              | $\approx 0.66$  | Monte Carlo (membrane)                  | 1990 Abraham, Nelson         |
|              | 0.667           | Large $D$ (LO)                          | 1988 Guitter, et al.         |
|              | $\approx 0.7$   | Monte Carlo (vesicles)                  | 1991 Komura, Baumgärtner     |
| ns           | $0.72 \pm 0.04$ | Monte Carlo (membrane)                  | 1989 Leibler, Maggs          |
| .0           | $0.75 \pm 0.05$ | Monte Carlo (membrane)                  | 1990 Guitter et al.          |
| at           | 0.750(5)        | Monte Carlo (membrane)                  | 1996 Bowick <i>et al.</i>    |
| n            | 0.789           | SCSA (large- $d_c$ NLO, semi-numerical) | 2009 Gazit                   |
| .E           | 0.795(10)       | Monte Carlo (graphene)                  | 2013 Tröster                 |
| S            | 0.81(3)         | Monte Carlo (membrane)                  | 1993 Zhang <i>et al.</i>     |
|              | $\approx 0.82$  | Molecular dynamics simulations          | 1996 Zhang <i>et al.</i>     |
| $\downarrow$ | $\approx 0.82$  | SCSA (LO, semi-numerical)               | 2010 Zakharchenko et al.     |
|              | 0.821           | SCSA (LO, analytical)                   | 1992 Le Doussal, Radzihovsky |
|              | 0.835           | 1 to 4-loop (extrapolation)             | 2024 SM                      |
| •            | 0.849           | NPRG (analytical)                       | 2009 Kownacki, Mouhanna      |
| T            | $\approx 0.85$  | NPRG (semi-numerical)                   | 2009 Braghin, Hasselmann     |
|              | $\approx 0.85$  | Monte Carlo (graphene)                  | 2009 Los <i>et al.</i>       |
| ≥            | 0.867           | 4-loop                                  | 2021 Pikelner                |
| e            | 0.887           | 3-loop                                  | 2021 SM et al.               |
| 신            | $0.9 \pm 0.04$  | Molecular dynamics simulations          | 1993 Petsche, Grest          |
| '            | 0.914           | 2-loop                                  | 2020 Coquand et al.          |
|              | 0.960           | 1-loop                                  | 1988 Aronovitz, Lubensky     |
|              | 1               | Mean field                              | 1987 Nelson, Peliti          |

Recalling  $\eta_{(exp.)} \approx 0.8$  [Schmidt *et al.* '93; Gourier *et al.* '97; Lopez-Polin *et al.* '15; Jackson *et al.* '23]]

2

< □ > < □ > < □ > < □ > < □ >

Introduction

Precision anomalous elasticity in flat membranes

New fixed point in quenched disordered flat membranes

Metal-insulator transition in graphene and super-graphene

(Bonus) Precision optical conductivity in graphene and super-graphene

Outro

э

Introduction Flat Membranes Quenched Disordered Membranes Self-consistent Large-N (S)QED<sub>3</sub> (S)QED<sub>4,3</sub> 00 000000 0€0000 00000 00000 00000

#### Model: Quenched disordered membranes

#### The quenched disordered action

Introduce local random curvature and local random stress. Take quenched Gaussian distribution with zero mean. Use replica trick  $\implies$  fields promoted with replica indices  $A = 1, ..., n \rightarrow 0$ .

$$S = \int \mathrm{d}^d x \Big[ \frac{\kappa}{2} (\partial^2 h^A_\alpha)^2 + \frac{\lambda}{2} (T^A_{aa})^2 + \mu (T^A_{ab})^2 + \Delta_\kappa \partial^2 h^A_\alpha \partial^2 h^B_\alpha + \frac{\Delta_\lambda}{2} T^A_{aa} T^A_{bb} + \Delta_\mu T^A_{ab} T^B_{ab} \Big].$$

Content: 2 fields, 6 couplings, 3 indices type ... challenging.

