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Einstein-Podolsky-Rosen (1935)
Can we assume quantum mechanics to be complete and get inconsistencies?

reality
Completeness: “any element of reality has a counterpart in the theory” @ theory
Fundamental works: Bohm-Aharonov (1957), Bell (1964),
(a selection) Clauser-Horne (1974), Aspect et al. (1982)

...led to proving the completeness of quantum mechanics.

If quantum mechanics is complete, no theory including the supposedly “hidden” variables to it
can reproduce all the predictions of quantum mechanics

Application: Discriminate what is intrinsically guantum trom what would be reproducible by classical physics
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Suppose that hidden-variable theories exist and formulate inequalities for them

..Experiment: Bell inequalities are violated by quantum mechanics!

Temporal Bell inequalities in
non-relativistic many-body physics

Bell inequalities contain time only implicitly...

Can we explicitly include time in Bell inequalities,
and use them to probe the time evolution of a many-body system?

Leggett-Garg (1985),

... Tononi-Lewenstein (today’s talk)
[Tononi, Lewenstein, arXiv:2409.17290]

Contributions by:
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
EPR: No.
EPR reasoning (simplified):
e Take two particles interacting only between T=0 and T=t
® The two-body wave function can be decomposed in eigenfunctions of the second particle
position:  ¥(xy, x2) = f ) ¢a(%2)02(x1)d%, or momentum: W¥(wi, %2)= f_ :%(xz)%p(xl)dp,

e We measure the first particle’s position (or momentum),
then the second particle collapses in the corresponding position (or momentum) eigenstates

e BUT, since the particles are in spatio-temporal disconnected regions,
the second particle cannot know if it should collapse is position or in momentum eigenstates

e = the second particle must have previous information on both position and momentum

e But this is impossible because they are non-commuting operators! PAR ADOX!



Bohm-Aharonov (1957)

(as quoted by Bell)

o ) o
A~ B

Spin singlet state: %(H>A X H>B — H>A ® |T>B)

Pair of particles moving in opposite directions:

A measures the spin in some direction and gets +1

= the spin of B in this direction is certainly -1



Bohm-Aharonov (1957)

(as quoted by Bell)

o ) o
A~ B

Spin singlet state: %(|T>A X H>B — H>A X |T>B)

Pair of particles moving in opposite directions:

A measures the spin in some direction and gets +1

= the spin of B in this direction is certainly -1

Since we can predict in advance the spin measured by B, its value must be pre-determined,
i.e. there must exist a more complete description than quantum mechanics



Bohm-Aharonov (1957)

(as quoted by Bell)

o ) o
A~ B

Spin singlet state: %(|T>A X H>B — H>A X |T>B)

Pair of particles moving in opposite directions:

A measures the spin in some direction and gets +1

= the spin of B in this direction is certainly -1

Since we can predict in advance the spin measured by B, its value must be pre-determined,
i.e. there must exist a more complete description than quantum mechanics

Solution of the “paradox”:

The quantum information of an entangled pair is not stored and retrievable locally.
Measuring one part means measuring the whole system!




Bell ( 1 964) From thought experiment... to experiment
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Beﬂ ( 1 964) From thought experiment... to experiment

He encoded the elements of reality not captured by quantum mechanics into hidden variables A

Assuming that the hidden-variables exist, the correlation function between two detectors’ axes

P(@,B) = [dXp(\)A(G,\)B(b,\) saisfies |P(d,b) — P(@,c)| <1+ P(b,¢)

Aspectetal. (1982)

Experimental Test of Bell's Inequalities Using Time-Varying
Analyzers

Alain Aspect, Jean Dalibard, and Gérard Roger
Phys. Rev. Lett. 49, 1804 — Published 20 December 1982

Correlations of linear polarizations of pairs of photons have been measured with time-varying

COINCIDENCE

MONITORING analyzers. The analyzer in each leg of the apparatus is an acousto-optical switch followed by two
linear polarizers. The switches operate at incommensurate frequencies near 50 MHz. Each analyzer
FIG. 1. Optical version of the Einstein-Podolsky- P X i P i ) _q ; _ y
Rosen-Bohm Gedankenexpeviment. The pair of photons amounts to a polarizer which jumps between two orientations in a time short compared with the photon
vy and v, is analyzed by linear polarizers I and II (in transit time. The results are in good agreement with quantum mechanical predictions but violate Bell's
orientations 4 and b) and photomultipliers. The coin- ) & R
cidence rate is monitored. inequalities by 5 standard deviations.

Other Bell-type inequalities were derived by Clauser-Horne-Shimony-Holt (CHSH, 1969),
and Clauser-Horne (CH, 1974)
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Clauser-Horne (1974)

Two observers named Alice and Bob A B
each one choosing to measure one of two possible observables: A A, B By
each observable with possible outcomes: T ]_ T ]_

Clauser & Horne derived the quantity:
I,y = p11(A1, B1) + p11(A1, B2) + p11(Az, B1) — p11(As, B2) — Pa(1|A1) — Pg(1|B4)

which can be quantiﬁed after many experimental repetitions.

/
For a hidden-variable theory: — ]. S I C S O

But quantum mechanics violates it!
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Bell-like inequalities explicitly featuring time...
Dynamics which can be described exclusively with quantum mechanics?

