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Systems at equilibrium

Consider a Stationary Driven System in contact with two reservoirs at
temperatures T1 and T2 (or chemical, or electric, potentials µ1, µ2).

R1

J

R2

• If T1 = T2 : Equilibrium Statistical Mechanics. The state of the
system, characterized by very few parameters, is determined by
optimizing the relevant thermodynamic potential and leads to an
equation of state.

This allows us to study phase transitions, universality classes,
statistical fluctuations (generically Gaussian).
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Systems near equilibrium

Consider a Stationary Driven System in contact with two reservoirs at
temperatures T1 and T2 (or chemical, or electric, potentials µ1, µ2).

R1

J

R2

When |T1 − T2| � T1 : A stationary current, breaking time reversal
invariance, sets in, proportional to the temperature gradient.

This flow of the current implies that entropy is continuously generated
and keeps on increasing with time.

The average value of the flux is given by a linear formula (Ohm’s Law)
and conductivity is determined by quadratic correlations at equilibrium
(Einstein-Kubo linear response theory): mobility = diffusivity/kT

Minimal Entropy Production Rate (Prigogine): an elegant way to
reformulate linear response theory.
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Systems far from equilibrium

Consider now a Stationary Driven System in contact with reservoirs at
different potentials: no microscopic theory is yet available.

R1

J

R2

• What are the relevant macroscopic parameters?

• Which functions describe the state of a system?

• Do Universal Laws exist? Can one define Universality Classes?

• Can one postulate a general form for the microscopic measure?

• What do the fluctuations look like (‘non-gaussianity’)?

In the steady state, a non-vanishing macroscopic current J flows.

What can we say about the non-equilibrium properties of
observables (e.g., current) from the point of view of Statistical
Physics?
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Static Equilibrium (Thermodynamic) Fluctuations

A system, at the molecular scale, keeps on evolving through various
microscopic configurations and a probabilistic description is required.
Thermodynamic observables x, such as energy, volume, particle number,
fluctuate around their average values.

Equilibrium fluctuations can be precisely quantified by inverting
Boltzmann formula (Einstein, 1906)

Ω ∼ e
S(x)
kB

Expanding the entropy around its maximum value leads to a definite
negative quadratic form. Fluctuations of the thermodynamic variables x
at a given time are Gaussian, governed by the Hessian matrix – 2nd
derivatives– of the entropy (cf. H. B. Callen’s book).
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Dynamical near-equilibrium fluctuations

We are now interested in correlations at at different times between
thermodynamic variables. The analysis of the time-series x(t) requires
the knowledge of constitutive relations, e.g., Fourier’s Law: jE = −λ∇T ,
where λ is the thermal conductivity.

More generally, near equilibrium, currents (or fluxes) can be written as
linear combinations of the gradients of the thermodynamic variables,
through a linear response matrix L.

In 1931, Onsager proved, using microscopic reversibility, that L is
(anti-)symmetric (Reciprocity relations).

Then, Onsager and Machlup (1953) showed that fluctuations in the
vicinity of equilibrium can be described by the following linear
Ornstein-Uhlenbeck dynamics:

ẋ = LAx+ ξ

with
〈ξ(t)ξ(t ′)〉 = 2Lδ(t − t ′)

Here, x(t) is the vector of thermodynamic variables, A the Hessian of the
Entropy and L Onsager’s matrix.
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The Onsager-Machlup Principle

Thanks to this stochastic Langevin dynamics, the statistics of the time
series of the thermodynamic observables x(t) can be probed near
equilibrium and multiple-time equilibrium correlations can be, in principle,
calculated.

More precisely, this yields a probability distribution for all possible time
evolutions of these observables in the linear response regime.

Indeed, Onsager and Machlup showed that the linear Ornstein-Uhlenbeck
dynamics satisfied by near equilibrium fluctuations is equivalent to the
following path-integral representation

Proba (x(t)) = exp

(

−1

4

∫ T

0

[ẋ− LAx]
T
L−1 [ẋ− LAx] dt

)

Dx(t)

Here x(t) is a vector of thermodynamic variables, A the Hessian of the
Entropy and L Onsager’s matrix.

