Characterizing 3D quantum paramagnets with Lieb-Schultz-Mattis constraints

arXiv:2410.03607

Chunxiao Liu UC Berkeley

LPTMC Nov 19, 2024

arXiv:2410.03607

Crystallography, Group Cohomology, and Lieb–Schultz–Mattis Constraints

Chunxiao Liu¹ and Weicheng Ye^2

¹Department of Physics, University of California, Berkeley, California, USA 94720^{*} ²Department of Physics and Astronomy, and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z1[†]

Weicheng Ye (U of British Columbia)

Two main themes of my research:

1. Quantum magnetism in lattice spin systems (Since my PhD in 2015)

2. Topological phases of matter (Since my Postdoc in 2021)

In this talk, I will tell my efforts to study 1 using 2.

Crystallography, Group Cohomology, and Lieb–Schultz–Mattis Constraints

Chunxiao Liu 1 and Weicheng Ye^2

Crystallographic group = Symmetry of crystals:

P1 (#1)	P1 (#2)	P2 (#3)	P2 ₁ (#4)	C2 (#5)	Pm (#6)	Pc (#7)	Cm (#8)	Cc (#9)	P2/m (#10)	P2 ₁ /m (#11)	C2/m (#12)	P2/c (#13)	P2 ₁ /c (#14)
			the						WAL	*2000-2000-0000000 *2000-2000-000000 *2000-2000-				帮帮帮 帮帮帮
Gilmarite	Chalcanthite	Thomasclarkite	Alloclasite	Dioxo-((5)-N-salicylider aminopyrrolidine)-vanad	ium(v) BaBe ₂	Si ₂ O ₇	Tashelgite	Gerstleyite	FeMo ₂ S ₄	Muthmannite	CaSb ₂	Augelite	Ferberite	B ₈ S ₁₆
C2/c (#15)	P222 (#16)	P222 ₁ (#17)	P2 ₁ 2 ₁ 2 (#18)	$P2_{1}2_{1}2_{1}(#19)$	C222 ₁ (#20)	C222 (#21)	F222 (#22)	/222 (#23)	/2 ₁ 2 ₁ 2 ₁ (#24)	Pmm2 (#25)	Pmc2 ₁ (#26)	Pcc2 (#2	.7)	Pma2 (#28)
					和政	*	4 94 9 194 9 194 9 19 9 19 9 19 9 19 9 1			*				
Jadeite	dichloridoplatinate	Cs ₂ O(B ₂ O ₃) ₉	La_3InS_6	NaAlCl ₄	K ₂ AgS	Godlevskite	NaAg(NO ₂) ₂	NaFeS ₂	(2R,3R)-2,3-butane	diol GaAs	Carbocernaite	thienyl)-thioph	iene	Krennerite
Pca21 (#29)	Pnc2 (#30)	Pmn2 ₁ (#31)	Pba2 (#32)	Pna21 (#33)	Pnn2 (#34)	Cmm2 (#3	5) Cmc2 ₁ (#36) Ccc2 (#37)) Amm2 (#3	38) Abm2	(#39) Ama2 (#	40) Abc2 (#4	1) F	mm2 (#42)
Cobaltite	Terskite	Enargite	Minyulite	Wakabayashilite	Li ₂ TiTeO ₆	KNbW ₂ O ₉	Spertiniite	2P-4	Ca ₂ Na ₂ (CC	D ₃) ₃ 2,5-bis(4-Bromot cyclopent	venzylidene)- anone LIBH4 (at 2.4 Gpa)			CH ₂ I ₂
Fdd2 (#43)	Imm2 (#4	(#45) Iba2	Ima2	(#46) Pmm	nm (#47) Pnnn	(#48) Pccm (#49	9) Pban (#50)	Pmma (#51)	Pnna (#52)	Pmna (#53)	Pcca (#54) Pban	n (#55) Pccn	(#56)	Pbcm (#57)
				11	王			iii iii			# \$	\$ 28	22 - S	
Edenharterite	AgNO ₂	Banalsite	Batis	ite Ta	40 (µ2-Oxo)-bis(Cl ₂ - imidazole)-oxo-ri	bis(1-H ₃ C- tenium(v) CsPr(MoO ₄) ₂ Retzian	BaThBr ₆	SnWO ₄	FeNbTe ₂	AgClO ₂ Reir	nerite Valer	tinite	BaTiOF ₄
Pnnm (#58)	Pmmn (#59) Pl	bcn (#60) Pbca (#61) Pnma (#62	2) Cmcm (#63)	Cmca (#64) Cn	nmm (#65) Cccr	n (#66) Cmma (#67	7) Ccca (#68)	Fmmm (#69) Fddd	d (#70) Immm (#	71) <i>Ibam</i> (#72	e) Ibca (#7	73) Imi	na (#74)
$CU(NH_3)_4(NO_3)_2$	Pasavaite	LUND ₂ O ₆ Hambe	rgite Avogadrite	rerruccite	runualite	ivigvO ₃ Cordie	rite Johachidolite	wagnesiocarpholi	te La2NIO4.15 Thena	araite VNi ₂	Leningradit	e Chesnoko	ovite W	eperite

