RESONANT SCATTERING IN LOW DIMENSIONS

Ludovic Pricoupenko, Phys. Rev. Lett. 100, 170404

Laboratoire de Physique Théorique de la Matière Condensée

Pierre and Marie Curie University (Paris)

Cold atoms team associated with

pricoupenko@lptmc.jussieu.fr

ABSTRACT

• (MOTIVATION)

Reduced geometries and *l*-wave **resonant** 2-body scattering:

 $rac{}$ Fermions in quasi-1D trap: Fermi-Tonks Gas (l = 1)

M. Girardeau and E. M. Wright, Phys. Rev. Lett. **95**, 010406 (2005) \exists mapping: strongly interacting fermionic gas \equiv non interacting bosons

rightarrow Exotic superfluidity in 2D (l > 0)

V. Gurarie, L. Radzihovsky, and A. V. Andreev, Phys. Rev. Lett. $\mathbf{94},\,230403$ (2005).

\bullet (TOOL)

Short range potential \Rightarrow use the zero range approach.

• (<u>RESULTS</u>)

- For 1D and 2D atomic wave guides, determination of the scattering amplitude in high partial waves as a function of the 3D scattering parameters and of the atomic wave-guide frequency.
- $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\!$ Characterization of the Confinement Induced Resonances in high partial waves.

• (CONSEQUENCES)

- \backsim The finite width of the resonances is an essential parameter for describing the BEC-BCS transition in 1D and 2D fermionic gases.
- For spin polarized fermions in quasi-1D: strong constraints for achieving a Fermi-Tonks gas.

CONTEXT

- **Dilute phase** of particles (density *n*).
- Traps with **high aspect ratio**.
- Short range 2-body potential of radius $b \ (nb^3 \ll 1)$:

$$b \equiv \left(\frac{\mu C_6}{\hbar^2}\right)^{1/4} O(1)$$
 : of the order of the van der Waals range.

- Feshbach resonance in the *l*-wave channel
 - Resonance between the scattering state and a *l*-wave molecular state in the closed channel.
 - \circledast 2-body scattering amplitude f_l described in 3D with 2 parameters:

 $\left\{ \begin{array}{l} w_l \; : \mbox{generalized scattering length.} \\ \alpha_l \; : \mbox{generalized effective range} \to \mbox{linked to the width of the resonance.} \end{array} \right.$

$$f_l = -\frac{1}{g(k)k^{-2l} + ik}$$
 and $g(k) = \frac{1}{w_l} + \alpha_l k^2$ (1)

 \Leftrightarrow Molecular state tuned with a magnetic field $B \longrightarrow w_l \propto \frac{1}{B - B_0}$

PARAMETERS AT RESONANCE IN 3D

$$\bullet \ \boxed{l=0}$$

 $\gg w_0$: s-wave scattering length , $\alpha_0 = -r_e/2$, r_e : effective range. No specific constraint on r_e in general.

 $w_0 \gg b$: existence of a shallow bound state of energy $-\frac{\hbar^2}{2\mu w_0^2}$.

The **Unitary limit** $(f_0 = \frac{1}{ik} \quad \forall kb \ll 1)$ corresponds to the regime: $|w_0| \rightarrow \infty \quad \text{and} \quad \alpha_0 \equiv O(b)$

$$\bullet (l > 0)$$

- rightarrow Zero energy resonance for $|w_l| \gg b^{2l+1}$: existence of a shallow (quasi-)bound state of energy $-\frac{\hbar^2}{2\mu w_l \alpha_l}$.
- rightarrow Interaction on a compact support of radius b:

$$\alpha_l > \frac{(2l-3)!!(2l-1)!!}{b^{2l-1}} \tag{2}$$

L.P., PRA 73, 012701 (2006) \implies No possibility of unitary limit $(f_l = \frac{1}{ik} \quad \forall kb \ll 1).$ \implies Question:

"Consequences of Eq.(2) on the low-D scattering properties ?"