#### Renormalization

With disorder, correlation functions become tensorial in the replica indices:  $\langle h^A h^B \rangle \sim \delta^{AB} p^{-(4-\eta)} + J^{AB} p^{-(4-\eta-\phi)}.$ 

$$\langle u^A u^B \rangle \sim \delta^{AB} p^{-(6-d-2\eta)} + J^{AB} p^{-(6-d-2\eta-2\phi)}.$$

There is now an extra disorder exponent  $\phi$ :

 $\phi > 0 \equiv$  Temperature dominates (Clean phase),

 $\phi < 0 \equiv$  Disorder dominates (Glassy phase),

 $\phi = 0 \equiv$  Temperature and disorder coexist (Marginal phase).

Compute  $\eta$  in the glassy and marginal phase!

[Neslon, Radzihovsky '91]

# Results: Exponents (1 & 2)

At one loop:

[Neslon Radzihovsky '91]

• A single disordered fixed point (\$\phi=?\$): \$\eta\_5 = \frac{6\varepsilon}{7} + O(\varepsilon^2)\$

and  $\phi$  is not resolved properly...

The RG-flow is weird:





Disorder seems irrelevant...

At two loops: Some progress, but the authors could not resolve the fixed points properly. [Coquand Mouhanna '21].

|                               | •            | ▲ 臣 ▶ ▲ 臣 ▶   | 1 | 500  |
|-------------------------------|--------------|---------------|---|------|
| Simon Metayer – LPTMC seminar | Field theory | February 2025 |   | 6/18 |

# Results: Exponents (3)

At three loop, the fixed points are finaly resolved

• Disorder dominated fixed point ( $\phi < 0$ ?):

$$\eta_5 = \frac{6\varepsilon}{7} - \frac{3629\varepsilon^2}{24010} - \frac{(698184144\zeta_3 - 759884263)\varepsilon^3}{823543000} + \mathcal{O}(\varepsilon^4) \underset{\varepsilon \to 1}{\approx} \frac{0.610}{0.610}$$

• New critical fixed point ( $\phi = 0$ ), finite disorder finite temperature glassy phase:

$$\eta_c = \frac{6\varepsilon}{7} - \frac{507\varepsilon^2}{3430} - \frac{(9504432\zeta_3 - 10463737)\varepsilon^3}{10084200} + \mathcal{O}(\varepsilon^4) \underset{\varepsilon \to 1}{\approx} \frac{0.614}{0.614}$$

New physics beyond LO. Disorder is now relevant:



But  $P_c$  is still marginally unstable (in contradiction with NPRG), and  $\phi$  is still not resolved properly at  $P_5...$  calls for 4-loop to settle everything.



イロト イヨト イヨト

[SM. Mouhanna '22]

| Introduction | Flat Membranes | Quenched Disordered Membranes | Self-consistent Large-N (S)QED <sub>3</sub> | (S)QED <sub>4,3</sub> | 0ut |
|--------------|----------------|-------------------------------|---------------------------------------------|-----------------------|-----|
| 00           | 00000000       |                               | 000000                                      | 00000                 | 00  |
|              |                | Overshed Discussed Mansherses | Solf and interest Lange NL (S)OED           |                       |     |

#### Literature comparison

| c - 1    | This work          |                    |                    | Other approaches   |             |              |
|----------|--------------------|--------------------|--------------------|--------------------|-------------|--------------|
| 2 - 1    | 1-loop             | 2-loop             | 3-loop             | NPRG               | SCSA        | large- $d_c$ |
| $\eta_5$ | 0.857 <sup>a</sup> | 0.706 <sup>b</sup> | 0.610 <sup>c</sup> | 0.449 <sup>d</sup> | 0.440e      | 0.2201       |
| $\eta_c$ | 0.857 <sup>a</sup> | 0.709 <sup>b</sup> | 0.614 <sup>c</sup> | 0.492 <sup>d</sup> | 0.449*      | 0.2285       |
| $\eta_4$ | 0.960 <sup>g</sup> | 0.914 <sup>h</sup> | 0.887 <sup>i</sup> | 0.849 <sup>j</sup> | $0.821^{k}$ | $1.68^{l}$   |

The NPRG is the only other approach to distinguish  $P_5$  and  $P_c$ ! SCSA (and large- $d_c$ ) can't distinguish  $P_{c/5}$  at LO.