Frank Hoffmann, The Space Group List Project

Symmetry in physics	SSB 1	Symmetric 1
Symmetry in physics	SSB 2	Symmetric 2
	SSB 3	Symmetric 3
	SSB 4	
Q: Group Theory 2.0? • Symmetry classifies phases	Symmetry breaking	Symmetry preserving
	Group Theory 1.0	Group Theory 2.0

Q: crystalline symmetries?

• Symmetry and response

$$\mathcal{L}_0 \to \mathcal{L}_0 - A_\mu j^\mu$$

Q: consistency principle?

• Choice of symmetry depends on the theory

Translation
$$\rightarrow Z_2: \phi \rightarrow -\phi$$

arXiv:2410.03607

Group Theory 2.0 Crystallography, Group Cohomology, and Lieb–Schultz–Mattis Constraints

Chunxiao Liu¹ and Weicheng Ye^2

Main results

A correspondence between high symmetry points in crystals and their topological data.

	Wyckoff	Little		ISM anomaly along) $\subset H^3(C,\mathbb{Z}_2)$	Topological	
	position	group	Coordinates	LOW anomaly class $\lambda \in \Pi^{-}(G, \mathbb{Z}_2)$	invariant	
F222 (#22)	1a	D_2	(0, 0, 0)	$(A_c + A_{c'} + A_x)(A_c + A_y)(A_{c'} + A_z)$	$\varphi_2[C_2, C_2']$	
2 P P P P	1b	D_2	(1/2, 0, 0)	$A_x(A_c + A_y)(A_{c'} + A_z)$	$\varphi_2[T_1C_2, T_1C_2']$	
	1c	D_2	(0, 1/2, 0)	$(A_c + A_{c'} + A_x)A_y(A_{c'} + A_z)$	$\varphi_2[T_2C_2, C_2']$	
111 31	1d	D_2	(0, 0, 1/2)	$(A_c + A_{c'} + A_x)(A_c + A_y)A_z$	$\varphi_2[C_2,T_3C_2']$	
Section 1	$1\mathrm{e}$	D_2	(1/2, 1/2, 0)	$A_x A_y (A_{c'} + A_z)$	$\varphi_2[T_1T_2C_2, T_1C_2']$	
of a of of a	$1 \mathrm{f}$	D_2	(1/2, 0, 1/2)	$A_x(A_c + A_y)A_z$	$\varphi_2[T_1C_2, T_1T_3C_2']$	
	1g	D_2	(0, 1/2, 1/2)	$(A_c + A_{c'} + A_x)A_yA_z$	$\varphi_2[T_2C_2, T_3C_2']$	
	1h	D_2	(1/2, 1/2, 1/2)	$A_x A_y A_z$	$\varphi_2[T_1T_2C_2, T_1T_3C_2']$	
		Y		— — — — — — — — — —	Y	
	l	attice	data	Iopological data	Connection!	
				Group Theory 2.0		

7

<u>Plan of talk</u>

Quantum magnetism

• a phase diagram

Lieb-Schultz-Mattis (LSM) theorems

- a history
- new results in 3D

LSM and topological responses

- crystalline fields and responses
- case study: QSLs

Quantum magnetism

P.Anderson, F.D.M.Haldane

Quantum paramagnetism

- A trivial paramagnet = <u>a unique</u>, symmetric, <u>short-range entangled</u>, gapped ground state.
- A nontrivial paramagnet is its complement (so has <u>long-range entanglement</u>).

Q: When can a trivial paramagnet exist at T = 0?

