Optimal strategies in navigation and learning: statistical physics meets control theory

21st Nov 2024

Francesco Mori

LPTMC Seminar

Overview of my research

Optimal strategies in navigation and learning: statistical physics meets control theory

Fundamental principles of nonequilibrium systems

Overview of my research

Optimal strategies in navigation and learning: statistical physics meets control theory

21st Nov 2024

Part I: Animal navigation

"Optimal switching strategies for navigation in stochastic settings."

FM, L. Mahadevan.

arXiv preprint arXiv:2311.18813

L. Mahadevan (Harvard)

Navigation in noisy environments

Credit: MdeVicente CC0 1.0 Universal

21st Nov 2024

Navigation in noisy environments

Synthetic data

Switching behaviour in navigation

Intermittent search strategies

Trailing

Thesen, Aud, Johan B. Steen, and Kjell B. Døving. Journal of Experimental Biology 180.1 (1993): 247-251.

O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez, Rev. Mod. Phys. 83, 81

A. G. Khan, M. Sarangi, and U. S. Bhalla, Nature *communications* **3**, 703 (2012).

G. Reddy, B. I. Shraiman, and M. Vergassola, PNAS 119(1), e2107431118 (2022).

21st Nov 2024

Zigzagging vs casting

E. Balkovsky, and B. I. Shraiman. PNAS 99, 12589 (2002).

L.L. López, et al. IntechOpen, 2011.

G. Reddy, V. N. Murthy, and M. Vergassola. Ann. Rev. Cond. Matt. Phys. 13 (2022): 191-213.

Egocentric vs geocentric strategies

Desert ant

Egocentric

How to optimally switch?

O. Peleg and L. Mahadevan. Royal Society open science 3.7, 160128 (2016).

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Human with a map

Geocentric

Model

Active Brownian motion

GOAL

Maximise the displacement in the x direction (keep θ close to zero)

Active Brownian motion with corrections

$\theta(t+dt) = \begin{cases} \theta(t) + \sqrt{2D}dt\eta(t) & \text{if } s(\theta,t) = 0, \\ 0 & \text{if } s(\theta,t) = 1. \end{cases}$

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

GOAL

Maximise the displacement in the x direction (keep θ close to zero)

Optimal control

Active Brownian motion with corrections

Optimal strategies in navigation and learning: statistical physics meets control theory

 $\mathscr{F}_{\theta_0,t_0}[s] = \left\langle v_0 \int_{t_0}^{t_f} \cos(\theta(\tau)) d\tau - x_c(N(t_f) - N(t_0)) \right\rangle_{\alpha}$

Reward

Cost

Optimal control

Reward function

$$\mathscr{F}_{\theta_0,t_0}[s] = \langle v_0 \int_{t_0}^{t_f} d\tau \, \mathrm{cc}$$

Optimal reward

$$J(\theta, t) = \max_{s}$$

Optimal strategy

$$s^*(\theta, t) = \operatorname{argma}$$

Optimal strategies in navigation and learning: statistical physics meets control theory

 $\operatorname{os}(\theta(\tau)) - x_c(N(t_f) - N(t_0))\rangle$

Maximisation over all possible strategies

Previous works

ROYAL SOCIETY OPEN SCIENCE

rsos.royalsocietypublishing.org

Research .

Cite this article: Peleg O, Mahadevan L. 2016 Optimal switching between geocentric and egocentric strategies in navigation. R. Soc. open sci. 3: 160128. http://dx.doi.org/10.1098/rsos.160128

Optimal switching between geocentric and egocentric strategies in navigation

O. Peleg¹ and L. Mahadevan^{1,2,3}

¹Paulson School of Engineering and Applied Sciences, ²Department of Physics, and ³Department of Organismic and Evolutionary Biology, Kavli Institute for NanoBio Science and Technology, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA

(D) OP, 0000-0001-9481-7967

Dynamic programming

R. Bellman, R. W. Kalaba, et al., Dynamic programming and modern control theory (1965)

21st Nov 2024

Bellman equation

Optimal reward

 $J(\theta, t) = \max \mathscr{F}_{\theta, t}$

 $-\partial_{t}J(\theta,t) = D\partial_{\theta}^{2}J(\theta,t) + v_{0}\cos(\theta), \quad \theta \in \Omega(t),$ $\Omega(t) = \{\theta : J(\theta, t) \ge J(0, t) - x_c\}$

 $s^*(\theta, t) = \begin{cases} 1 & \text{if } \theta \notin \Omega(t), \\ 0 & \text{if } \theta \in \Omega(t), \end{cases}$ Optimal strategy

