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2. Topological phases of 
matter

(Since my Postdoc in 2021)

1. Quantum magnetism in 
lattice spin systems

(Since my PhD in 2015)

Two main themes of my research:

In this talk, I will tell my efforts to study 1 using 2.
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Crystallographic group = Symmetry of crystals:

Frank Hoffmann, The Space Group List Project
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Symmetry in physics
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• Symmetry classifies phases

• Symmetry and response

• Choice of symmetry depends on the theory

SSB 1

SSB 2

SSB 3

SSB 4
…

Symmetric 1

Symmetric 2

Symmetric 3
…

Group Theory 

1.0

Symmetry 
preserving

Symmetry 
breaking

Q: crystalline symmetries?

Q: consistency principle?
ℒ0 → ℒ0 − 𝐴𝜇 𝑗

𝜇

Q: Group Theory 2.0?

Group Theory 

2.0

Translation → 𝑍2:  𝜙 → −𝜙



Group Theory 2.0
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Main results

A correspondence between high symmetry points in crystals and their topological data.

Lattice data Connection!
Topological data

Group Theory 2.0



Plan of talk
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Quantum magnetism

• a phase diagram

Lieb-Schultz-Mattis (LSM) theorems

• a history

• new results in 3D

LSM and topological responses

• crystalline fields and responses

• case study: QSLs



Quantum magnetism
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Symmetry 
preserving

Magnetic
order

Trivial 
paramagnet

Nontrivial 
paramagnet

Symmetry 
breaking

S = 1 chain:

1

2
 ( |      ⟩  − |      ⟩ )

+ + + ⋯|RVB⟩ =

P.Anderson,  F.D.M.Haldane

S = 1/2 chain



Quantum paramagnetism
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• A trivial paramagnet = a unique, symmetric, 
short-range entangled, gapped ground state.

• A nontrivial paramagnet is its complement 
(so has long-range entanglement).

“insulator”

“liquid”

Q: When can a trivial paramagnet exist at T = 0?

Symmetry 
preserving

Magnetic
order

Trivial 
paramagnet

Nontrivial 
paramagnet

Symmetry 
breaking
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Quantum magnetism

• a phase diagram

Lieb-Schultz-Mattis (LSM) theorems

• a history

• new results in 3D

LSM and topological responses

• crystalline fields and responses

• case study: QSLs

(When a trivial paramagnet cannot exist)
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Original Lieb-Schultz-Mattis (LSM)

Thm. In a spin chain with translation symmetry and on-site SO(3) 

symmetry. If  there are odd numbers of spin-1/2’s per unit cell, then the 

ground state cannot be a trivial paramagnet. 

                                                  (unique, symmetric, gapped ground state)

Lieb, Schultz, Mattis,  Ann. Phys. ‘61

Flux threading argument
Oshikawa, PRL ‘00; Hastings, PRB ‘04

Ground states before/after flux 

threading differ in crystal momentum:

E

⟩|0 ⟩|Φ0



LSM – a history
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Lieb, Schultz, Mattis, Ann. Phys. ‘61

Oshikawa, PRL ‘00; Hastings, PRB ‘04

Po, Watanabe, Jian, Zaletel, PRL ‘17 d=2: all lattice symmetry LSM

All d: translation LSM

d=1: translation LSM

d=3: all lattice symmetry LSM & topological responseOur work! 

d=2: all lattice symmetry topological responseYe, Guo, He, Wang, Zou, Scipost ’22

General theory of topological responseElse, Thorngren, PRB ‘20

d=2: translation topological responseCheng, Zaletel, Barkeshli, Vishwanath, Bonderson, PRX ‘16



LSM for 2D lattice magnets

14

Theorem (LSM in 2D). 

Assume the magnet preserves lattice x SO(3)symmetry. No trivial 

paramagnetic ground state can exist if  the lattice has an odd number 

of spin-½’s 

1. per 2d unit cell*, or

2. per 1d unit cell defined by translation along a mirror axis, or 

3. at a C2 rotation center.