As we shall see, the Macroscopic Fluctuation Theory can be viewed as a
non-linear generalization, far from equilibrium, of Onsager and Machlup’s
principle.
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Large deviations and

Macroscopic Fluctuation Theory

In Nature, many systems are far from thermodynamic equilibrium and
keep on exchanging matter, energy, information with their surroundings.
There is no general conceptual framework to study such systems.

K. Mallick Macroscopic Fluctuations in Non-Equilibrium Systems



Density Fluctuations

Consider a gas in a room, at thermal equilibrium. The probability of
observing a density profile ρ(x) takes the form:

Pr{ρ(x)} ∼ e
−βV F({ρ(x)}

What is F({ρ(x)}?

F({ρ(x)}) =
∫ 1

0

(f (ρ(x),T )− f (ρ̄,T )) d3x

Equilibrium Free Energy can be seen as a Large Deviation Function.
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Density Fluctuations

Consider a gas in a room, at thermal equilibrium. The probability of
observing a density profile ρ(x) takes the form:

Pr{ρ(x)} ∼ e
−βV F({ρ(x)}

What is F({ρ(x)}?

F({ρ(x)}) =
∫ 1

0

(f (ρ(x),T )− f (ρ̄,T )) d3x

Equilibrium Free Energy can be seen as a Large Deviation Function.

R1 R2

What is the probability of observing an atypical density profile in the
steady state? What does the functional F({ρ(x)}) look like for such a
non-equilibrium system?
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Large Deviations of the Total Current

R1

J

R2

Let Qt be the total charge transported through the system (integrated
total current) between time 0 and time t.

In the stationary state: a non-vanishing mean-current Qt

t
→ J

The fluctuations of Qt obey a Large Deviation Principle:

P

(

Qt

t
= j

)

∼e−tΦ(j)

Φ(j) being the large deviation function of the total current.

Note that Φ(j) is positive, vanishes at j = J and is convex (in general).
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The General Large Deviations Problem

R1 R2

J

The Probability to observe an atypical local current j(x , t) and the
density profile ρ(x , t) during 0 ≤ s ≤ L2 T (L being the size of the
system) assumes a Large Deviation behaviour

Pr{j(x , t), ρ(x , t)} ∼ e
−L I(j,ρ)

Knowing I(j , ρ), one could deduce the large deviations of the current and
of the density profile. For instance, Φ(j) = minρ{I(j , ρ)}.
Is there a Principle which gives this large deviation functional for
systems out of equilibrium?
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Hydrodynamic description of driven diffusive systems

E = ν/2L

ρ ρ
21

L

Starting from the microscopic level, local density ρ(x , t) and current
j(x , t) are defined for macroscopic space-time variables x = i/L, t = s/L2

(diffusive scaling). The typical, average, evolution of many diffusive
processes is described at hydrodynamic scale by

∂tρ(x , t) = −∇. j(x , t) = −∇. (−D(ρ)∇ρ+ σ(ρ)ν )

(De Masi, Ferrari, Kipnis, Lebowitz, Olla, Presutti, Spohn, Varadhan...)

The transport coefficients D(ρ) and σ(ρ) have to be extracted from
microscopic calculations.

Note that these equations are deterministic: there are no fluctuations.
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The MFT Principle

For such diffusive systems, the large deviation form of the probability to
observe a current j(x , t) and a density profile ρ(x , t) during a time T , is
given by

Pr{j(x , t), ρ(x , t)} ∼ e
− SMFT (j,ρ) ,

with

SMFT (j , ρ) =

∫ T

0

dt

∫ +∞

−∞

(j + D(ρ)∇ρ− νσ(ρ))
2
dx

2σ(ρ)

under the constraint ∂tρ = −∇.j
This is the MACROSCOPIC FLUCTUATION THEORY (MFT),
developed by L. Bertini, D. Gabrielli, A. De Sole, G. Jona-Lasinio and C.
Landim, from 2000’s on.

In the large time limit, T → ∞, this action will be dominated by its
saddle-points, found by optimizing it under problem-dependent
constraints.
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Heuristics: MFT from Fluctuating Hydrodynamics

Heuristically, this action SMFT results from the Langevin PDE

∂ρ

∂t
= − ∂j

∂x
with j = −D(ρ)

∂ρ

∂x
+ νσ(ρ) +

√

σ(ρ)ξ(x , t)

The transport coefficients, D(ρ) (bulk diffusivity) and σ(ρ) (conductivity)
must be determined at the level of microscopic physics.