<u>Plan of talk</u>

Quantum magnetism

• a phase diagram

Lieb-Schultz-Mattis (LSM) theorems

- a history
- new results in 3D

LSM and topological responses

- crystalline fields and responses
- case study: QSLs

(When a **trivial paramagnet** cannot exist)

Original Lieb-Schultz-Mattis (LSM) Lieb, Schultz, Mattis, Ann. Phys. '61

<u>Thm</u>. In a spin chain with translation symmetry and on-site SO(3) symmetry. If there are odd numbers of spin-1/2's per unit cell, then the ground state cannot be a trivial paramagnet.

(unique, symmetric, gapped ground state)

Flux threading argument

Oshikawa, PRL '00; Hastings, PRB '04

Ground states before/after flux threading differ in crystal momentum:

LSM – a history

Lieb, Schultz, Mattis, Ann. Phys. '61

Oshikawa, PRL '00; Hastings, PRB '04

Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson, PRX '16 Po, Watanabe, Jian, Zaletel, PRL '17

> Else, Thorngren, PRB '20 Ye, Guo, He, Wang, Zou, Scipost '22

> > Our work!

d=1: translation LSM

All d: translation LSM

d=2: translation topological responsed=2: all lattice symmetry LSM

General theory of topological response

d=2: all lattice symmetry topological response

d=3: all lattice symmetry LSM & topological response

LSM for 2D lattice magnets

Theorem (LSM in 2D).

Po, Watanabe, Jian, Zaletel, PRL '17

Assume the magnet preserves lattice x SO(3) symmetry. No trivial paramagnetic ground state can exist if the lattice has an odd number of spin- $\frac{1}{2}$'s

1. per <u>2d unit cell*</u>, or

Translation, screw, glide

- 2. per <u>1d unit cell</u> defined by translation along a mirror axis, or
- 3. at a C_2 rotation center.

Direct application:

- 1. The S=1/2 J_1 - J_2 model on the triangular lattice cannot be a trivial paramagnet.
- 2. A S=1/2 trivial paramagnet exists on the honeycomb lattice.

Kim, Lee, Jiang, Ware, Jian, Zaletel, Han, Ran, PRB '16

The complete LSM theorems in 3D

CL, Ye, arXiv:2410.03607

Theorem (LSM in 3D).

Assume the magnet preserves lattice x SO(3) symmetry. No trivial paramagnetic ground state can exist if the lattice has an odd number of spin-1/2's

- 1. per 3d unit cell*, or
- 2. per 2d unit cell* on a mirror plane, or
- 3. per **1d unit cell** along a C_2 axis, or
- 4. intersection of two C_2 axes, or
- 5. at a 3D inversion center.

3.

5.

2.

4.

3D LSM – application

CL, Ye, arXiv:2410.03607

1. The S=1/2 Heisenberg/XXZ model on the diamond lattice cannot be a trivial paramagnet.

2. The S=1/2 Heisenberg/XXZ model on the pyrochlore lattice cannot be a trivial paramagnet.

arXiv:2410.03607

Wyckoff	Little	Coordinates	LSM anomaly class $\lambda \in H^3(G, \mathbb{Z}_2)$	Topological	
position	group	Coordinates	Low anomaly class $\lambda \in \Pi^{-}(G, \mathbb{Z}_2)$	invariant	
1a	D_2	(0, 0, 0)	$(A_c + A_{c'} + A_x)(A_c + A_y)(A_{c'} + A_z)$	$\varphi_2[C_2, C_2']$	
1b	D_2	(1/2, 0, 0)	$A_x(A_c + A_y)(A_{c'} + A_z)$	$\varphi_2[T_1C_2, T_1C_2']$	
1c	D_2	(0, 1/2, 0)	$(A_c + A_{c'} + A_x)A_y(A_{c'} + A_z)$	$\varphi_2[T_2C_2, C_2']$	
1d	D_2	(0, 0, 1/2)	$(A_c + A_{c'} + A_x)(A_c + A_y)A_z$	$\varphi_2[C_2, T_3C_2']$	
1e	D_2	(1/2, 1/2, 0)	$A_x A_y (A_{c'} + A_z)$	$\varphi_2[T_1T_2C_2, T_1C_2']$	
$1\mathrm{f}$	D_2	(1/2, 0, 1/2)	$A_x(A_c + A_y)A_z$	$\varphi_2[T_1C_2, T_1T_3C_2']$	
$1\mathrm{g}$	D_2	(0, 1/2, 1/2)	$(A_c + A_{c'} + A_x)A_yA_z$	$\varphi_2[T_2C_2, T_3C_2']$	
1h	D_2	(1/2, 1/2, 1/2)	$A_x A_y A_z$	$\varphi_2[T_1T_2C_2, T_1T_3C_2']$	
	Y				

Lattice data

<u>Plan of talk</u>

Quantum magnetism

- a phase diagram
- Lieb-Schultz-Mattis (LSM) theorems
- a history
- new results in 3D

LSM and topological responses

- crystalline fields and responses
- case study: QSLs

Crystallography, Group Cohomology, and Lieb–Schultz–Mattis Constraints

Chunxiao Liu¹ and Weicheng Ye^2

Topological response theory to crystalline symmetries!

