

Fractional statistics of anyons in a mesoscopic collider

Electron optics experiments in quantum Hall conductors

Single-particle vs two-particle interferometry

Optics: E(t)

Single particle interferometer

 $G^{(1)}(\mathbf{t}+\tau,t) \propto \langle E(t+\tau)E(t)\rangle$

Coherence of electric field

Two-particle interferometer

 $\left< I_3(t+\tau) I_4(t) \right>$

 $\propto \langle E_1(t+\tau)E_1(t)\rangle\langle E_2(t+\tau)E_2(t)\rangle$

Product of coherences HBT interferometry (no correlations between sources)

The quantum Hall effect

LPENS LABORATOIRE DE PHYSIQUE LABORATOIRE DE PHYSIQUE

Single and two particle interferometers in quantum Hall conductors

Electron optics experiments in quantum Hall conductors

Current correlations $\langle \delta I_3(t) \delta I_4(t') \rangle$

Two-particle interferometry

H. Bartolomei, M. Kumar et al., Science 368 173 (2020)

Electrical current $\langle I(t) \rangle$

Single-particle interferometry

J. Nakamura, S. Liang, G.C. Gardner, M.J. Manfra, Nature Physics **16** 931 (2020).

DEDUCTOR DE PHYSIQUE LABORATOIRE DE PHYSIQUE random partition noise and charge measurement

Binomial law:
$$\langle \Delta N_T^2 \rangle = T(1-T) N_0$$

 $\langle \Delta I_T^2 \rangle = \frac{q^2}{T_{meas}^2} \langle \Delta N_T^2 \rangle = \frac{qT(1-T)I_0}{T_{meas}} \equiv \langle \Delta I_{RP}^2 \rangle$

Current conservation: $I_T + I_R = I_0$

 $\left\langle \Delta I_T \Delta I_R \right\rangle = -\left\langle \Delta I_T^2 \right\rangle$

M. Reznikov et al., Phys. Rev. Lett. **75**, 3340 (1995).A. Kumar et al., Phys. Rev. Lett. **76**, 2778 (1996).

LPENS $\nu = 2$: Two-particle interferometry with electrons

E. Bocquillon et al., Science **339**, 1054 (2013).

Bosonic case: the Hong-Ou-Mandel

experiment

Anyons and the Fractional Quantum Hall Effect (FQHE)

Each FQHE phase hosts a specific variety of anyons characterized by their fractional charge q and their fractional statistics φ

Halperin, PRL **52** 1583 (1984) Arovas, Schrieffer, Wilczek PRL **53** 722 (1984)

Review: Stern, Annals of Physics 323 204 (2008)

Symmetry of the wavefunction ψ under the exchange of two particles:

J.M.Leinaas, and J.Myrheim, Nuovo Cimento **B37**, 1-23 (1977).

G. A. Goldin, R. Menikoff, and D. H. Sharp, J. Math. Phys., **21** 650 (1980).

F. Wilczek, PRL 49, 957 (1982).

Symmetry of the wavefunction ψ under the exchange of two particles:

$$P_{1\to 2}\psi = e^{i\varphi} \psi$$

J.M.Leinaas, and J.Myrheim, Nuovo Cimento **B37**, 1-23 (1977).

G. A. Goldin, R. Menikoff, and D. H. Sharp, J. Math. Phys., **21** 650 (1980).

F. Wilczek, PRL 49, 957 (1982).

Symmetry of the wavefunction ψ under the exchange of two particles:

3D: Fermions and bosons

Path of particle 1 can be continuously deformed on the sphere to the reversed path : these two paths are topologically equivalent

2D: Fermions and bosons and anyons

In 2D, the trajectory of P₁ cannot be continuously deformed to the reversed path $P_{1\to 2}P_{1\to 2} = e^{i\theta} \mathbb{I}$

 φ can take any value: anyons

anyons keep a memory of braiding operations

J.M.Leinaas, and J.Myrheim, Nuovo Cimento **B37**, 1-23 (1977).