Hereafter, there will be no external bias: ν = 0.

For symmetric exclusion, we have D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ)

The MFT can be seen as a generalization far from equilibrium, for driven
diffusive systems, of the Onsager-Machlup functional.
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The MFT Equations

The optimal Euler-Lagrange equations give, by a Legendre transform, a
Hamiltonian structure, by using a pair variables (ρ,H), conjugate to
(ρ, j), where ρ(x , t) is the density-field and H(x , t) is a conjugate
(‘momentum’) field.

In terms of these variables, the optimal equations are:

∂tρ = ∂x [D(ρ)∂xρ]− ∂x [σ(ρ)∂xH]

∂tH = −D(ρ)∂xxH − 1
2σ

′(ρ)(∂xH)2

with Hamiltonian H = σ(ρ)(∂xH)2/2− D(ρ)∂xρ∂xH.

The relevant information at macroscopic scale from the microscopic
dynamics is contained in the transport coefficients D and σ. Other
microscopic details are ‘blurred’ in this description.

In principle, large deviations can be calculated at the macroscopic level
by solving the full, time-dependent, MFT equations.
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Diffusivity and Conductivity of some lattices gases

• Independent particles: D = 1, σ = 2ρ

• Simple Exclusion Process: DSEP = 1, σSEP = 2ρ(1− ρ)

1 1 1 1 1

0
x

• Kipnis-Marchioro-Presutti model: DKMP = 1, σKMP = 2ρ2

• Repulsion Process (P. Krapivsky, 2015): Hops increasing the number of
nearest neighbour pairs are forbidden:

DRP =

{

1
(1−ρ)2 if 0 < ρ < 1

2
1
ρ2 if 1

2 < ρ < 1
σRP =

{

2ρ(1−2ρ)
1−ρ if 0 < ρ < 1

2
2(1−ρ)(2ρ−1)

ρ if 1
2 < ρ < 1
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• The MFT equations describe the non-equilibrium behaviour of many
diffusive interacting particle systems (dynamical transitions).

• Mathematical/Numerical difficulties: well-posedness; non-local
boundary conditions.

• Time-dependent equations were solved only in non-interacting case.
For many years, no analytic time-dependent solutions for the interacting
case were known.

• The only known exact results were obtained by using integrability
techniques (Bethe Ansatz) at the microscopic level.

• Recently, several solutions for closely related problems involving PDE’s
of optimal fluctuation paths were found: Krajenbrink and Le Doussal
(weak-noise KPZ), Grabsch, Poncet, Rizkallah, Illien and Bénichou
(Single File Systems), Bettelheim, Smith and Meerson (KMP), and
Moriya-M-Sasamoto (SEP).
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The macroscopic fluctuation theory generalizes the linear response
fluctuation theory of Onsager and Machlup (1953)

Unfortunately, solving these equations was not a straightforward task.
Exact results were first obtained at the microscopic level and, then,
coarse-grained.
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INTERACTING PARTICLE

SYSTEMS

K. Mallick Macroscopic Fluctuations in Non-Equilibrium Systems



Single-file diffusion

Single-file diffusion is an important phenomena soft-condensed matter
(for example, transport through cell membranes).
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The exclusion process

A pristine model for single-file diffusion is the Symmetric Exclusion
Process, in which particles perform continuous-time random walks with
hard-core (classical) exclusion interaction

1 1 1 1 1

0
x

This minimal model appears as a building block in many realistic studies
of 1d transport and studied extensively in biophysics, condensed matter,
polymer reptation, growth processes (KPZ equation), combinatorics,
probability and even traffic flow.
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The exclusion process: Classical Transport in 1d

A picture of a non-equilibrium system

R1

J

R2

A paradigm: the simple exclusion process

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

A building block in many realistic models of 1d transport and studied
extensively in probability, combinatorics, condensed matter physics...
Thousands of articles devoted to this model in the last 20 years.
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A solvable model: Integrability

One of the reasons that makes the exclusion process (and some variants)
so attractive and popular is that it is integrable.

