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Action potential of a neuron (taken from teachmephysiology.com)

typical mathematical model

e two coupled differential equations

e continuous time, continuous states
e 5to 7 parameters

radically simplified model I

e discrete time, discrete states
e 0 to 2 parameters

EFE— R
g HEinNB>

R— S

E

(deterministic, zero parameter)
SER model



triangle, simplest SER model

Garcia, Lesne, Hiitt, Hilgetag (2012)
Frontiers in Computational Neuroscience 6, 50.
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> Structure of the talk

'Complex networks'
'Simple models'

Example 1: Self-organized excitation waves in networks
joint work with Claus Hilgetag (Hamburg), Paolo Moretti (NUrnberg), joint work with Annick Lesne

Example 2: Networks as structural models
to interpret high-throughput data in
Biology and Medicine

joint work with Annick Lesne

Example 3: The digital-analog duality in biology: how network and non-network

mechanisms jointly shape biological data and hence systemic function
joint work with Annick Lesne

Brief remark 1: 'The bigger picture'

Brief remark 2: Some next steps



Intro 1: Complex networks



> Complex networks

Collective dynamics of Emergence of Scaling in
‘small-world’ networks Random Networks

Albert-Laszlo Barabasi* and Réka Albert

Duncan J. Watts* & Steven H. Strogatz
NATURE | VOL 393|4 JUNE 1998 SCIENCE VOL 286 15 OCTOBER 1999

>47.000 google scholar citations

> 55.000 google scholar citations

10°

Regular Small-world Random

Increasing randomness 8




Intro 2: Simple models or "Toy models’



> Simple models
The BTW sandpile model

Taken from: Bak (1996)




> Simple models

The BTW sandpile model
—» Self-organized criticality

PHYSICAL REVIEW
LETTERS

VOLUME 59 27 JULY 1987 NUMBER 4

Self-Organized Criticality: An Explanation of 1/f Noise

Per Bak, Chao Tang, and Kurt Wiesenfeld

Physics Department, Brookhaven National Laboratory, Upton, New York 11973
(Received 13 March 1987)

We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized
critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This
picture also yields insight into the origin of fractal objects.




> Simple models

The BTW sandpile model
—» Self-organized criticality

PHYSICAL REVIEW
LETTERS T
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VOLUME 59 27 JULY 1987 NUMBER 4

Self-Organized Criticality: An Explanation of 1/f Noise

Per Bak, Chao Tang, and Kurt Wiesenfeld
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One model is a cellular automa-
ton, describing the interactions of an integer variable z "

with its nearest neighbors. In two dimensions z is updat- ¢ © _
ed synchronously as follows: 6 3
z(x,y)— z(x,y) —4, -
C)'ﬂ
zxx1l,y)—z(xx1,p)+1, = S0X50
z(x,yx1)—z(x,yx1)+1, .
if z exceeds a critical value K. There are no parameters 9 G 1 L P ) G U R LR |

since a shift in K simply shifts z. 10° 10" 10° 10°
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—» Forest fire model

VOLUME 69, NUMBER 11 PHYSICAL REVIEW LETTERS 14 SEPTEMBER 1992

Self-Organized Critical Forest-Fire Model

B. Drossel and F. Schwabl

Physik -Department der Technischen Universitat Miinchen, D-8046 Garching, Germany
(Received 30 June 1992)
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A forest-fire model is introduced which contains a lightning probability f. This leads to a self-
organized critical state in the limit f— 0 provided that the time scales of tree growth and burning down
of forest clusters are separated. We derive scaling laws and calculate all critical exponents. The values
of the critical exponents are confirmed by computer simulations. For a two-dimensional system, we show
that the forest density in the critical state assumes its minimum possible value, i.e., that energy dissipa-
tion is maximum.




> Digression: Spiral waves

E ; R E: excited/active
3F in NB R: refractory
S > E S: susceptible

ctive

/

susceptible
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> Digression: Spiral waves k "
S R E S R E S R

self-sustained spiral core

E: excited/active

3F in NB R: refractory
S > E S: susceptible




> A first example

The BTW sandpile model
—» Self-organized criticality

—» Forest fire model
—» SER model

PHYSICAL REVIEW E 74, 016112 (2006)

Topology regulates the distribution pattern of excitations in excitable dynamics on graphs

Mark Miiller—Linow,1 Carsten Marr,1 and Marc-Thorsten Hiitt?
1Bioinformatics Group, Department of Biology, Darmstadt University of Technology, 64287 Darmstadt, Germany
2School of Engineering and Science, International University Bremen, 28759 Bremen, Germany
(Received 27 October 2005; published 19 July 2006)

We study the average excitation density in a simple model of excitable dynamics on graphs and find that this
density strongly depends on certain topological features of the graph, namely connectivity and degree corre-
lations, but to a lesser extent on the degree distribution. Remarkably, the average excitation density is changed
via the distribution pattern of excitations: An increase in connectivity induces a transition from globally to
locally organized excitations and, as a result, leads to an increase in the excitation density. A similar transition
can be induced by increasing the rate of spontaneous excitations while keeping the graph architecture constant.