G. A. Goldin, R. Menikoff, and D. H. Sharp, J. Math. Phys., **21** 650 (1980).

F. Wilczek, PRL 49, 957 (1982).

Anyons and the Fractional Quantum Hall Effect (FQHE)

Each FQHE phase hosts a specific variety of anyons characterized by their fractional charge q and their fractional statistics ϕ

Halperin, PRL **52** 1583 (1984) Arovas, Schrieffer, Wilczek PRL **53** 722 (1984)

Review: Stern, Annals of Physics 323 204 (2008)

Transfer of electrons and anyons at the edge: the quantum point contact

C.L. Kane, M.P.A Fisher, edge state transport (1996)

Electron/anyon beam splitters: random partition noise and charge measurement

Binomial law:
$$\langle \Delta N_T^2 \rangle = T(1-T) N_0$$

$$\left\langle \Delta I_T^2 \right\rangle = \frac{q^2}{T_{meas}^2} \left\langle \Delta N_T^2 \right\rangle = \frac{qT(1-T)I_0}{T_{meas}} \equiv \left\langle \Delta I_{RP}^2 \right\rangle$$

Fractional case: q = e/3

L. Saminadayar et al., Phys. Rev. Lett. 79, 2526 (1997).

Electron/anyon beam splitters: random partition noise and charge measurement

Binomial law:
$$\langle \Delta N_T^2 \rangle = T(1-T) N_0$$

$$\left\langle \Delta I_T^2 \right\rangle = \frac{q^2}{T_{meas}^2} \left\langle \Delta N_T^2 \right\rangle = \frac{qT(1-T)I_0}{T_{meas}} \equiv \left\langle \Delta I_{RP}^2 \right\rangle$$

The anyon collider

H. Bartolomei et al., Science **368**, 173 (2020)

Random emission of particles: probabilities $T_1 = T_2 = T_S$

Poissonian limit, $T_S \ll 1$

Fano factor: $P = \frac{\langle \Delta I_3 \Delta I_4 \rangle}{\langle \Delta I_{RP}^2 \rangle}$ $\langle \Delta I_{RP}^2 \rangle = qT(1-T)I_+/T_{meas}$ Total input current: $I_+ = I_1^{in} + I_2^{in}$

PENS LABORATOIRE DE PHYSIQUE De L'ÉCOLE NORMALE SUPERIEURE Collider with random poissonian sources: classical model

LPENS LABORATOIRE DE PHYSIQUE LABORATOIRE DE PHYSIQUE De L'école NORMALE SUPÉRIEURE Collider with random poissonian sources: fermions/bosons

 $\Delta I_4 = 0 \underbrace{4}_{4}$

Boson bunching

$$\langle \Delta I_3 \Delta I_4 \rangle_B = \langle \Delta I_3 \Delta I_4 \rangle_{cl} - \alpha T_S^2$$

Fermion antibunching $\langle \Delta I_3 \Delta I_4 \rangle_F = \langle \Delta I_3 \Delta I_4 \rangle_{cl} + \alpha T_S^2$