C2

M // T

T1

T2

Translation, screw, glide

1.

2.

3.

Po, Watanabe, Jian, Zaletel, PRL ‘17

1. The S=1/2 J1-J2 model on the triangular lattice cannot be a 

trivial paramagnet.

2. A S=1/2 trivial paramagnet exists on the honeycomb lattice.

Direct application:

Kim, Lee, Jiang, Ware, Jian, Zaletel, Han, Ran, PRB '16
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The complete LSM theorems in 3D

Theorem (LSM in 3D). 

Assume the magnet preserves lattice x SO(3)symmetry.

No trivial paramagnetic ground state can exist 

if  the lattice has an odd number of spin-½’s 

1. per 3d unit cell*, or 

2. per 2d unit cell* on a mirror plane, or 

3. per 1d unit cell along a C2 axis, or

4. intersection of two C2 axes, or

5. at a 3D inversion center.

𝐶2
′

𝐶2

4.

𝐶2

T
3.2.

T1

T2

M

1.

T1

T2

T3

5.
i

CL, Ye, arXiv:2410.03607



3D LSM – application
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1. The S=1/2 Heisenberg/XXZ model on the 

diamond lattice cannot be a trivial paramagnet.

2. The S=1/2 Heisenberg/XXZ model on the 

pyrochlore lattice cannot be a trivial paramagnet.

i

𝐶2
′

𝐶2

CL, Ye, arXiv:2410.03607
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Lattice data
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Quantum magnetism

• a phase diagram

Lieb-Schultz-Mattis (LSM) theorems

• a history

• new results in 3D

LSM and topological responses

• crystalline fields and responses

• case study: QSLs

Magnetic
order

Trivial 
paramagnet

Nontrivial 
paramagnet
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Topological response theory to crystalline symmetries!



Response theory – a crash course 
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• U(1) symmetry

• Couple with a U(1) gauge field

• Perturb U(1) symmetry 

• Write down response theory

• Topological response

• Fixed total charge

• Apply an electric field

• Attach leads (source & drain)

• Measure current

• Quantized conductivity

In a charge transport experiment:

For every symmetry there is a response theory.

To study response, need to first break that symmetry!

Formally:



Apply a translation gauge field
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= introducing a dislocation.

gives the Burgers vector for dislocations contained in 𝛾.

Dislocation = flux of the translation gauge field.

Burgers vector for dislocation
associated with broken Ty

Manjunath, Barkeshli, PRR ’21;

Field Theory of  Multiscale Plasticity, Hasebe, '23

Origin of gauge freedom: coordinates label up to integers



Crystalline response – 1D example
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Boundary can have a (free) spin-1/2:

free
S = 1/2

free
S = 1/2

Burgers vector associated with broken Tx

Symmetry 
breaking 

order

Trivial 
paramagnet

Nontrivial 
paramagnet

Symmetry: 
ℤ ×  𝑆𝑂(3)
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SO(3) defect binds crystal charge!
              (=flux)                 (=momentum)

E

⟩|0 ⟩|Φ0

1D LSM can be reformulated as a crystalline response theory:

In a spin-1/2 chain with translation x SO(3) symmetry, a 

dislocation (boundary) binds a spin-1/2. 

This complements the flux threading argument:

Written as



Crystalline response – 2D example

24Wang, CL, Lu, PRB ‘24

Symmetry 
breaking 

order

Trivial 
paramagnet

Nontrivial 
paramagnet

Symmetry: 
ℤ2 ×
 𝑆𝑂(3)
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2D LSM can be reformulated as a crystalline response theory:

In a 2D lattice magnet with spin-1/2 and translation x SO(3) 

symmetry, fusing four dislocations leaves no dislocations 

behind, but traps a spin-1/2. 