Example 1: Self-organized excitation waves
in networks



> How can we use minimal models to contribute to neuroscience?

Trends in Cognitive Sciences

Review

Brain Networks

Laura E. Sudrez ©," Ross D. Markello |

Cell’ress

REVIEWS

April 2020, Vol. 24, No. 4

I_ihking Structure and Function in Macroscale

Anatomical projections Neural activity
Structural

connectivity

Functional
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Trends in Cognitive Sciences

Figure |. Measuring Structural and Functional Connectivity. At the macroscale level, structural and functional
networks are derived by first parcellating the brain into grey matter nodes. For structural connectivity networks, edges
are defined by reconstructing white matter projections between network nodes. For functional networks, edges are

defined by estimating statistical associations between node time courses.




} How can we use minimal models to contribute to neuroscience?

Trends in Cognitive Sciences Ce“
REVIEWS

April 2020, Vol. 24, No. 4

Linking Structure and Function in Macroscale

Brain Networks

Anatomical projections Neural activity

Structural Functional
Laura E. Suéarez ®," Ross D. Markello connec.tlwty () connect|V|ty _
T | # e NWINAMY, e e

"The emergence of network neuroscience allows researchers to quantify the link between
the organizational features of neuronal networks and the spectrum of cortical functions."

"Current models indicate that structure and function are significantly correlated, but the

correspondence is not perfect because function reflects complex multisynaptic
interactions in structural networks."

lqure |, Measuring ictural and Functional Connectivity, At the macroscale leve uctural and functional

Which functional connectivies are possible on a given structural connectivity? "gvi‘:x’tjgzgifz
collective excitation patterns network architecture ’




> How can we use minimal models to contribute to neuroscience?
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> How can we use minimal models to contribute to neuroscience?

ER graph BA graph




> How can we use minimal models to contribute to neuroscience?

ER graph
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> How can we use minimal models to contribute to neuroscience?
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Organization of Excitable Dynamics in Hierarchical . ;
Biological Networks Link-usage asymmetry and collective patterns

Mark Miiller-Linow'*, Claus C. Hilgetag?, Marc-Thorsten Hiitt> rgl g r ricn-c rg 74 tl
Bioinformatics Group, D f Biology, Darmstadit University of Technology, Darmstadt, Germany, 2 School of Engineering and Science, Jacobs Universi (o)
;re::\:r;:r:zsn ' G’Z:zan yepartment of Biology, Darmstadt University of Technology, Darmstadt, Germany, 2 School of Engineering and Science, Jacobs University c mplex netwo rks

Paolo Moretti*! and Marc-Thorsten Hiitt®

Abstract
. . . I . . . . . 2Institute of Materials Simulation, Department of Materials Science, Friedrich-Alexander-University Erlangen-Nurnberg, D-90762 Firth, Germany;
This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized and ®Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany

excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are
explored with a three-state model of node activation for systematically varying levels of random background network
stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and
network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The 1 8332—1 8340 | PNAS | August 4, 2020 I VOI. 1 1 7 | no. 31
approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the
network’s modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is
strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic
states in the function of complex biological networks.

Citation: Miller-Linow M, Hilgetag CC, Hiitt M-T (2008) Organization of Excitable Dynamics in Hierarchical Biological Networks. PLoS Comput Biol 4(9): €1000190.
doi:10.1371/journal.pcbi.1000190




Example 2: Networks as structural models to
interpret high-throughput data in Biology and
Medicine



> An example of a network-based interpretation of medical high-throughput data
P Agreement of transcriptome data with a given biological network
Pediatric Crohn disease patients exhibit specific ileal
transcriptome and microbiome signature

Haberman et al.
J Clin Invest. 2014;124(8):3617-3633. doi:10.1172/1CI75436.

Some features of the data set

B treatment-naive pediatric patients
m Crohn's disease (CD)
® ulcerative colitis (UC)

m no inflammatory bowel disease (notIBD)

M 321 samples (with an age range from 2 to 17 years)

B gene expression measured via RNA-Seq



> Ar: example of a network-based interpretation of medical high-throughput data

> Aement of transcriptome data with a given biological network

gene-centric
metabolic network
(derived from the
Recon3D model) s

Taken from: Brunk ... Palsson d
(2018). Nat. Biotech., 36(3), //
272-281. ©



> Ar: example of a network-based interpretation of medical high-throughput data

> Aement of transcriptome data with a given biological network

G/ — (‘//7 El),
V! C V differentially expressed genes
E’ C E all edges in G among vertices in V'

{v; € V'|k(v;) > 0}]

R =
14 ’

k(v;) degree of node v;

z-score (with respect to random vertex sets)

'network coherence'

O O—o—

Method from:

Sonnenschein, Geertz, Muskhelishvili and Hltt (2011). BMC Systems Biology, 5,
1-13.

