FEW RESONANT ULTRACOLD BOSONS:

EFFECT OF BACKGROUND SCATTERING

Mattia Jona-Lasínio

LENS European Laboratory for Non-Linear Spectroscopy University of Florence

Ludovíc Prícoupenko

Laboratoire de Physique Théorique de la Matière Condensée

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Pierre and Marie Curie University (Paris)

Cold atoms team associated with

ABSTRACT

• (MOTIVATION): 3 identical bosons near a Feshbach resonance.

- \Leftrightarrow Efimov physics: taking into account the background scattering \implies beyond the universal theory.
- **Quantitative evaluation** of observables with a **'minimal' model**:

3-body inelastic losses, recombination, atom-dimer resonances...

Theorem 1 Theorem 1 Second Secon

- * Experiments on ¹³³Cs at Innsbrück:
- T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Naegerl , R. Grimm, Nature 440, 315-318.
- S. Knoop, F. Ferlaino, M. Mark, M. Berninger, H. Schoebel, H.-C. Naegerl, R. Grimm, arXiv:0807.3306
 - * Experiments on ${}^{39}\mathbf{K}$ at **Firenze** \longrightarrow c.f. POSTER of the group

\bullet (TOOL)

'Realistic' description of a Feshbach resonance \Leftrightarrow use a **2-channel model**.

CONTEXT

- Identical atomic bosons (mass m).
- Short range 2-body potential between atoms with a van der Waals tail

$$R_{\rm vdW} = \frac{1}{2} \left(\frac{\mu C_6}{\hbar^2}\right)^{1/4}$$

 ${ \ensuremath{\e$

\implies Background scattering length a_{bg} .

 $rac{Possibility of shape resonance (e.g. Cs atoms), characterized by$

$$|a_{\rm bg}| \gg R_{\rm vdW}.$$

- Feshbach resonance in the *s*-wave channel:
 - $\exists a s$ -wave **molecular state** \in a closed channel coupled with the continuum.
 - $<\!\!<\!\!<\!\!<\!\!<\!\!<\!\!<\!\!<\!\!$ Energy of the molecular state tuned by a magnetic field $\mathcal B$
 - \mathfrak{S} Resonance between the scattering states and the molecule at $\mathcal{B} = \mathcal{B}_0$

$$a = a_{\rm bg} \left(1 - \frac{\Delta \mathcal{B}}{\mathcal{B} - \mathcal{B}_0} \right)$$

a: scattering length $\Delta \mathcal{B}$: resonance width $\nu = \delta \mu (\mathcal{B} - \mathcal{B}_0)$: energy detuning

MODEL

CLOSED CHANNEL

OPEN CHANNEL

MOLECULAR STATE

ATOMIC STATE

- A: intensity of the (atomic pair) \leftrightarrow (molecule) coupling.
- g_0 : intensity of the direct coupling between two-atoms.
- b: of the order of the range of the interaction $\implies b \equiv O(R_{\rm vdW})$.
- $E_{\text{mol}} = \delta \mu (\mathcal{B} \mathcal{B}_0^{\text{cl}})$: energy of the molecular state $(\delta \mu$: difference of magnetic moment between the 2 channels).

 \implies 4 parameters adjusted on $\{R_{\rm vdW}, a_{\rm bg}, \nu, \delta\mu\Delta\mathcal{B}\}$

2-BODY PHYSICS: $\exists \neq$ type of Feshbach resonances

2 characteristic scales: $R^{\star} = \frac{\hbar^2}{ma_{bg}\delta\mu\Delta\mathcal{B}}$ & $E_{bg} = \frac{\hbar^2}{ma_{bg}^2}$ • (BROAD FESHBACH RESONANCE) $|\delta\mu\Delta\mathcal{B}| \gg E_{bg}$ \Rightarrow Large coupling between the 2 channels $\Leftrightarrow R^{\star} \ll |a_{bg}|$ \Rightarrow Shallow dimer a > 0 & $\frac{|\mathcal{B}_0 - \mathcal{B}|}{|\Delta\mathcal{B}|} \ll 1$: $E_{dim} \simeq \frac{\hbar^2}{ma^2}$ (threshold law). • (NARROW FESHBACH RESONANCE) $|\delta\mu\Delta\mathcal{B}| \ll E_{bg}$ \Rightarrow Small coupling between the 2 channels and $\Leftrightarrow R^{\star} \gg |a_{bg}|$ \Rightarrow Shallow dimer $E_{dim} = \frac{\hbar^2 q^2}{m}$ where $q \simeq \frac{-a + \sqrt{a^2 + 4R^{\star}(a - a_{bg})}}{2R^{\star}(a - a_{bg})}$.

• (NEARBY A SHAPE RESONANCE) $|a_{\rm bg}| \gg R_{\rm vdW}$

rightarrow For $a_{bg>0}$, interplay (Feshbach dimer) \leftrightarrow ('Background' dimer)

rightarrow Effective range approach unable to describe the interplay.

2-BODY PHYSICS: example of known resonances

• Broad resonance of ³⁹K ($\mathcal{B}_0 \sim 402 \text{ G}, \Delta \mathcal{B} = -52 \text{ G}$)

(data of the collisional model from A. Simoni)

• Resonance of of ¹³³Cs ($B_0 \sim -11.8 \text{ G}, a_{\text{bg}} \simeq 16.9 R_{\text{vdW}}$) \implies nearby a shape resonance

(data obtained in the experiments at Innsbrück)

-0.05

0

• Narrow resonance of ³⁹K ($B_0 \sim 752 \text{ G } \Delta \mathcal{B} = -0.4 \text{ G}$)

3-BODY PHYSICS: BOUND STATES

• Trimers of ¹³³Cs atoms for the resonance at $B_0 = -11.8$ G

Blue line: Dimers binding energy. Red dashed line: Trimers binding energy Green dashed line: Energy $\frac{\hbar^2}{mR_{\rm vdW}^2}$ Insert: scattering length as a function of \mathcal{B}

• Trimers of ³⁹K atoms for the resonance at $B_0 = 402$ G

rightarrow Efimov spectrum (log scale for the energy, linear scale for the detuning)

 $rac{2}{\sim}$ Efimov spectrum in log-log scale

 \rightarrow The first four Efimov states as a function of the detuning \rightarrow Dashed green line: dimer threshold.

rightarrow Desintegration of trimers into deep-bound states & Quality factor

- \rightarrow Probability $\mathcal{P}^{< b}$ that 3 atoms \in Volume $\sim b^3$
- \rightarrow Loss rate $\Gamma_{\text{loss}} = \frac{\hbar}{mb^2} \mathcal{P}^{<b}$
- \rightarrow Lifetime $\sim 1/\Gamma_{\rm loss}$
- \rightarrow Quality factor $Q = \frac{E^{\text{trim}} E_{\text{dim}}}{\hbar \Gamma_{\text{loss}}}$

3-BODY PHYSICS: Atom-dimer scattering

• s-wave atom-dimer scattering length as a function of the external magnetic field for the ³⁹K resonance at $B_0 = 402$ Gauss

 \rightarrow Appearance of first four Efimov states

CONCLUSIONS AND PERSPECTIVES

- A simple two channel model interprets and reproduces the features observed in present experiments on two- and three- body physics (³⁹K and ¹³³Cs).
- The background scattering is found to play an important role in realistic situations.
- Universal physics beyond the effective range model.
- Extension of the model to mixtures and also to Fermionic statistics.