B. De Bruyne and FM, *Physical Review Research* 5, 013122 (2023).

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

B. De Bruyne (QRT)

Optimal reorientation policy

Infinite time horizon limit

$$-\partial_t J(\theta, t) = D\partial_{\theta}^2 J(\theta, t) + v_0 \cos(\theta),$$

$$\Omega(t) = \{\theta : J(\theta, t) \ge J(0, t) - x_c\}$$

Ansatz

$$J(\theta, t) = j(\theta) + v^*(t_f - t)$$

$$\Omega(t) = [-\theta_a, \theta_a]$$

$$\frac{1}{2} \sin(\theta_a) \theta_a + \cos(\theta_a) = 1 - \frac{Dx_c}{v_0}.$$

$$v^* = v_0 \frac{\sin(\theta_a)}{\theta_a}$$

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

$\theta \in \Omega(t)$, $\theta(t)$ 0 π -1 ò τf Ī $(t_f - t) \gg D^{-1}$

Infinite time horizon limit

Time between reorientations

Measurement noise

$$\begin{cases} \dot{x}(t) = v_0 \cos[\theta(t)], & \dot{\theta} = re\\ \dot{y}(t) = v_0 \sin[\theta(t)], & \dot{\theta} = r\\ \theta_1(t) = \theta(t) + \theta_n(t) & \langle \eta(t)\eta(t') \rangle = 2 \end{cases}$$

Strategy: reorient if $|\theta_1| > \theta_a$

21st Nov 2024

Measurement noise

$$\begin{cases} \dot{x}(t) = v_0 \cos[\theta(t)], \\ \dot{y}(t) = v_0 \sin[\theta(t)], \\ \theta_1(t) = \theta(t) + \theta_n(t) \end{cases}$$

Optimal strategies in navigation and learning: statistical physics meets control theory

21st Nov 2024

Strategy: reorient if $|\theta_1| > \theta_a$

Measurement noise

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

$r = D/D_n$

Conclusions and perspectives

 Minimal model of animal navigation inspired by the dung beetle

 Applications other systems: olfactory navigation, search processes,...

• Experimental verification (Lund Vision Group)

DALL.E

Part II: Multi-task learning

"Optimal protocols for continual learning via statistical physics and control theory"

FM, Stefano Sarao Mannelli, Francesca Mignacco

arXiv preprint arXiv:2409.18061

Francesca Mignacco Princeton and CUNY

Stefano Sarao Mannelli Chalmers University

Structured Data / Task

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Architecture

Optimization Algorithm

Structured Data / Task

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Architecture

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

• ...

• Regularization

Structured Data / Task

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Architecture

Model optimization:

- Pruning
- Knowledge distillation
- Dropout

. . .

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

• ...

• Regularization

Structured Data / Task

Dynamic data / task selection:

- Active learning
- Curriculum learning
- Transfer learning
- Multi-task learning

. . .

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Architecture

Model optimization:

- Pruning
- Knowledge distillation
- Dropout

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

• ...

• Regularization

Goals:

- **Speed-up** convergence
- Guide the training towards better regions of parameters space

From smoother landscape to the target

Structured Data / Task

Dynamic data / task selection:

- Active learning
- Curriculum learning
- Transfer learning
- Multi-task learning

Architecture

Model optimization:

- Pruning
- Knowledge distillation
- Dropout

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

• ...

Regularization

Goals:

- **Speed-up** convergence
- Guide the training towards better regions of parameters space

From smoother landscape to the target

Structured Data / Task

In this talk:

. . .

Dynamic data / task selection:

- Active learning
- Curriculum learning
- Transfer learning
- Multi-task learning

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Architecture

Model optimization:

- Pruning
- Knowledge distillation
- Dropout

Optimization Algorithm

Hyper-parameter schedules:

- Learning rate
- Momentum
- Batch size

Regularization

Model-based approaches to data / task selection

(Non-exhaustive list)

- Curriculum learning [Weinshall et al (2020); Saglietti et al. (2022); Abbe et al. (2023); Cornacchia et al (2023); Lee et al. (2024); Mannelli et al. (2024); ...]
- Transfer learning [Dhifallah & Lu (2021); Gerace et al. (2022, 2023, 2024); …]
- Continual learning & catastrophic forgetting [Lee et al. (2021, 2022); Shan et al (2024); …]
- Active learning [Cui et al. (2020); ...]

Model-based approaches to data / task selection

(Non-exhaustive list)

- Curriculum learning [Weinshall et al (2020); Saglietti et al. (2022); Abbe et al. (2023); Cornacchia et al (2023); Lee et al. (2024); Mannelli et al. (2024); ...]
- Transfer learning [Dhifallah & Lu (2021); Gerace et al. (2022, 2023, 2024); ...]
- Continual learning & catastrophic forgetting [Lee et al. (2021, 2022); Shan et al (2024); ...]
- Active learning [Cui et al. (2020); ...]

Can we compute the optimal* strategy ?