<sup>a</sup> [Morse, Lubensky, 92'], <sup>b</sup>[Coquand, Mouhanna, 21'], <sup>c</sup>[Metayer, Mouh 18'], <sup>e</sup> [Radzihovsky, Le Doussal, 92'], <sup>f</sup> [Saykin, Kachorovskii, Burmistrc Mouhanna, Teber, 20'], <sup>i</sup> [Metayer, Mouhanna, Teber, 21'], <sup>f</sup> [Kownacki, Doussal, Radzihovsky, 92'], <sup>l</sup> [Saykin, Gornyi, Kachorovskii, Burmistrov, <sup>2</sup>

New fixed point P<sub>c</sub> observed in partial polymerization experiments [Chaieb *et al.* '06]  $(\gamma = 3 - \eta)$ , first seen theoretically in NPRG [Coquand, Essafi, Kownacki, Mouhanna, 18'].



# Conclusion

Takeway:

- Apparently convergent  $\varepsilon$ -series.
- $\bullet\,$  Good benchmark for NPRG, SCSA, large- $d_c\,\ldots$
- $\exists$  a new non-trivial, finite-temperature, finite-disorder phase transition towards a glassy phase in polymerized membranes.

Ongoing projects:

- $\phi$  not completely resolved even at 3-loop, 4-loop needed for a final answer.
- SCSA beyond LO might distinguish  $\eta_5$  and  $\eta_c$

Model perspectives:

- Crumpled-to-flat phase transition model
- Surface growth models (KPZ)
- Smectic-glass transition in liquid crystals

Techniques perspectives:

- Auxiliary field technique, big shortcut?
- NPRG
- Automatic NLO SCSA package

イロト イボト イヨト イヨト

| Introduction<br>00 | Flat Membranes<br>00000000 | Quenched Disordered Membranes | Self-consistent Large-N (S)QED <sub>3</sub><br>●00000 | $\underset{00000}{\text{(S)QED}_{4,3}}$ | Outro<br>000 |
|--------------------|----------------------------|-------------------------------|-------------------------------------------------------|-----------------------------------------|--------------|
|                    |                            |                               |                                                       |                                         |              |

Introduction

- Precision anomalous elasticity in flat membranes
- In the second second
- Metal-insulator transition in graphene and super-graphene
- (Bonus) Precision optical conductivity in graphene and super-graphene

Outro

э

### Model for electronic interaction in graphene

### Model – QED in three dimensions



Massless (S)QED<sub>3</sub> in large- $N_f$ :

$$S = \int \mathrm{d}^3x \Big[\mathrm{i} \bar{\psi} \not{D} \psi - \frac{1}{4} F_{\mu\nu}^2 \Big] + \mathsf{GF}_{(\xi)} + \mathsf{SUSY}_{(\mathcal{N}=1)} \,,$$

 $N_f$  electrons flavors ( $\psi$ ) coupled (e) to photons ( $A^{\mu}$ )

Naively superrenormalizable [e] = 1, but non-trivial IR fixed point in the large- $N_f$  limit  $\Rightarrow$ renormalizable with dimless coupling  $1/N_f$  [Appelquist, Pisarski '81]

#### Dynamical electron mass generation

Renormalization of the (s)electron mass:

$$m_{\psi} \sim p^{1+\gamma_{m_{\psi}}}, \quad m_{\phi} \sim p^{1+\gamma_{m_{\phi}}}$$

Search for Nc. Non-perturbative effect!



# Renormalization and dynamical mass generation

Non-perturbative effect, need to solve the SD equations self-consistently:

$$\begin{split} -\mathrm{i}\Sigma(p) &= \prod_{p=k}^{p-k} = \int [\mathrm{d}^{d_e}k] \frac{\Gamma^{\mu}(k,p)\Gamma_0^{\nu}D_{\mu\nu}^{(0)}(p-k)}{(\not{k}-\Sigma(k))(1-\Pi(p-k))}, \\ \mathrm{i}\Pi^{\mu\nu}(p) &= \mu \bigvee_{p=k}^{k} \nu = -N_f \int [\mathrm{d}^{d_e}k] \mathrm{Tr} \frac{\Gamma^{\mu}(k,k-p)\Gamma_0^{\nu}}{(\not{k}-\Sigma(k))(\not{k}-\not{p}-\Sigma(k-p))}, \\ \Gamma^{\mu}(p_1,p_2) &= \mu \bigvee_{p=k}^{k-p_2} \prod_{p_2}^{p_1} = -\mathrm{i}e\gamma^{\mu} - \mathrm{i}e\Lambda^{\mu}(p_1,p_2), \\ \Lambda^{\mu}(p_1,p_2) &= \mu \bigvee_{p=k}^{k-p_2} \prod_{p_2}^{p_1} = -N_f \int [\mathrm{d}^{d_e}k] \frac{\Gamma^{\mu}(k-p_1,k-p_2)K(p_1,k-p_2,k-p_1,p_2)}{(\not{k}-p_1'-\Sigma(k-p1))(\not{k}-p_2'-\Sigma(k-p2))}, \end{split}$$

Massaging the equations around  $\Sigma$ , we conjecture the simple all-order gap equation: [SM, Teber '21]

$$(1-b)b = (1-\gamma_{m_{\psi}})\gamma_{m_{\psi}}, \quad \text{with} \quad m_{\text{dyn}} = \Sigma(p \rightarrow 0) \sim p^{-b}$$

Which depends only on  $\gamma_{m_{\psi}} \implies$  precision needed.

We need to go beyond LO in large- $N_f$  expansion...

10/18



< □ > < □ > < □ > < □ > < □ >







# Literature – $N_c$ in QED<sub>3</sub>, a 40 years old debate!

In the literature, seemingly all values for  $N_c$  has been found, from 0 to  $\infty$  ...

| N <sub>c</sub> in QED <sub>3</sub> | Method                                                      | Year                                    |
|------------------------------------|-------------------------------------------------------------|-----------------------------------------|
| $\infty$                           | SD (LO)                                                     | 1984 Pisarski                           |
| $\infty$                           | SD (non-perturbative, Landau gauge)                         | 1990, 1992 Pennington et al.            |
| $\infty$                           | RG study                                                    | 1991 Pisarski                           |
| $\infty$                           | lattice simulations                                         | 1993, 1996 Azcoiti et al.               |
| < 4.4                              | F-theorem                                                   | 2015 Giombi et al.                      |
| $(4/3)(32/\pi^2) = 4.32$           | SD (LO, resummation)                                        | 1989 Nash                               |
| 4.422                              | RG study (1-loop) $(N_c^{conf} \approx 6.24)$               | 2016 Janssen                            |
| 4                                  | functional RG $(4.1 < N_c^{\text{cont}} < 10.0)$            | 2014 Braun et al.                       |
| $3 < N_c < 4$                      | RG study                                                    | 2001 Kubota, Terao                      |
| $3.5 \pm 0.5$                      | lattice simulations                                         | 1988, 1989 Dagotto <i>et al.</i>        |
| 3.31                               | SD (NLO, Landau gauge)                                      | 1993 Kotikov                            |
| 3.29                               | SD (NLO, Landau gauge)                                      | 2016 Kotikov et al.                     |
| $32/\pi^2 \approx 3.24$            | SD (LO, Landau gauge)                                       | 1988 Appelquist et al.                  |
| 3.0084 - 3.0844                    | SD (NLO, resummation)                                       | 2016 Kotikov, Teber                     |
| 2.89                               | RG study (1-loop)                                           | 2016 Herbut                             |
| 2.85                               | SD (NLO, resummation, $\forall \xi$ )                       | 2016 Gusynin et al. Kotikov et al.      |
| $1 + \sqrt{2} = 2.41$              | F-theorem                                                   | 2016 Giombi et al.                      |
| 2.27                               | Effective gap eq. (NLO, double resummation, $\forall \xi$ ) | 2022 SM, Teber                          |
| < 9/4 = 2.25                       | RG study (1-loop)                                           | 2015 Di Pietro et al.                   |
| < 3/2                              | Free energy constraint                                      | 1999 Appelquist et al.                  |
| $1 < N_c < 4$                      | lattice simulations                                         | 2004 Hands et al. 2008 Strouthos et al. |
| 0                                  | SD (non-perturbative, Landau gauge)                         | 1990 Atkinson et al.                    |
| 0                                  | lattice simulations                                         | 2015, 2016 Karthik, Narayanan           |