 $\Delta I_3 = 0$

 T_{S}

LPENS Balanced collider, $I_{-} = 0$, electron case, $\nu = 2$

Balanced case: $I_1^{in} = I_2^{in}$

Integer case:
$$q = e$$
, fermions
 $v = 2, T = 0.4, T_S = 1$

LPENS Balanced collider, $I_{-} = 0$, electron case, $\nu = 2$

Balanced case: $I_1^{in} = I_2^{in}$

Integer case:
$$q = e$$
, fermions
 $\nu = 2, T = 0.4, T_S = 1$

LPENS Balanced collider, $I_{-} = 0$, electron case, $\nu = 2$

Balanced case: $I_1^{in} = I_2^{in}$

Integer case: q = e, fermions $v = 2, T = 0.4, T_S = 0.5$

H. Bartolomei, M. Kumar et al., Science **368** 173 (2020)

LPENS Balanced collider, $I_{-} = 0$, electron case, $\nu = 2$

Balanced case: $I_1^{in} = I_2^{in}$

Integer case: q = e, fermions $v = 2, T = 0.4, T_S = 0.5$

LPENS Balanced collider, $I_{-} = 0$, electron case, $\nu = 2$

Balanced case: $I_1^{in} = I_2^{in}$

Integer case:
$$q = e$$
, fermions
 $v = 2, T = 0.4, T_S = 0.3$

LPENS Balanced collider, $I_{-}=0$, electron case, $\nu=3$

Balanced case:
$$I_1^{in} = I_2^{in}$$

Integer case: q = e, fermions

$$\nu = 3, T = 0.4, T_S = \{1; 0.7; 0.3; 0.1\}$$

 $P(I_{-}=0)=0^{+}$ fermions

H. Bartolomei, M. Kumar et al., Science **368** 173 (2020)M. Ruelle et al., PRX **13**, 011031 (2023)

PENS Balanced collider, $I_1^{in} = I_2^{in}$, electron case, $\nu = 2$

Other experiment in F. Pierre and A. Anthore group

P. Glidic et al., Phys. Rev. X 13, 011030 (2023).

Balanced case: $I_1^{in} = I_2^{in}$

Fractional case:
$$q = e/3$$
, anyons
 $v = 1/3$, $T = 0.3$, $T_S = 0.05$

Balanced case:
$$I_1^{in} = I_2^{in}$$

Fractional case:
$$q = e/3$$
, anyons
 $\nu = 1/3$, $T = 0.3$, $T_S = 0.05$

Balanced case:
$$I_1^{in} = I_2^{in}$$

Fractional case:
$$q = e/3$$
, anyons
 $v = 1/3, T = 0.3, T_S = 0.15$

Balanced case:
$$I_1^{in} = I_2^{in}$$

Fractional case:
$$q = e/3$$
, anyons
 $\nu = 1/3$, $T = 0.3$, $T_S = 0.25$

-PENS Balanced collider, $I_1^{in} = I_2^{in}$, anyon case, $\nu = 1/3$

 $P(I_1^{in} = I_2^{in}) \approx -2 \text{ anyons } (T_S \ll 1)$

Two-particle interferometry and anyon tunneling

Weak backscattering regime: lowest order in tunneling $H_T = \zeta \psi_1^+ \psi_2 + \zeta^* \psi_2^+ \psi_1$

Two-particle interferometry and anyon tunneling

Weak backscattering regime: lowest order in tunneling $H_T = \zeta \psi_1^+ \psi_2 + \zeta^* \psi_2^+ \psi_1$

Two-particle interferometry and anyon tunneling

Weak backscattering regime: lowest order in tunneling $H_T = \zeta \psi_1^+ \psi_2 + \zeta^* \psi_2^+ \psi_1$

Fourier space and fermions:

$$\Gamma_{+} \propto \int_{-\infty}^{+\infty} d\varepsilon f_{1}(\varepsilon) [1 - f_{2}(\varepsilon)] \qquad \Gamma_{-} \propto \int_{-\infty}^{+\infty} d\varepsilon f_{2}(\varepsilon) [1 - f_{1}(\varepsilon)]$$

PENS Anyon tunneling at a QPC, single anyon emitted

Morel et al., PRB **105**, 075433 (2022), Lee et al., Nat. Commun. **13**, 6660 (2022) Mora, arXiv:2212.05123 (2022) Schiller et al., PRL **131** 186601 (2023)

PENS Anyon tunneling at a QPC, single anyon emitted

ENS Anyon tunneling at a QPC, single anyon emitted

Anyons in the bulk:

Anyons at the edge:

$$\hat{B}\psi = e^{i\theta}\psi$$

$$\psi_a^+(x)\psi_a^+(x') = e^{i\frac{\theta}{2}\operatorname{Sign}(x'-x)}\psi_a^+(x')\psi_a^+(x)$$

Anyon tunneling at a QPC, single anyon emitted

τ

Morel et al., PRB 105, 075433 (2022), Mora, arXiv:2212.05123 (2022) Lee et al., Nat. Commun. 13, 6660 (2022) Schiller et al., PRL 131 186601 (2023)

LPENS Anyon tunneling at a QPC, random anyon source

N(t, t') anyons incoming on the QPC between times t' and t

Schiller et al., PRL **131** 186601 (2023)

Anyon/Fermion collisions, $I_{-}/I_{+} \neq 0$

Single source, anyon case, $\nu = 1/3$

Lee et al., Nature 617, 277–281 (2023)

Conclusion 1

• Single particle interferometry

Fabry-Perot interferometer

J. Nakamura, S. Liang, G.C. Gardner, M.J. Manfra, Nature Physics **16** 931 (2020).

Mach-Zehnder interferometer

H.K. Kundu, S. Biswas, N. Ofek, V. Umansky, and M. Heiblum, Nature physics **19**, 515 (2023).

Experiments LPENS

M. Ruelle, H. Bartolomei, E. Frigerio, M. Kumar,

A. Marguerite, J.M Berroir, B. Plaçais, G. Ménard, G. Fève

Samples Fab, C2N Palaiseau

Y. Jin, Q. Dong, A. Cavanna, U. Gennser