* In terms of the final performance

21st Nov 2024

Supervised learning - general setup

Dataset with labels $\mathcal{D} = \{x_i, y_i\}_{i=1}^{P}$

Error (aka loss)
$$\mathscr{L} = \frac{1}{2} \left(\hat{y} - y \right)^2$$

Neural Network $\hat{y} = f_{\mathbf{w}}(x)$

Example:
$$\hat{y} = \operatorname{erf}(\mathbf{w}^{\mathsf{T}}x)$$

Stochastic gradient descent

$$\mathbf{w}^{\mu+1} = \mathbf{w}^{\mu} - \eta \, \nabla \, \mathscr{L}^{\mu}$$

Dimensionality reduction + optimal control

$$\mathbf{w}^{\mu+1} = \mathbf{w}^{\mu} - \eta \, \nabla \mathcal{L}^{\mu}$$

High-dimensional complex dynamics

Dimensionality reduction + optimal control

$$\mathbf{w}^{\mu+1} = \mathbf{w}^{\mu} - \eta \, \nabla \, \mathscr{L}^{\mu}$$

High-dimensional complex dynamics

Statistical physics

[Saad & Solla (1995); Biehl & Schwarze (1995); Riegler & Biehl (1995); Goldt et al (2019); Refinetti (2020); Veiga et al (2022); Arnaboldi et al (2023); ... Agoritsas et al (2018); Mignacco et al (2020); Mannelli et al (2021); Bonnaire et al (2023); ...]

[Pontryagin (1962), Bellman (1965); Saad Rattray(1997), Sivak & Crooks (2012); ...]

Continual learning & catastrophic forgetting

21st Nov 2024

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Train on Task 2

epochs

Optimal strategies in navigation and learning: statistical physics meets control theory

Train on Task 2

epochs

Train on Task 1

Humans & Animals

can learn sequentially without interference problems [McClelland et al (1995); Barnett & Ceci (2002); Calvert et al., (2004); Mareschal et al (2007); Pallier et al (2003); ... Flesch et al (2018); Cichon & Gan (2015); Yang et al., 2014) ...]

ML (empirical):

Neural networks suffer from

catastrophic forgetting

[Goodfellow et al (2014); Ruder & Planck (2014); Nguyen et al (2019); Parisi et al (2019); Mirzadeh et al (2020); Neyshabur et al (2020)]

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Train on Task 2

ML (theory):

Key role of width, depth and task similarity

[Mirzadeh et al (2021); Lee et al. (2021, 2022); f Asanuma et al (2021); Doan et al (2021); Shan et al (2024)]

A teacher-student model of (supervised)continual learning

Introduced in: Lee, Goldt, & Saxe (ICML 2021)

Task 1

$\mathcal{D}_1 = \{x_i^{(1)}, y_i^{(1)}\}$

Task 2

 $\mathcal{D}_2 = \{x_i^{(2)}, y_i^{(2)}\}$

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

$x \sim \mathcal{N}(0,1) \in \mathbf{R}^N$

 $N \gg 1$

Introduced in: Lee, Goldt, & Saxe (ICML 2021)

Introduced in: Lee, Goldt, & Saxe (ICML 2021)

21st Nov 2024

Introduced in: Lee, Goldt, & Saxe (ICML 2021)

Introduced in: Lee, Goldt, & Saxe (ICML 2021)

Introduced in: Lee, Goldt, & Saxe (ICML 2021)

Student (multi-head) Learned \checkmark ?? ,(t) $\sum v_k^{(t)} g\left(w_k \cdot \frac{x}{\sqrt{2}} \right)$ $\hat{y}^{(t)} = \hat{y}^{(t)}$ To be learned

k=1

without forgetting !!

 \sqrt{N}

Generalization error on task t:

$$\varepsilon_t \left(\boldsymbol{W}, \boldsymbol{V}, \boldsymbol{W}_* \right) = \frac{1}{2} \mathbb{E}_x \left[\left(\boldsymbol{y}^{(t)} - \hat{\boldsymbol{y}}^{(t)} \right)^2 \right]$$

Saad & Solla (1995); Biehl & Schwarze (1995);

21st Nov 2024

 $y^{(t)} = g_* \left(\mathcal{W}_t^* \cdot \frac{x}{\sqrt{N}} \right)$

Generalization error on task t:

$$\varepsilon_{t} (\boldsymbol{W}, \boldsymbol{V}, \boldsymbol{W}_{*}) = \frac{1}{2} \mathbb{E}_{x} \left[\left(\boldsymbol{y}^{(t)} - \hat{\boldsymbol{y}}^{(t)} \right)^{2} \right]$$
$$= \frac{1}{2} \sum_{k,h} v_{k}^{(t)} v_{h}^{(t)} \mathbb{E}_{\boldsymbol{\lambda}, \boldsymbol{\lambda}_{*}} \left[g(\lambda_{k}) g(\lambda_{h}) \right] + \frac{1}{2} \mathbb{E}_{\boldsymbol{\lambda}, \boldsymbol{\lambda}_{*}} \left[g_{*}(\lambda_{*}^{(t)})^{2} \right]$$
$$- \sum_{k} v_{k}^{(t)} \mathbb{E}_{\boldsymbol{\lambda}, \boldsymbol{\lambda}_{*}} \left[g(\lambda_{k}) g_{*}(\lambda_{*}^{(t)}) \right]$$

Pre-activations:
$$\lambda_k = \frac{w_k \cdot x}{\sqrt{N}}$$
 and $\lambda_*^{(t)} = \frac{w_*^{(t)}}{\sqrt{N}}$