Recent results converges towards  $N_c \in [2,3]...$ 

э

< □ > < □ > < □ > < □ > < □ >

13/18

Introduction

- Precision anomalous elasticity in flat membranes
- 3 New fixed point in quenched disordered flat membranes
- Metal-insulator transition in graphene and super-graphene
- (Bonus) Precision optical conductivity in graphene and super-graphene

Outro

э

 Introduction
 Flat Membranes
 Quenched Disordered Membranes
 Self-consistent Large-N (S)QED3
 (S)QED4,3
 Outro

 Model – Electronic interactions in graphene

 (S)QED in mixed dimensions
 [Gorbar, Gusynin, Miransky '01]

 Image: state of the state of the

 $S = i \int d^3x \bar{\psi} \not D \psi - \frac{1}{4} \int d^4x F_{\mu\nu}^2 + GF_{(\xi)} + SUSY_{(\mathcal{N}=1)},$   $N_f \text{ electrons flavors } (\psi) \text{ in 3-dim coupled } (e) \text{ to photons}$   $(A^{\mu}) \text{ in 4-dim}$ Renormalizable with non-running dimensionful coupling  $\alpha = e^2/4\pi$ . [Gorbar, Gusynin, Miransky '02]

#### Optical conductivity

The photon (perpendicular) propagator renormalize as

$$\langle A^{\mu}A^{\nu}\rangle_{\perp} = \frac{\mathrm{i}}{2p} \frac{P_{\perp}^{\mu\nu}}{1-\Pi_{\gamma}}, \quad \text{with} \quad \Pi_{\gamma} = -\frac{\pi N_f \alpha}{4} \big[1+C_{\gamma}\alpha + \mathrm{O}(\alpha^2)\big] \,. \label{eq:alpha}$$

The photon polarization  $\Pi_{\gamma}$  is finite & gauge-independent  $\Rightarrow$  physical! Need  $C_{\gamma}$  for precision. Optical conductivity (Kubo formula):

$$\sigma(\omega) = -p \times \Pi_{\gamma} = \sigma_0 (1 + C_{\gamma} \alpha + \mathcal{O}(\alpha^2))$$

イロト 不得 とくほと くほう

14/18

#### Multi-loop approach

Two-loop photon and photino polarizations: 21 diagrams,  $\sim 500$  branchut integrals [SM, Teber '21]



Result: $C_{\gamma} = \frac{92 - 9\pi^2}{18\pi} \approx 0.06$  and $C_{\gamma}^{SUSY} = \frac{12 - \pi^2}{2\pi} \approx 0.34$  both very small corrections!Simon Metayer - LPTMC seminarField theoryFebruary 2025Simon Metayer - LPTMC seminarField theoryFebruary 2025

| Introduction<br>00 | Flat Membranes<br>00000000 | Quenched Disordered Membranes | Self-consistent Large-N (S)QED <sub>3</sub><br>000000 | $(S)$ QED $_{4,3}$ | Outro<br>000 |
|--------------------|----------------------------|-------------------------------|-------------------------------------------------------|--------------------|--------------|
|                    |                            |                               |                                                       |                    |              |

#### Result

The optical conductivity is directly related to the universal optical absorbance (A): [SM, Teber '23]

$$\begin{split} A_{\rm graphene} &= \pi \alpha (1 + \alpha C_{\gamma} + ...) = (2.293 \pm 0.002)\% \\ A_{\rm super-graphene} &= 2\pi \alpha (1 + \alpha C_{\gamma}^{\rm SUSY} + ...) = (4.59 \pm 0.15)\% \end{split}$$

Interestingly, optical measurements provides [Nair et al. '08]:





# Conclusion

Takeway:

- In fermionic QEDs, dynamical matter mass generation is possible for small  $N_f$
- SUSY strongly suppress dynamical matter mass generation
- SUSY enhances the optical absorbance of planar materials

Ongoing projects:

• Higher orders for QCD cusp anomalous dimension matrix

Models perspectives:

- Dynamical mass generation in QCD
- Josephson junction, sine-Gordon model

• ...