Sonnenschein, Golib Dzib, Lesne, Eilebrecht, Boulkroun, Zennaro, Benecke and
Hitt (2012). BMC Systems Biology, 6, 1-13.

gene-centric C
metabolic network ytOSCape
(derived from the + gene set derived from an
Recon3D model) ¢ IBD patient Network Coherence Calculator
p Calculates the network coherence of differentially expressed genes within a
& network.
Taken from: Brunk ... Palsson d . .
(2018). Nat. Biotech., 36(3), / Diverse other methods: %k ok (2) 1411 downloads | discussions @ “
272-281. 0 Nyczka, Hutt and Lesne (2021). Physica A, 566, 125631.




> An example of a network-based interpretation of medical high-throughput data
P Agreement of transcriptome data with a given biological network
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Knecht, Fretter, Rosenstiel, Krawczak and Hutt (2016) Scientific Reports 6, 32584.



Example 3: The digital-analog duality in biology:
how network and non-network mechanisms
jointly shape biological data and hence systemic
function



> Biological and medical data are complicated

One complication:

Biology operates via the interplay of analog (rather gradual) and digital (discrete, symbolic) information.

"The observation | wish to make is this: processes
which go through the nervous system may, as |
pointed out before, change their character from
digital to analog, and back to digital, etc.,
repeatedly.”

von Neumann, J. (1958) The Computer and the Brain. Yale University Press.

Mathematical and computational approaches (modeling, data analysis, machine learning)
are challenged by this interplay of digital and analog information.




> Biological and medical data are complicated

P Interpretation of disease-associated SNPs via analog information

Concept of analog Nucleus
information
Chromosome
Topologically
associating
domains )= SN
(TADS) =220 o TTTieel
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Architectural
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Taken from: Krijger and de Laat (2016) Nat. Rev. Mol. Cell. Biol. 17, 771.

Data resources

TAD data

Rao et al. (2014) A 3D map of the
human genome at kilobase
resolution reveals principles of
chromatin looping. Cell 159,
1665—-1680.

Disease-associated SNPs
from GWAS catalog

GWAS
Catalog

Statistical question

Are there diseases, for
which the disease-
associated SNPs are
significantly often
located in TAD
boundaries?



> Biological and medical data are complicated
P Interpretation of disease-associated SNPs via analog information

enrichment of SNPs in TAD borders
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Jablonski, Carron, Mozziconacci, Forné, Hitt, Lesne (2022). Human Genomics, 16(1), 2. association



Brief remark 1: The 'bigger picture'



> What is scientific understanding (in times of Al)?

Definition (attempt)

A minimal model (also: 'toy model', ‘cartoon model', 'stylized model') ___,
is the simplest mathematical representation of a universal behavior.

general principles behind a
large set of phenomena

It points to deep order in some of the most complex (fluctuating,

nonlinear) systems.

A

\4
Al-driven scientific discovery ('digital discovery')

Debate about the theoretical foundations of
Biology
"Physicists come from a tradition of
looking for all-encompassing laws,
but is this the best approach to use
when probing complex biologicét\

systems?"

On scientific understanding with
artificial intelligence

E. Fox Keller (2007) A clash of two ” x
cultures. Nature 445, 603 :

Mario Krenn, Robert Pollice, Si Yue Guo, Matteo Aldeghi, Alba Cervera-Lierta,
Pascal Friederich, Gabriel dos Passos Gomes, Florian Hése, Adrian Jinich,
AkshatKumar Nigam, Zhenpeng Yao@ and Alan Aspuru-Guzik

VOLUME 4 | DECEMBER 2022 | 761  NATURE REVIEWS | PHYSICS




Brief remark 2: Some next goals



> Some next goal

‘Complex networks'

'Simple models'

Example 1: Self-organized excitation waves in networks

Analysis of SER model variants

Spiral waves in networks

joint work with Claus Hilgetag (Hamburg), Paolo Moretti (NlUrnberg), joint work with Annick Lesne

Example 2: Networks as structural models
to interpret high-throughput data in

Biology and Medicine
joint work with Annick Lesne

Extending the data analysis to more disease

Using simple models to obtain a mechanistic
understanding of disease genes in networks

Example 3: The digital-analog duality in biology: how network and non-network

mechanisms jointly shape biological data and hence systemic function
joint work with Annick Lesne

Brief remark 1: 'The bigger picture'

Brief remark 2: Some next steps

Understanding how this digital-analog duality
affects modeling and data analysis (including
machine learning)

Using simple models to obtain a mechanistic
understanding of the interplay of digital and
analog mechanisms in biology