Saad & Solla (1995); Biehl & Schwarze (1995);

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

 $'^{(t)}_* \cdot \chi$

N

Generalization error on task t:

$$\varepsilon_t(\boldsymbol{W}, \boldsymbol{V}, \boldsymbol{W}_*) = \mathbb{E}_{\boldsymbol{\chi}}\left[f(\boldsymbol{\lambda}, \boldsymbol{\lambda}_*)\right]$$

Pre-activations:
$$\lambda_k = \frac{w_k \cdot x}{\sqrt{N}}$$
 and $\lambda_*^{(t)} = \frac{w_*^{(t)}}{\sqrt{N}}$

Saad & Solla (1995); Biehl & Schwarze (1995);

21st Nov 2024

Generalization error on task t:

$$\varepsilon_t(\boldsymbol{W}, \boldsymbol{V}, \boldsymbol{W}_*) = \mathbb{E}_{\chi}\left[f(\lambda, \lambda_*)\right]$$

Pre-activations:
$$\lambda_k = \frac{w_k \cdot x}{\sqrt{N}}$$
 and $\lambda_*^{(t)} = \frac{w_*^{(t)} \cdot x}{\sqrt{N}}$ are *jointly Gaussian*.

Saad & Solla (1995); Biehl & Schwarze (1995);

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

$$egin{aligned} P(oldsymbol{\lambda},oldsymbol{\lambda}_*) &= rac{1}{\sqrt{(2\pi)^{K+T}|oldsymbol{C}|}} \exp\left(-rac{1}{2}(oldsymbol{\lambda},oldsymbol{\lambda}_*)^{ op}oldsymbol{C}^{-1}(oldsymbol{\lambda},oldsymbol{\lambda}_*)^{ op}oldsymbol{C}^{-1}(oldsymbol{\lambda},oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{\lambda},oldsymbol{L}^{-1}(oldsymbol{\lambda},oldsymbol{L}^{-1}(oldsymbol{\lambda},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbol{L}^{-1}(oldsymbol{L},oldsymbo$$

٠

$$M_{kt} \coloneqq \mathbb{E}_{\boldsymbol{x}} \left[\lambda_k \lambda_*^{(t)} \right] = \frac{\boldsymbol{w}_k \cdot \boldsymbol{w}_*^{(t)}}{N} ,$$
$$Q_{kh} \coloneqq \mathbb{E}_{\boldsymbol{x}} \left[\lambda_k \lambda_h \right] = \frac{\boldsymbol{w}_k \cdot \boldsymbol{w}_h}{N} ,$$
$$S_{tt'} \coloneqq \mathbb{E}_{\boldsymbol{x}} \left[\lambda_*^{(t)} \lambda_*^{(t')} \right] = \frac{\boldsymbol{w}_*^{(t')} \cdot \boldsymbol{w}_*^{(t)}}{N}$$

 $\mu = 1, \dots, P = \text{training epoch}$

Online SGD:
$$\mathbf{w}^{\mu+1} = \mathbf{w}^{\mu} - \eta \nabla_{\mathbf{w}} \mathscr{L}^{\mu}$$

Saad & Solla (1995); Biehl & Schwarze (1995);

21st Nov 2024

 $\mathscr{L} = \frac{1}{2} \left(y^{(t)} - \hat{y}^{(t)} \right)^2$

$$\mu = 1, \dots, P =$$
 training epoch

Online SGD:

$$\boldsymbol{w}_{k}^{\mu+1} = \boldsymbol{w}_{k}^{\mu} - \eta^{\mu} \Delta^{(t_{c})\mu} v_{k}^{(t_{c})\mu} g'(\lambda_{k}^{\mu}) \frac{\boldsymbol{x}^{\mu}}{\sqrt{N}}$$

$$\Delta^{(t)\mu} \coloneqq \hat{y}^{(t)\mu} - y^{(t)\mu} = \sum_{k=1}^{K} v_{k}^{(t)} g(\lambda_{k}^{\mu}) - g_{*}(\lambda_{*}^{(t)\mu})$$

Pre-activations:

$$\lambda_k^\mu\coloneqq rac{oldsymbol{x}^\mu\cdotoldsymbol{w}_k^\mu}{\sqrt{N}}\;,\;\;\;\lambda_*^{(t)\mu}$$

Saad & Solla (1995); Biehl & Schwarze (1995);

21st Nov 2024

$$\coloneqq \frac{\boldsymbol{x}^{\mu} \cdot \boldsymbol{w}_{*}^{(t)}}{\sqrt{N}}$$

 $\mu = 1, \dots, P = \text{training epoch}$

Online SGD:
$$m{w}_k^{\mu+1} = m{w}_k^{\mu} - \eta^{\mu} \Delta^{(t_c)\mu} \, v_k^{(t_c)\mu} \, g' \left(\lambda_k^{\mu}\right) rac{m{x}^{\mu}}{\sqrt{N}} \; ,$$