Technical perspectives:

- Bootstrap methods
- Automatic NLO SD solving package

17/18

イロト イボト イヨト イヨト

| Introduction<br>00 | Flat Membranes<br>00000000 | Quenched Disordered Membranes | Self-consistent Large-N (S)QED <sub>3</sub><br>000000 | $(S)$ QED $_{4,3}$ | Outro<br>●00 |
|--------------------|----------------------------|-------------------------------|-------------------------------------------------------|--------------------|--------------|
|                    |                            |                               |                                                       |                    |              |

#### Introduction

- 2 Precision anomalous elasticity in flat membranes
- Sew fixed point in quenched disordered flat membranes
- Metal-insulator transition in graphene and super-graphene
- 6 (Bonus) Precision optical conductivity in graphene and super-graphene

#### 6 Outro

# Conclusion

Final takeaway:

- Higher precision for critical exponents is successful in many models
- Strong benchmark for less controlled methods
- Higher orders for non-perturbative methods is needed
- Perturbative input to access non-perturbative features
- New physics beyond leading order!

Thank you for your attention :)

| Introduction<br>00 | Flat Membranes<br>00000000 | Quenched Disordered Membranes | Self-consistent Large-N (S)QED $_3$ 000000 | $(S)QED_{4,3}$ | Outro<br>00● |
|--------------------|----------------------------|-------------------------------|--------------------------------------------|----------------|--------------|
|                    |                            |                               |                                            |                |              |

Selection of seminars and posters:

- Anomalous elasticity in polymerized membranes, analytical 4-loop result 2024: Seminar, "journée des utilisateurs du supercalculateur MeSU" – SU
- Electronic interaction effects in low-dimensional abelian field theories 2024: Seminar, ShanghaiTech
- Field theoretic approach to flat quenched disordered polymerized membranes 2023: Seminar, International conference "48th Middle European Cooperation in Statistical Physics" (MECO48) Slovakia
- Membranes elastic degrees of freedom, a multi-loop approach 2022: Poster, international conference "47th Middle European Cooperation in Statistical Physics" (MECO47)
- 3-loop order approach to flat polymerized membranes 2022: Seminar, "Journée de physique statistique" - ENS - France
- Membranes elastic degrees of freedom, a multi-loop approach 2021: Poster, international conference "Advanced Computing and Analysis Techniques in Physics Research" (ACAT21)
- 2-loop anomalous dimensions in reduced QED and dynamical mass generation 2021: Poster, international conference "Relativistic Fermions in Flatland"

Publications

- Field-theoretic approach to flat polymerized membranes [SM & S. Teber, 2025,arXiv:2412.18490]
- Four-loop elasticity renormalization of low-temperature flat polymerized membranes [SM, EPL, 2024, 10.1209/0295-5075/ad949a]
- Critical Properties of Three-Dimensional Many-Flavor QEDs [SM & S. Teber, Symmetry, 2023, 10.3390/sym15091806]
- Electron mass anomalous dimension at O(1/N<sup>2</sup><sub>f</sub>) in 3D N=1 supersymmetric QED [SM & S. Teber, PLB, 2022, 838(2023)137729]
- Flat polymerized membranes at three-loop order [SM, D. Mouhanna & S. Teber, J. Phys. Conf. Ser., 2022, 2438(2023)1:012141]
- The flat phase of quenched disordered membranes at three-loop order [SM & D. Mouhanna, PRE, 2022, 106(6):064114]
- Three-loop order approach to flat polymerized membranes [SM, D. Mouhanna & S. Teber, PRE Letter, 2022, 105(1):L012603]
- Two-loop mass anomalous dimension in RQED and dynamical fermion mass generation [SM & S. Teber, JHEP, 2021 2021(9):107]
- 3D N=1 supersymmetric QED at large<sup>-</sup>N<sub>f</sub> and applications to super-graphene
  [A. James, SM & S. Teber, 2021 arXiv:2102.02722]

18/18