Measure the observable O , with outcomes - ]_ , at three time instances. The quantity:
K = (O(t1)O(t2)) + (O(t2)O(t3)) — (O(t1)O(t3))
satisfies (assuming macroscopic realism): — 3 S K S ]_

Also violated experimentally! < 14f

...~
= evidence against macroscopic realism o8l | Clsicalregion

1 1 1
0 T4 TR 37/4 T
Coin angle 6

[Robens et al. PRX 5, 011003 (2015)]
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How to formulate temporal Bell inequalities?

Alice measures at 0, Bob at T=t: C}dme eVOlutiOILO
A B(%)

...if the observers are causally-connected, the measurement probabilities are immediately
describable in terms of hidden-variable theories

To prevent A immediately “signaling” her measurement to B
we need some kind of “medium”:

- space-time separation (causality)

- amedium with finite velocity of propagation of quantum information

[Tononi, Lewenstein, arXiv:2409.17290]



Many body medium: a spin chain connecting Alice and Bob

S———0—0—0—0—0—¢—0—9
A B

The Finite Group Velocity
of Quantum Spin Systems

Elliott H. Lieb*

. Dept. of Mathematics, Massachusetts Institute of Technology
The propagatlon Of Cambridge, Massachusetts, USA
quantum information in a Derek W. Robinson**

Dept. of Physics, Univ. Aix-Marseille [, Marseille-Luminy, France

spin chain is limited by a
(Lieb-Robinson) bound:

Received May 15, 1972

Abstract. It is shown that if @ is a finite range interaction of a quantum spin
system, 7 the associated group of time translations, 1, the group of space translations,
and A, B local observables, then

lim |[tPz,(A),B]| e““=0
I¢] = w
|| >vl2|

whenever v is sufficiently large (v > V) where u(v) > 0. The physical content of the statement
is that information can propagate in the system only with a finite group velocity.
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A spin chain connecting an entangled Bell pair  |¢) = (|1); ® [y + 1411 ® 1) )/ V2

T=0" 00000

Alice measures her spin choosing between two possible measurements A A,

T=20 00000
A

The system evolves in time, then Bob chooses between B B

9 ¢
) )
h— o h\
3 o

4 ¢ ¢ < ¢ 9 < ¢
¢ o o ¢ o 3 ¢ o

B(t)

(Do




Temporal CH inequality: 0<Icg(t) <1

obtained from the CH inequality by adding the time dependence
to Bob’s operators (Heisenberg picture):
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obtained from the CH inequality by adding the time dependence
to Bob’s operators (Heisenberg picture):

Icu(t) = p11(A1, Ba(t)) + p—1-1(A1, Bi(t)) + p11(A2, B1(t)) — p11(Az2, Ba(t))

The probabilities of interest can be calculated analytically:

Pass, (Ai, Bj()) = ((07)[IATL 1A [4(07))
T =0 8) = (111 ® 1)y + W), ® 1)/ V2
T=0 bbbttt 12 = (14 a;A;)/2

B;(t
1T, W= (14 b;B;(t))/2




We consider the following operators:

A1:0'Z 14220'23 B1:(0'Z—|-O'x)/\/§ BQZ(O'Z—O'w)/\/E

Temporal CH inequality: 0 < Iy (t) <1

Icu(t) = p11(A1, Ba(t)) + p-1-1(A1, B1(t)) + p11(A2, B1(t)) — p11(Az, Ba(?))

t = 0, weknowthat Icg(0) = (14 +v/2)/2~1.207 > 1

t > (O, weneed to specify the system Hamiltonian
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XX Hamiltonian in transverse field

N-1 ;[; ;1; N VA
H = _7 i=1 ( Oip1 Tt J z+1) % Zi:l (Ui ™ 1i)’

admits an exact mapping to fermions

N-1
H:—JZ(fini+1‘|‘ _|_1fz) ,U’Zf fz
1=1

— Z GkC};Ck, €r = —2JA\p — 1 A = cos k
o km = mm/(N + 1)

With this Hamiltonian, everything is analytical:

Ao =YX Gotfl Giul) = DV upupei

k=km,

wi = (~17 0 ) /IS, UZ WY Ujo1(Ae) = sin(jk)/ sin(k)



Analytical solution

Putting all together, after many calculations, we find:

I3 (8) = 3 + “2{IGwn ()] + [Gin (t)* + Re[Gan ()]},

an analytical function of N tJ M / J



Dynamics of the temporal CH inequality 0 < Iog(t) <1
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Violation of the temporal CH inequality at small time:

0.2l — N=3 — N=4 — N=5
0.0F--m-mmmmmee S s S o SN v
o 5 10 15 20
tJ

Breaking revivals at larger times

(they are less frequent as one approaches the thermodynamic limit of infinite chain)
[Tononi, Lewenstein, arXiv:2409.17290]
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From proving the completeness of quantum mechanics to practical applications

Can we explicitly include time in Bell inequalities,
and use them to probe the time evolution of a many-body system?

— Alice measures at T=0, Bob measures at T=t!

Problem: how to prevent the immediate spreading of quantum information?

Solution: connect Alice and Bob spins with a spin chain, where quantum information
spreads with a finite velocity (Lieb-Robinson bound)

Results:

1) The dynamics of the Clauser-Horne temporal inequality is analytical

2) The quantum correlations survive for a finite time interval
between Alice and Bob measurements!

3) Speed of light — model-dependent Lieb-Robinson bound, itself of physical interest

Thank you for your attention!