Example derivation: ODE for the "magnetization

$$rac{oldsymbol{w}_k^{\mu+1}\cdotoldsymbol{w}_*^{(t)}}{N} = rac{oldsymbol{w}_k^{\mu}\cdotoldsymbol{w}_*^{(t)}}{N}$$

Saad & Solla (1995); Biehl & Schwarze (1995);

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

on"
$$M_{kt} \coloneqq \mathbb{E}_{\boldsymbol{x}} \left[\lambda_k \lambda_*^{(t)} \right] = \frac{\boldsymbol{w}_k \cdot \boldsymbol{w}_*^{(t)}}{N}$$

 $\frac{f^{(t)}_{*}}{N} = -\frac{\eta^{\mu}}{N} \Delta^{(t_c)\mu} v_k^{(t_c)\mu} g'(\lambda_k^{\mu}) \lambda_*^{(t)\mu}$

 $\mu = 1, \dots, P = \text{training epoch}$

Online SGD:
$$m{w}_k^{\mu+1} = m{w}_k^{\mu} - \eta^{\mu} \Delta^{(t_c)\mu} \, v_k^{(t_c)\mu} \, g' \left(\lambda_k^{\mu}\right) rac{m{x}^{\mu}}{\sqrt{N}} \; ,$$

Example derivation: ODE for the "magnetizatic

$$\frac{\boldsymbol{w}_k^{\mu+1} \cdot \boldsymbol{w}_*^{(t)}}{N} - \frac{\boldsymbol{w}_k^{\mu} \cdot \boldsymbol{w}_*^{(t)}}{N} = -\frac{\eta^{\mu}}{N} \Delta^{(t_c)\mu} v_k^{(t_c)\mu} g'(\lambda_k^{\mu}) \lambda_*^{(t)\mu}$$

 $\alpha = \mu/N = \text{training "time", high-dimensional limit with <math>P/N = \mathcal{O}_N(1)$:

$$\frac{\mathrm{d}M_{kt}}{\mathrm{d}\alpha} = -\eta v_k^{(t_c)} \mathbb{E}_{\boldsymbol{\lambda},\boldsymbol{\lambda}_*} \left[\Delta^{(t_c)} g'(\boldsymbol{\lambda}_k) \boldsymbol{\lambda}_*^{(t)} \right] \coloneqq f_{\boldsymbol{M},kt}$$

Saad & Solla (1995); Biehl & Schwarze (1995);

21st Nov 2024

on"
$$M_{kt} \coloneqq \mathbb{E}_{\boldsymbol{x}} \left[\lambda_k \lambda_*^{(t)} \right] = \frac{\boldsymbol{w}_k \cdot \boldsymbol{w}_*^{(t)}}{N}$$

ODEs for the order parameters:

 $\mathbb{Q} = (\operatorname{vec}(\boldsymbol{Q}), \operatorname{vec}(\boldsymbol{M}), \operatorname{vec}(\boldsymbol{V}))^{ op}$

 $\mathrm{d}\mathbb{Q}(lpha)$

Saad & Solla (1995); Biehl & Schwarze (1995);

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

 $\frac{\mathrm{IQ}(\alpha)}{\mathrm{d}\alpha} = f_{\mathbb{Q}}\left(\mathbb{Q}(\alpha), \boldsymbol{u}(\alpha)\right)$ $\alpha \in (0, \alpha_F]$

Control

- Task
- Learning rate
- . . .

3. Meta-optimization

ODEs for the order parameters:

$$\mathbb{Q} = (\operatorname{vec}(\boldsymbol{Q}), \operatorname{vec}(\boldsymbol{M}), \operatorname{vec}(\boldsymbol{V}))^{ op}$$

$$\frac{\mathrm{d}\mathbb{Q}(\alpha)}{\mathrm{d}\alpha}_{\alpha}$$

Optimization objective:

$$h(\mathbb{Q}(\alpha_F)) = \sum_{t=1}^{T} c_t \varepsilon_t(\mathbb{Q}(\alpha_F))$$

with $c_t \ge 0$ and $\sum_{t=1}^{T} c_t = 1$

Cost functional: $\mathcal{F}[\mathbb{Q}, \hat{\mathbb{Q}}, \boldsymbol{u}] = h\left(\mathbb{Q}(\alpha_F)\right) + \int_0^{\alpha_F} \mathrm{d}\alpha \ \hat{\mathbb{Q}}(\alpha)^\top \left[-\frac{\mathrm{d}\mathbb{Q}(\alpha)}{\mathrm{d}\alpha} + f_{\mathbb{Q}}\left(\mathbb{Q}(\alpha), \boldsymbol{u}(\alpha)\right)\right]$ [Pontryagin (1962)]

$$= f_{\mathbb{Q}}\left(\mathbb{Q}(lpha), oldsymbol{u}(lpha)
ight)$$
 Forward dynamics
 $\in (0, lpha_F]$