Written as
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A nontrivial paramagnets in d dim can exist at the boundary of 

certain trivial paramagnet in d+1 dim.

Trivial in d+1 spatial dim Nontrivial in d spatial dim

Bulk-boundary correspondence for quantum paramagnets 

P.Anderson,  F.D.M.Haldane

Trivial is 
not trivial.

Nontrivial is 
not trivial.

Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson, PRX ‘16;  Else, Thorngren, PRB ‘20
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Topological crystalline response – general theory

Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson, PRX ‘16;  Else, Thorngren, PRB ‘20

S=1/2 or S=1

(Group Theory 2.0)

Global symmetry: 𝐺 ×  𝑆𝑂(3) (Group Theory 1.0)

Trivial in d+1 spatial dim Nontrivial in d spatial dim
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Quantum magnetism

• a phase diagram

Lieb-Schultz-Mattis (LSM) theorems

• a history

• new results in 3D

LSM and topological responses

• crystalline fields and responses

• case study: QSLs



Quantum spin liquids
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Dirac spin liquid

(2+1D QED3)

Quantum spin ice

(3+1D Maxwell)

UV

IR

Pyrochlore lattice

S = ½ XXZ model

Triangular lattice

S = ½  J1-J2 model

Hermele, Fisher, Balents, PRB '04Iqbal, Hu, Thomale, Poilblanc, Becca, PRB ‘16;

Iaconis, CL, Halász, Balents, Scipost ‘18;

Wietek, Capponi, Läuchli, PRX ‘24…

Numerical 
evidence

Exact mapping 

𝑆𝑖
±~𝑒±𝑖 𝐴𝑖 , 𝑆𝑖

𝑧~ 𝐸𝑖  

Symmetry 
breaking 

order

Trivial 
paramagnet

Quantum spin 
liquid
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NaYbO2 : a promising candidate for Dirac spin liquid!

Bordelon, Kenney, CL, Hogan, Posthuma, Kavand, Lyu, Sherwin, Butch, Brown, Graf, 
Balents, Wilson

“… As a concrete example, we find 

that a DSL can be stable in a recently 

proposed candidate material, NaYbO2.”

Dirac spin liquid in triangular lattice magnet

NaYbO2



Anomaly matching for quantum spin ice
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UV

IR

Inversion   translation

(spinon) Translation    rotation

CL, Halász, Balents PRB ‘21

CL, Ye, arXiv:2410.03607

symmetry 
fractionalization

Pyrochlore lattice



Mathematics

For a crystallographic group G, we

• proved that the cohomology ring H*(G,F) is 

finitely generated;

• obtained the mod-2 cohomology ring H*(G,Z2); 

• obtained explicit 1-, 2-, and 3-cocycle functions;

• give a mathematical criterion for LSM anomalies;

• identified topological invariants for the cocycles.

32

CL, Ye, arXiv:2410.03607



Topological invariants
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CL, Ye, arXiv:2410.03607

Lattice Connection!Topological response

𝜑2(𝜆) 𝑔1, 𝑔2 ≔ ෍

cyc

𝜆 𝑔1, 𝑔2, 𝑔2

𝐶2
′

𝐶2
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Summary:

LSM theorems for 3D magnets

S=1/2 on high sym. pts. ⇒ no trivial paramagnet allowed

Topological crystalline responses

Crystalline defects carry free spin-1/2’s

Anomaly matching for quantum spin liquids

Stability of Dirac QSL in triangular compound NaYbO2

Symmetry fractionalization in U(1) QSL on pyrochlore

For Future:
Anomaly matching for more quantum spin liquids

Group cohomology -> Equivariant cohomology

Extending Lieb-Schultz-Mattis (hyperbolic, quasicrystal…)

Quantum 
magnetism

Topological 
physics

Crystallography

Magnetic
order

Trivial 
paramagnet

Nontrivial 
paramagnet

Group Cohomology
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