Response theory – a crash course

In a charge transport experiment:

Formally:

- Fixed total charge
- Apply an electric field
- Attach leads (source & drain)
- Measure current
- Quantized conductivity

- U(1) symmetry
- Couple with a U(1) gauge field
- Perturb U(1) symmetry
- Write down response theory
- Topological response

For every symmetry there is a response theory. To study response, need to first break that symmetry!

Apply a translation gauge field

= introducing a dislocation.

Origin of gauge freedom: coordinates label up to integers

$$\partial_i u_j(\vec{r}) \to \partial_i u_j(\vec{r}) - \frac{a}{2\pi} R_{ij}(\vec{r}) \qquad \frac{1}{2\pi} R_{ij} \in \mathbb{Z}$$

Dislocation = flux of the translation gauge field.

 $\oint_{\gamma} \vec{R}$ gives the Burgers vector for dislocations contained in γ .

Burgers vector for dislocation associated with broken T_y

Manjunath, Barkeshli, PRR '21; *Field Theory of Multiscale Plasticity*, Hasebe, '23

Crystalline response – 1D example

Boundary can have a (free) spin-1/2:

Burgers vector associated with broken T_x

Symmetry: $\mathbb{Z} \times SO(3)$

1D LSM can be reformulated as a crystalline response theory:

In a spin-1/2 chain with translation x SO(3) symmetry, a dislocation (boundary) binds a spin-1/2.

Written as

$$Z_{1\mathrm{D}} = e^{i\pi \int_{\mathcal{M}_3} A_x \cup \omega_2^{\mathrm{spin}}}$$

This complements the flux threading argument:

SO(3) defect binds crystal charge! (=flux) (=momentum)

Crystalline response – 2D example

 $\mathbb{Z}^2 \times SO(3)$

Wang, CL, Lu, PRB '24

2D LSM can be reformulated as a crystalline response theory:

In a 2D lattice magnet with spin-1/2 and translation x SO(3) symmetry, fusing four dislocations leaves no dislocations behind, but traps a spin-1/2.

Written as

$$Z_{2\mathrm{D}} = e^{i\pi \int_{\mathcal{M}_4} A_x \cup A_y \cup \omega_2^{\mathrm{spin}}}$$

Bulk-boundary correspondence for quantum paramagnets

A nontrivial paramagnets in **d** dim can exist at the boundary of certain **trivial** paramagnet in **d+1** dim.

Nontrivial in *d* spatial dim

P.Anderson, F.D.M.Haldane

Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson, PRX '16; Else, Thorngren, PRB '20

Topological crystalline response – general theory

Global symmetry: $G \times SO(3)$

(Group Theory 1.0)

$$Z = e^{i\pi \int_{\mathcal{M}_{d+2}} \lambda \cup \omega_2^{\text{spin}}}$$

(Group Theory 2.0)

$$\lambda \in H^d(G, \mathbb{Z}_2)$$
 S=1/2 or S=1

Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson, PRX '16; Else, Thorngren, PRB '20

<u>Plan of talk</u>

Quantum magnetism

• a phase diagram

Lieb-Schultz-Mattis (LSM) theorems

- a history
- new results in 3D

LSM and topological responses

- crystalline fields and responses
- case study: QSLs

Quantum spin liquids

Triangular lattice S = $\frac{1}{2} J_1 - J_2$ model	UV	Pyrochlore lattice S = ½ XXZ model
Numerical evidence		Exact mapping $S_i^{\pm} \sim e^{\pm i A_i}$, $S_i^z \sim E_i$
Dirac spin liquid (2+1D QED3)	IR	Quantum spin ice (3+1D Maxwell)

Iqbal, Hu, Thomale, Poilblanc, Becca, PRB '16; Iaconis, **CL**, Halász, Balents, Scipost '18; Wietek, Capponi, Läuchli, PRX '24... Hermele, Fisher, Balents, PRB '04