3. Meta-optimization

ODEs for the order parameters:

$$\mathbb{Q} = (\operatorname{vec}(\boldsymbol{Q}), \operatorname{vec}(\boldsymbol{M}), \operatorname{vec}(\boldsymbol{V}))^{ op}$$

$$\frac{\mathrm{d}\mathbb{Q}(\alpha)}{\mathrm{d}\alpha}_{\alpha}$$

Optimization objective:

$$h(\mathbb{Q}(\alpha_F)) = \sum_{t=1}^{T} c_t \varepsilon_t(\mathbb{Q}(\alpha_F))$$

with $c_t \ge 0$ and $\sum_{t=1}^{T} c_t = 1$

Cost functiona [Pontryagin (1962

$$-\frac{\mathrm{d}\hat{\mathbb{Q}}(\alpha)^{\top}}{\mathrm{d}\alpha} = \hat{\mathbb{Q}}(\alpha_{F}) =$$

$$= f_{\mathbb{Q}} \left(\mathbb{Q}(\alpha), \boldsymbol{u}(\alpha) \right)$$
 Forward dynamics
 $\in (0, \alpha_F]$

al:
$$\mathcal{F}[\mathbb{Q}, \hat{\mathbb{Q}}, \boldsymbol{u}] = h\left(\mathbb{Q}(\alpha_F)\right) + \int_0^{\alpha_F} \mathrm{d}\alpha \ \hat{\mathbb{Q}}(\alpha)^\top \left[-\frac{\mathrm{d}\mathbb{Q}(\alpha)}{\mathrm{d}\alpha} + f_{\mathbb{Q}}\left(\mathbb{Q}(\alpha), \boldsymbol{u}(\alpha)\right)\right]$$

$$\hat{\mathbb{Q}}(\alpha)^{\top} \nabla_{\mathbb{Q}} f_{\mathbb{Q}}(\mathbb{Q}(\alpha), \boldsymbol{u}(\alpha))$$
 Backwards dynamics

 $\mathbb{Q}(\alpha_F) = \nabla_{\mathbb{Q}} h(\mathbb{Q}(\alpha_F))$

Optimal strategies in navigation and learning: statistical physics meets control theory

$(\alpha))$

3. Meta-optimization

ODEs for the order parameters:

$$\mathbb{Q} = (\operatorname{vec}(\boldsymbol{Q}), \operatorname{vec}(\boldsymbol{M}), \operatorname{vec}(\boldsymbol{V}))^{ op}$$

$$\frac{\mathrm{d}\mathbb{Q}(\alpha)}{\mathrm{d}\alpha} = \frac{1}{\alpha}$$

Optimization objective:

$$h(\mathbb{Q}(\alpha_F)) = \sum_{t=1}^T c_t \varepsilon_t(\mathbb{Q}(\alpha_F))$$

with $c_t \ge 0$ and $\sum_{t=1}^T c_t = 1$

Cost functiona [Pontryagin (1962

$$-\frac{\mathrm{d}\hat{\mathbb{Q}}(\alpha)^{\top}}{\mathrm{d}\alpha} = \hat{\mathbb{Q}}(\alpha_F) =$$

Optimal protoco

$$= f_{\mathbb{Q}} \left(\mathbb{Q}(\alpha), \boldsymbol{u}(\alpha) \right)$$
 Forward dynamics
 $\in (0, \alpha_F]$

al:
$$\mathcal{F}[\mathbb{Q}, \hat{\mathbb{Q}}, \boldsymbol{u}] = h\left(\mathbb{Q}(\alpha_F)\right) + \int_0^{\alpha_F} \mathrm{d}\alpha \ \hat{\mathbb{Q}}(\alpha)^\top \left[-\frac{\mathrm{d}\mathbb{Q}(\alpha)}{\mathrm{d}\alpha} + f_{\mathbb{Q}}\left(\mathbb{Q}(\alpha), \boldsymbol{u}(\alpha)\right)\right]$$

$$\hat{\mathbb{Q}}(\alpha)^{\top} \nabla_{\mathbb{Q}} f_{\mathbb{Q}}\left(\mathbb{Q}(\alpha), \boldsymbol{u}(\alpha)\right)$$
 Backwards dynamics

 $\mathbb{Q}(\alpha_F) = \nabla_{\mathbb{Q}} h(\mathbb{Q}(\alpha_F))$

ol:
$$u^*(\alpha) = \operatorname{argmin}_u \left\{ \hat{\mathbb{Q}}(\alpha)^{\mathsf{T}} f_{\mathbb{Q}} \left(\mathbb{Q}(\alpha), u \right) \right\}$$

Optimal strategies in navigation and learning: statistical physics meets control theory

(lpha))

[F. Mori, S. Sarao Mannelli, FM, in preparation]

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Training only on the new task

$\alpha = epochs / input dimension$

Intermediate task similarity leads to the worst forgetting.

[Lee et al (2021); Ramesh et al (2020); Doan et al (2020); Nguyen et al (2019)]

The impact of replay on the performance

[F. Mori, S. Sarao Mannelli, FM, in preparation]

21st Nov 2024

The impact of replay on the performance

[F. Mori, S. Sarao Mannelli, FM, in preparation]

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

α = epochs / input dimension

Order matters!