A key observation was made Shlomo Alexander and, independently, by
Deepak Dhar in the eighties. The Markov matrix of the exclusion process
is identical to the Heisenberg Spin chain Hamiltonian:

M =

L
∑

l=1

(

S+
l S

−
l+1 + qS−

l S
+
l+1 +

1 + q

4
Sz
l S

z
l+1 −

1 + q

4

)

where S = (Sx , Sy , Sz) are the Pauli matrices (and q represents the
asymmetry of the jumps; q = 1 for symmetric walks).

Thus, the exclusion process can be solved using (quantum) integrability
methods (Bethe Ansatz).

The microscopic analysis of this interacting, non-equilibrium, N-body
process, can be carried out to extreme precision (B. Derrida, M. Evans,
J. Lebowitz, V. Hakim, D. Mukamel, G. Schütz, E. Speer, H. Spohn...).

A more physical approach, based on hydrodynamics, would be appealing.
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The Symmetric Exclusion Process (SEP) on Z.

Consider the Symmetric Exclusion Process, (p = q = 1) on Z with a
uniform finite density ρ of particles.

Suppose that we tag and observe a particle that was initially located at
site 0 and monitor its position Xt with time.

On the average 〈Xt〉 = 0 but how large are its fluctuations?

• If the particles were non-interacting (no exclusion constraint), each
particle would diffuse normally 〈X 2

t 〉 = Dt .

• Because of the exclusion condition, a particle displays an anomalous
diffusive behaviour: when t → ∞, we have

〈X 2
t 〉 ' 2

1− ρ

ρ

√

Dt

π
(Arratia, 1983)

The exact probability distribution of Xt remained unknown for almost 40
years.
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Large deviations of the total current in SEP

We now study the symmetric exclusion process, p = q = 1, on the
infinite line Z and start with with two-sided Bernoulli initial conditions
ρ− on the left, ρ+ on the right at t = 0.

Time integrated current QT = total number of particles that have
jumped from 0 to 1 minus the total number of particles that have
jumped from 1 to 0 during the time interval (0,T ).

O

×××

QT

• LDP for large T : Prob

(

QT√
T
= q

)

' exp[−
√
TΦ(q)].

• Cumulant Generating Function (Legendre Tr.): 〈eλQT 〉 ' e
√
Tµ(λ)

• In the continuous limit: QT =
∫∞
0

[ρ(x ,T )− ρ(x , 0)]dx

GOAL: Determine µ(λ) [or Φ(q)] + the associated profile ρ and
the conditioning momentum field H.
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The MFT equations for single-file diffusion

For the Simple Exclusion Process, DSEP = 1, σSEP = 2ρ(1− ρ). Hence,
in the MFT language, we must solve the coupled PDE’s

∂tρ = ∂x [∂xρ− 2ρ(1− ρ)∂xH]

∂tH = −∂xxH − (1− 2ρ)(∂xH)2

With non-local boundary condition:

H(x ,T )= λθ(x)

H(x , 0)= λθ(x) + log
ρ(x , 0)(1− ρ̄(x))

ρ̄(x)(1− ρ(x , 0))

where ρ̄(x) = ρ−θ(−x) + ρ+θ(x) is the mean-initial step profile.

From the optimal profile ρ∗ solving of this system, the CGF (and the rate
function) are obtained from

dµ

dλ
=

QT√
T

=

∫ ∞

0

[ρ∗(x ,T )− ρ∗(x , 0)]
dx√
T
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MACROSCOPIC FLUCTUATION THEORY

AND

INVERSE SCATTERING
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Quantum Mechanical Scattering

Consider, in Quantum Mechanics, a localized potential U(x) on which a
plane wave is scattered.

One solves the Schrödinger equation, with plane wave asymptotic states.
The scattering process can be characterized by the scattering amplitudes
(proportional to the reflection and transmission coefficients). They are
denoted by a(k), b(k), ā(k) and b̄(k).
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Recontruction by Inverse Scattering

The scattering amplitudes encode information about the potential U(x).
Ideally knowing a(k), b(k), ā(k) and b̄(k) (and information about bound
states if there are any) should allow us to reconstruct U(x).