Dirac spin liquid in triangular lattice magnet

29 July 2019

$Field-tunable\,quantum\,disordered\,ground\,state\,in\,the\ triangular-lattice\,antiferromagnet\,NaYbO_2$

Bordelon, Kenney, CL, Hogan, Posthuma, Kavand, Lyu, Sherwin, Butch, Brown, Graf, Balents, Wilson

SciPost Phys. 13, 066 (2022)

Topological characterization of Lieb-Schultz-Mattis constraints and applications to symmetry-enriched quantum criticality

Weicheng Ye^{1,2}, Meng Guo^{1,3}, Yin-Chen He¹, Chong Wang¹ and Liujun Zou¹

"... As a concrete example, we find that a DSL can be stable in a recently proposed candidate material, NaYbO₂."

NaYbO₂: a promising candidate for Dirac spin liquid!

0.582nm

Anomaly matching for quantum spin ice

Mathematics

CL, Ye, arXiv:2410.03607

For a crystallographic group G, we

- proved that the cohomology ring H*(G,F) is finitely generated;
- obtained the mod-2 cohomology ring H*(G,Z₂);
- obtained explicit 1-, 2-, and 3-cocycle functions;
- give a mathematical criterion for LSM anomalies;
- identified topological invariants for the cocycles.

C (S https://gap-packages.github.io/hap/tutorial/chap8_mj.html

8.6-2 Mod 2 cohomology rings of 3-dimensional crystallographic groups

<pre>gap> SpaceGroupCohomologyRingGapInterface(30);</pre>
Mod-2 Cohomology Ring of Group No. 30: Z2[Ac,Am,Ax,Bb]/ <r2,r3,r4> R2: Ac.Am Am² Ax²+Ac.Ax R3: Am.Bb R4: Bb²</r2,r3,r4>
LSM: 2a Ac.Bb+Ax.Bb 2b Ax.Bb true

Topological invariants

CL, Ye, arXiv:2410.03607

Wyckoff	Little	Coordinates	ISM anomaly class) $\in H^3(G,\mathbb{Z}_2)$	Topological				
position	group	Coordinates	Low anomaly class $\lambda \in \Pi^{-}(G, \mathbb{Z}_2)$	invariant				
1a	D_2	(0, 0, 0)	$(A_c + A_{c'} + A_x)(A_c + A_y)(A_{c'} + A_z)$	$\varphi_2[C_2, C_2']$				
1b	D_2	(1/2, 0, 0)	$A_x(A_c + A_y)(A_{c'} + A_z)$	$\varphi_2[T_1C_2, T_1C_2']$				
1c	D_2	(0, 1/2, 0)	$(A_c + A_{c'} + A_x)A_y(A_{c'} + A_z)$	$\varphi_2[T_2C_2, C_2']$				
1d	D_2	(0, 0, 1/2)	$(A_c + A_{c'} + A_x)(A_c + A_y)A_z$	$\varphi_2[C_2,T_3C_2']$				
$1\mathrm{e}$	D_2	(1/2, 1/2, 0)	$A_x A_y (A_{c'} + A_z)$	$\varphi_2[T_1T_2C_2, T_1C_2']$				
$1 \mathrm{f}$	D_2	(1/2, 0, 1/2)	$A_x(A_c + A_y)A_z$	$\varphi_2[T_1C_2, T_1T_3C_2']$				
$1\mathrm{g}$	D_2	(0, 1/2, 1/2)	$(A_c + A_{c'} + A_x)A_yA_z$	$\varphi_2[T_2C_2, T_3C_2']$				
$1\mathrm{h}$	D_2	(1/2, 1/2, 1/2)	$A_x A_y A_z$	$\varphi_2[T_1T_2C_2, T_1T_3C_2']$	$\varphi_2(\lambda)$			
1			λ ,					
Lattice Topological response Connection!								

$$\lambda_2(\lambda)[g_1,g_2] \coloneqq \sum_{\text{cyc}} \lambda(g_1,g_2,g_2)$$

arXiv:2410.03607

Summary:

LSM theorems for 3D magnets

S=1/2 on high sym. pts. \Rightarrow no trivial paramagnet allowed

Topological crystalline responses

Crystalline defects carry free spin-1/2's

Anomaly matching for quantum spin liquids

Stability of Dirac QSL in triangular compound NaYbO₂

Symmetry fractionalization in U(1) QSL on pyrochlore

For Future:

Anomaly matching for more quantum spin liquids Group cohomology -> Equivariant cohomology

Extending Lieb-Schultz-Mattis (hyperbolic, quasicrystal...)