Optimizing replay + learning rate schedule

[F. Mori, S. Sarao Mannelli, FM, in preparation]

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

α = epochs / input dimension

Results: optimal strategy vs benchmarks

Results: optimal strategy vs benchmarks

Does the order of replayed episodes matter?

[F. Mori, S. Sarao Mannelli, FM, in preparation]

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Learning the new vs Replaying the old

Experiments on Fashion MNIST

 $\mathcal{D}_1 = \{ \boldsymbol{x}_i^{(1)}, y_i^{(1)} \}_i \qquad \mathcal{D}_2 = \{ \boldsymbol{x}_i^{(2)}, y_i^{(2)} \}_i = \{ \gamma \boldsymbol{x}_i^{(1)} + (1 - \gamma) \tilde{\boldsymbol{x}}_i, \gamma y_i^{(1)} + (1 - \gamma) \tilde{\boldsymbol{y}}_i \}_i$

Conclusions & Perspectives

In summary:

- Optimal control of effective learning dynamics reveals nontrivial training protocols.
- Continual learning: non-homogeneous replay avoids forgetting.

Many open directions!

- Experiments beyond toy models: incorporate models of structured data;
- Batch learning;
- Other learning paradigms : shaping, transfer learning, active learning, …

Thank you!

Bonus Slides

Curriculum learning (in progress)

Curriculum learning

Image from: Wang, Xin, Yudong Chen, and Wenwu Zhu. IEEE transactions on pattern analysis and machine intelligence 44.9 (2021):4555-4576.

21st Nov 2024

Curriculum learning

Image from: Wang, Xin, Yudong Chen, and Wenwu Zhu. IEEE transactions on pattern analysis and machine intelligence 44.9 (2021):4555-4576.

21st Nov 2024

Curriculum learning

Image from: Wang, Xin, Yudong Chen, and Wenwu Zhu. IEEE transactions on pattern analysis and machine intelligence 44.9 (2021):4555-4576.

21st Nov 2024

Curriculum learning

Animals:

- Conditional reflexes (dogs) [Pavlov (1927)]
- Shaping (rats, pigeons) [Skinner (1938)]
- Discrimination along a continuum (rats) [Lawrence (1952)]
- Cross-species auditory identification (rats, humans) [Liu et al. (2008)]

Humans:

- Discrimination along a continuum [Baker, Stanley (1954)]
- Past tense [Plunkett et al (1990; 1991)]
- Fading with auditory and visual stimuli [Pashler, Mozer (2013)]
- Eureka effect [Ahissar, Hochstein (1997)]

Curriculum learning

Animals:

- Conditional reflexes (dogs) [Pavlov (1927)]
- Shaping (rats, pigeons) [Skinner (1938)]
- Discrimination along a continuum (rats) [Lawrence (1952)]
- Cross-species auditory identification (rats, humans) [Liu et al. (2008)]

ML (empirical):

- Easy-to-hard training [Bengio et al (2009]
- Anti-curriculum [Zhang et al (2019); Hacohen & Weinshall (2019)]
- No effect of CL in vision benchmarks [Wu et al (2020)]
- Convincing results for LLMs and RL [Brown et al (2020); Narvekar et al (2020)]

Humans:

- Discrimination along a continuum [Baker, Stanley (1954)]
- Past tense [Plunkett et al (1990; 1991)]
- Fading with auditory and visual stimuli [Pashler, Mozer (2013)]
- Eureka effect [Ahissar, Hochstein (1997)]

ML (theory):

- Single-update advantage of easy samples [Weinshall et al (2020)]
- Speed benefit but limited performance upgrade in convex problems [Saglietti et al (2021); Lee et al. (2024)]
- Computational benefit in parity machines [Abbe et al. (2023); Cornacchia et al (2023)
- Asymptotic benefit in non-convex models [Mannelli et al (2024)]

Introduced in: Bengio, et al. (ICML 2009), Saglietti, et al. (NeurIPS 2022)

Input:
$$\mathbf{x} = (\mathbf{x}_r, \mathbf{x}_i) \in \mathbb{R}^N$$

tropped

Introduced in: Bengio, et al. (ICML 2009), Saglietti, et al. (NeurIPS 2022)

Input: X	$= (\mathbf{x}_r, \mathbf{x}_i) \in \mathbb{R}^N$	Teache
Relevant 	$\mathbf{x}_r \in \mathbb{R}^{\rho N}$	
	EXAMPLE 1 Substituting the second statement of the	

$$y = sign(\mathbf{w}^* \cdot \mathbf{x}_r)$$

Introduced in: Bengio, et al. (ICML 2009), Saglietti, et al. (NeurIPS 2022)

Input:
$$\mathbf{x} = (\mathbf{x}_r, \mathbf{x}_i) \in \mathbb{R}^N$$

treacher
treacher
treacher
 $\mathbf{y} = \operatorname{sign}(\mathbf{w}^* \cdot \mathbf{x}_r)$
Student
 $\mathbf{x}_i \in \mathbb{R}^{(1-\rho)N}$
Variance Δ
 $y = \operatorname{erf}\left(\frac{\mathbf{w} \cdot \mathbf{x}}{\sqrt{2}}\right)$