This is the Inverse Scattering Problem: the potential is retrieved by
solving a linear integral equation, with kernels constructed from (the
Fourier-Transform of) the reflexion and transmission coefficients. Such
equations are known as the Gelfand-Levitan-Marchenko equations.

∗ ∗ ∗
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Inverse Scattering for Non-Linear Waves

Consider, as an example the KdV equation, a non-linear, dispersive, wave
equation:

∂tu − 6u∂xu + ∂xxxu = 0

with the initial condition u(x , 0) = U(x). This equation has an infinite
number of independent conserved quantities and solitary waves that
scatter in a ‘nice’ way. But it is a non-linear PDE!!

How can we determine u(x , t) the solution of such a non-linear wave
equation?
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Classical Integrability and Inverse Scattering Method

The Inverse Scattering Method (ISM) is the following:

1. Take the initial condition u(x , 0) = U(x) as a potential in the
Schrödinger equation. Solve the associated quantum-mechanical
scattering problem by determining the initial scattering amplitudes
a0(k), b0(k), ā0(k) and b̄0(k).

2. Now, consider the Schrödinger equation with potential u(x , t), where
u(x , t) is the (unknown) solution of KdV at a given, frozen, time t.

• Just by using the fact that u(x , t) satisfies KdV, one can prove,
without solving KdV, that the scattering amplitudes for the Schrödinger
equation with potential u(x , t) are related to the initial t = 0 scattering
amplitudes in a very simple manner:

a(k , t) = a0(k) and b(k , t) = b0(k)e
8ik3t

• The knowledge of the scattering amplitudes at any time t, allows you
to reconstruct u(x , t) by Inverse Scattering by solving a linear problem.
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ISM as a non-linear Fourier Transform

K. Mallick Macroscopic Fluctuations in Non-Equilibrium Systems



SOLVING MFT BY ISM: A chart of models
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A generalization of the Cole-Hopf mapping

The following novel non-local transformation

u(x , t) =

(

∂ρ

∂x
− ρ(1− ρ)

∂H

∂x

)

exp

[

−
∫ x

−∞
dy(1− 2ρ)∂yH

]

,

v(x , t) = −∂H
∂x

exp

[
∫ x

−∞
dy(1− 2ρ)∂yH

]

maps the MFT to the Ablowitz-Kaup-Newell-Segur (AKNS) system:

∂tu(x , t)= ∂xxu(x , t)− 2u(x , t)2v(x , t)
∂tv(x , t)= −∂xxv(x , t) + 2u(x , t)v(x , t)2

The boundary conditions transform also well (still non-local in time):

u(x , 0)= ωδ(x) and v(x ,T )= δ(x)

with ω = (eλ − 1)ρ−(1− ρ+) + (e−λ − 1)ρ+(1− ρ−)

K. Mallick Macroscopic Fluctuations in Non-Equilibrium Systems



Integrability of AKNS

The AKNS equations have an infinite number of conserved quantities in
involution. They are classically integrable in the sense of Liouville.

The AKNS equations can be solved by using the Inverse
Scattering Theory.

The Linear Scattering Problem associated to AKNS is a two-component
wave equation in which the unknown functions u(x , t) and v(x , t) play
the role of the scattering potentials:

{

∂
∂xψ1(x , t) = −ikψ1 + v(x , t)ψ2

∂
∂xψ2(x , t) = u(x , t)ψ1 + ikψ2

where ψ1 and ψ2 behave as plane waves at x = ±∞. (Here, t is simply a
parameter).

Remark: The AKNS equations are related to the NLS equation in imaginary

time (u → ψ and v → ψ∗).
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Solving MFT by Inverse Scattering

We wish to apply ISM to Simple Exclusion (MFT). However, we have
non-local boundary conditions (not Cauchy initial conditions):

u(x , 0)= ωδ(x) but v(x , 0) is unknown

v(x ,T )= δ(x) but u(x ,T ) is unknown

Then, integrability allows you match the scattering data at initial and
final times and to show that the half Fourier transform of the final profile

û±(k) =

∫

R∓

u(x ,T )e−2ikxdx

satisfies a scalar Riemann–Hilbert factorization problem:

(û+(k) + 1) (û−(k) + 1) = 1 + ωe−4k2T

where 1 + û± is analytic on the upper (respectively lower) complex plane,
with a given product along R. This is exactly the same equation that was
constructed by Grabsch, Poncet, Rizkallah, Illien and Bénichou.
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Optimal Profiles and Control Fields

The Riemann–Hilbert problem is solved by Cauchy Transform:

û±(k) + 1 = exp

[

−1

2

∞
∑

n=1

(−ωe−4k2T )n

n
erfc(∓i

√
4nTk)

]

Gathering all the pieces and going back to variables (ρ∗,H∗), solves the
MFT equations and explicit formulas for the optimal fields are obtained.

ρ(x,0)ρ(x,T)ρ-ρ+

-4 -2 0 2 4

0.2

0.4

0.6

0.8

x

ρ H(x,0)

H(x,T)

-4 -2 0 2 4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

H

Optimal profiles of ρ (left) and H (right) at t = 0 and at t = T , with
ρ+ = 1/3, ρ− = 2/3, λ = 1 and T = 1.
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Cumulant Generating Function of the current

Calculating the total current QT from the optimal profiles at t = 0 and
t = T yields the Cumulant Generating Function (CGF) of the current.

In the long time limit, 〈eλQT 〉 ' e
√
Tµ(λ), with

µ(λ) =
1√
π

∞
∑

n=1

(−1)n−1ωn

n3/2

where ω = (eλ − 1)ρ−(1− ρ+) + (e−λ − 1)ρ+(1− ρ−)

The CGF has been previously calculated at microscopic level using
combinatorial techniques (Derrida and Gershenfeld 2007, Imamura, M.
and Sasamoto 2017 and 2021). Microscopic and macroscopic approach
match perfectly.

Optimal profiles describing the dynamical evolution that generates a
given fluctuation – or a rare event – appear to be out of reach at
microscopic level but are found by solving the MFT.
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Conclusions

A major challenge in non-equilibrium physics is to determine the large
deviations, considered to be the relevant generalizations of the
thermodynamic potentials (Free Energy) far from equilibrium.

Interacting particle processes (such as the exclusion process) are ideal
toy-models to investigate these questions with a large variety of methods:

• Microscopic scale: Combinatorics, Matrix representation, Bethe Ansatz,
Integrable Probabilities...

• Coarse-grained level: hydrodynamic limits, fluctuating hydrodynamics
(SPDE), Macroscopic Fluctuation Theory for optimal paths (PDE)...

Finding explicit time-dependent solutions of the MFT has been a
challenge since this theory was proposed (2001).

These exact results are based on the Inverse Scattering Method, originally
developed to study for solitons and non-linear dispersive hydrodynamics.

Applications of the MFT framework to other fields (population dynamics,
turbulence) are very promising.
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The Kardar-Parisi-Zhang equation in 1d

The height of an interface h(x , t) satisfies the generic KPZ equation

∂h

∂t
= ν

∂2h

∂x2
+
λ

2

(

∂h

∂x

)2

+ ξ(x , t)

The Exclusion Process is a discrete version of the KPZ equation in
one-dimension.
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Finite time distribution of the tracer

The distribution function of the tracer Xt is given, at all times, in terms
of a Fredholm determinant:

P[Xt ≤ x ] =
∫

C0

dz
1−z

det(1 + ωKx,t)L2(C0)W0(z)

where

ω(z) = ρ+(z
−1 − 1) + ρ−(z − 1) + ρ+ρ−(z

−1 − 1)(z − 1)

Kt,x(ξ1, ξ2) =
ξ
|x|
1 eε(ξ1)t

ξ1ξ2 + 1− 2ξ2
with ε(ξ) = ξ + ξ−1 − 2

W0(λ) =
(

1 + ρε(z
−ε − 1)

)|x|
with ε = sgn(x)

The ω variable expresses fundamental symmetries of the model : parity
and time-reversal. (It appears recurrently in calculations for SEP).

The Kernel Kt,x originates from the Bethe Ansatz.

The function W0 carries ‘Poisson-like’ boundary conditions.