Ridge-regularized MSE loss:

$$\mathscr{L} = \frac{1}{2}(y - \hat{y})^2 + \lambda \|$$

Optimal strategies in navigation and learning: statistical physics meets control theory

$\mathbf{W} \|_{2}^{2}$

An Analytical Theory of Curriculum Learning in **Teacher-Student Networks**

Luca Saglietti^{†,*}, Stefano Sarao Mannelli^{‡,*}, and Andrew Saxe^{‡,§}

The evolution of the dynamics can be tracked using four order parameters:

$$egin{aligned} Q_r &= rac{1}{N} \, oldsymbol{W}_r \cdot oldsymbol{W}_r, & R &= rac{1}{N} \, oldsymbol{W}_r \cdot oldsymbol{W}_r \\ Q_i &= rac{1}{N} \, oldsymbol{W}_i \cdot oldsymbol{W}_i, & T &= rac{1}{N} \, oldsymbol{W}_T \cdot oldsymbol{W}_r \end{aligned}$$

21st Nov 2024

 $W_T,$

 W_T ;

[Saglietti, et al (NeurlPS 2022)]

An Analytical Theory of Curriculum Learning in **Teacher-Student Networks**

Luca Saglietti^{†,*}, Stefano Sarao Mannelli^{‡,*}, and Andrew Saxe^{‡,§}

The evolution of the dynamics can be tracked using four order parameters:

$$egin{aligned} Q_r &= rac{1}{N} \, oldsymbol{W}_r \cdot oldsymbol{W}_r, & R &= rac{1}{N} \, oldsymbol{W}_r \cdot oldsymbol{W}_r \\ Q_i &= rac{1}{N} \, oldsymbol{W}_i \cdot oldsymbol{W}_i, & T &= rac{1}{N} \, oldsymbol{W}_T \cdot oldsymbol{W}_r \end{aligned}$$

Online learning: [Biehl & Schwarze (1995); Saad & Solla (1995); ...]

$$Q_r \leftarrow f_{Q_r}(Q_r, Q_i, R, T)$$
$$Q_i \leftarrow f_{Q_i}(Q_r, Q_i, R, T)$$
$$R \leftarrow f_R(Q_r, Q_i, R, T)$$

 $W_T,$

 $W_T;$

[Saglietti, et al (NeurlPS 2022)]

An Analytical Theory of Curriculum Learning in **Teacher-Student Networks**

Luca Saglietti^{†,*}, Stefano Sarao Mannelli^{‡,*}, and Andrew Saxe^{‡,§}

The evolution of the dynamics can be tracked using four order parameters:

$$egin{aligned} Q_r &= rac{1}{N} \, oldsymbol{W}_r \cdot oldsymbol{W}_r, & R &= rac{1}{N} \, oldsymbol{W}_r \cdot oldsymbol{W}_r \\ Q_i &= rac{1}{N} \, oldsymbol{W}_i \cdot oldsymbol{W}_i, & T &= rac{1}{N} \, oldsymbol{W}_T \cdot oldsymbol{W}_r \end{aligned}$$

Online learning: [Biehl & Schwarze (1995); Saad & Solla (1995); ...]

$$Q_r \leftarrow f_{Q_r}(Q_r, Q_i, R, T)$$
$$Q_i \leftarrow f_{Q_i}(Q_r, Q_i, R, T)$$
$$R \leftarrow f_R(Q_r, Q_i, R, T)$$

• Easy-to-hard curriculum is often *suboptimal*.

[F. Mori, FM, in preparation]

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Control: $\mathbf{u} = \boldsymbol{\Delta}$

 $\rho = 0.55, \eta = 2.58$

• Easy-to-hard curriculum is often *suboptimal*.

[F. Mori, FM, in preparation]

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

Control: $\mathbf{u} = \boldsymbol{\Delta}$

 $\rho = 0.55, \eta = 2.58$

• Easy-to-hard curriculum is often suboptimal.

[F. Mori, FM, in preparation]

21st Nov 2024

 $\rho = 0.55, \eta = 2.58$

Non-monotonic

curriculum is optimal:

• Easy-to-hard curriculum is often suboptimal.

F. Mori, **FM**, *in preparation*]

21st Nov 2024

21st Nov 2024

Optimal strategies in navigation and learning: statistical physics meets control theory

20

• Easy-to-hard curriculum becomes optimal if we also optimize over the learning rate schedule.

[F. Mori, FM, in preparation]

21st Nov 2024

• Easy-to-hard curriculum becomes optimal if we also optimize over the learning rate schedule.

[F. Mori, FM, in preparation]

21st Nov 2024

Easy-to-hard

curriculum is optimal:

• Easy-to-hard curriculum becomes optimal if we also optimize over the learning rate schedule.

[F. Mori, FM, in preparation]

21st Nov 2024

- 5	
_	