C0 is a small enough complex contour around 0 (poles from the
denominator of the kernel are excluded).
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Fredholm determinant (aparte)

Let K = (Kij) be a finite matrix. Then, the following expansion holds:

det(I + ωK ) =

1 + ω
∑

i

Kii +
ω2

2!

∑

i1,i2

∣

∣

∣

∣

Ki1i1 Ki1i2

Ki2i1 Ki2i2

∣

∣

∣

∣

+
ω3

3!

∑

i1,i2,i3

∣

∣

∣

∣

∣

∣

Ki1i1 Ki1i2 Ki1i3

Ki2i1 Ki2i2 Ki2i3

Ki3i1 Ki3i2 Ki3i3

∣

∣

∣

∣

∣

∣

+ . . .

For a compact trace-class operator with kernel K (x , y), we do the
following replacement (i.e. discretize)

∑

i

Kii →
∫

dx K (x , x)

∑

i1,i2

∣

∣

∣

∣

Ki1i1 Ki1i2

Ki2i1 Ki2i2

∣

∣

∣

∣

→
∫ ∫

dxdy

∣

∣

∣

∣

K (x , x) K (x , y)
K (y , x) K (y , y)

∣

∣

∣

∣

etc...
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Classical Integrability I: Lax Pair

The AKNS equations can be solved by using the Inverse Scattering
Theory, a method developed to study solitons and non-linear dispersive
equations (KdV, NLS, Sine-Gordon, LLE...).
Consider the following auxiliary linear problem (‘Lax pair’):

{

∂
∂xΨ(x , t) = U(x , t; k)Ψ(x , t)
∂
∂tΨ(x , t) = V (x , t; k)Ψ(x , t)

with ΨT (x , t) = (ψ1(x , t), ψ2(x , t)); U(x , t) and V (x , t) are the
matrices:

U=

(

−ik v(x , t)
u(x , t) ik

)

and V =

(

2k2 + uv 2ik v − ∂xv
2ik u + ∂xu −2k2 − uv

)

The compatibility of these equations, ∂t∂xΨ = ∂x∂tΨ, is ensured by the
zero curvature condition:

∂U

∂t
− ∂V

∂x
+ [U,V ] = 0

This will be ensured if the functions u and v satisfy the AKNS
system.
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Classical Integrability II: Scattering

We focus on the first equation of the pair. In components, it reads:
{

∂
∂xψ1(x , t) = −ikψ1 + v(x , t)ψ2

∂
∂xψ2(x , t) = u(x , t)ψ1 + ikψ2

This is nothing but a linear scattering problem on R, for any given value
of the time parameter t, in which the unknown functions u(x , t) and
v(x , t) (that solve AKNS) appear as potentials.

Because these potentials vanish at infinity, asymptotic states are
well-defined, and ψ1 and ψ2 behave as plane waves at x = ±∞.

Henceforth, incoming/outgoing plane waves from x → −∞

φ(x ; k) ∼
(

e−ikx

0

)

and φ̄(x ; k) ∼ −
(

0
e ikx

)

will scatter at x → +∞ as follows

φ(x ; k) ∼
(

a(k , t)e−ikx

b(k , t)e ikx

)

and φ̄(x ; k) ∼
(

b̄(k , t)e−ikx

−ā(k , t)e ikx

)

The functions a, ā, b, b̄ are the scattering amplitudes associated to this
scattering process.
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Classical Integrability III: Diagonalization

Using the second equation of the Lax pair, which describes the time
dynamics of Ψ and the asymptotic plane-wave expressions, the time
evolution of the scattering amplitudes is obtained explicitly:

a(k , t)= a(k , 0), b(k , t) = b(k , 0)e−4k2t

ā(k , t)= ā(k , 0), b̄(k , t) = b̄(k , 0)e4k
2t

Key feature: The dynamics drastically simplifies in terms of the
scattering amplitudes.

The scattering amplitudes are the action-angle variables of the dynamics.

If we know the scattering amplitudes at initial time, they can be
determined at all times. Then, the potentials u(x , t) and v(x , t) can be
reconstructed at any time by the inverse-scattering procedure
(Gelfand-Levitan-Marchenko).

The Inverse Scattering Method can be viewed as a Non-Linear
Fourier Transform.
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