PRINCIPLE OF THE ZERO RANGE APPROACH

- 1) Wave function solution of the **non-interacting Schrödinger equa**tion for non vanishing interparticle distances $(r \neq 0)$.
- 2) Interaction replaced by a **contact condition as** $\mathbf{r} \to 0$: the wave function coincide with the real one outside the potential range.

Figure 1: Dotted line: radial wave function of a s-wave bound state in a square well of radius b. Solid line: radial wave function obtained in a zero-range approach. By construction, the outer parts (r > b) of the two wave functions coincide.

3) Contact condition constructed using Eq.(1) only:asymptotic 3D scattering states are eigenstates of the model.

ZERO RANGE APPROACH INCLUDING $l \ge 0$ CHANNELS

- Formulation in the **k**-representation \implies simplification of the calculations.
- 2 particles of reduced mass μ , energy $E = \frac{\hbar^2 q^2}{\mu}$, wave function $|\Psi\rangle$: $|\Psi\rangle = |\Psi_0\rangle + \frac{2\pi\hbar^2}{\mu} \sum_{l\geq 0} \int \frac{d^3\mathbf{k}}{(2\pi)^3} \frac{k^l \langle \mathbf{k} | \delta_\epsilon \rangle \left(\mathcal{R}_l \cdot \mathcal{S}_{l,\mathbf{k}}\right)}{\mathcal{H}_0 - E - i0^+} |\mathbf{k}\rangle,$ (3)
 - $\mathfrak{F} \mathcal{H}_0$: free Hamiltonian which includes the external potential.
 - $\Im |\Psi_0\rangle$ belongs to the kernel of $\mathcal{H}_0 E$: regular solution.
 - $\Im \lim_{\epsilon \to 0} \langle \mathbf{r} | \delta_{\epsilon} \rangle = \delta(\mathbf{r}).$ We choose here: $\langle \mathbf{k} | \delta_{\epsilon} \rangle = \exp(-k^2 \epsilon^2/4).$
 - $\ll (\mathcal{R}_l \cdot \mathcal{S}_{l,\mathbf{k}})$: contraction of two Symmetric Trace Free tensors of rank l.
 - $\mathfrak{S}_{l,\mathbf{k}}$: tensors appearing in the standard multipolar expansion

$$\mathcal{S}_{l,\mathbf{k}}^{[\alpha\beta\dots]} = \frac{(-1)^l}{(2l-1)!!} k^{l+1} \left(\partial_{k_\alpha}\partial_{k_\beta}\dots\right) k^{-1}$$

e.g.: $\mathcal{S}_2^{\alpha,\beta} = \frac{k^{\alpha}k^{\beta}}{k^2} - \frac{1}{3}\delta^{\alpha,\beta}$

 $\mathfrak{P} \mathcal{R}_l$ fixes the balance between the regular and irregular solutions of (3).

• Contact condition:

$$\operatorname{Reg}_{\epsilon \to 0} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} k^l \langle \mathbf{k} | \Psi \rangle \mathcal{S}_{l,\mathbf{k}} = -\frac{l! g_l(q) \mathcal{R}_l}{(2l+1)! \, !}$$

 \mathfrak{S} Reg: means the regular part of the integral obtained as $\epsilon \to 0$. $\epsilon \to 0$

SPIN POLARIZED FERMIONS IN 1D

$$\mathcal{H}_{0} = -\frac{\hbar^{2}}{2\mu} \Delta_{\mathbf{r}} + \frac{1}{2} \mu \omega_{\perp}^{2} \rho^{2} - \hbar \omega_{\perp}, \qquad (4)$$

- Interaction in the *p*-wave channel (Pauli)
- monomode regime $E < 2\hbar\omega_{\perp}$:

$$\langle \mathbf{r} | \Psi \rangle \stackrel{=}{\underset{|z| \gg a_{\perp}}{=}} \exp\left(-\rho^2/2a_{\perp}^2\right) \times \left[\exp(iqz) + \operatorname{sign}(z)f^{\operatorname{odd}}\exp(iq|z|)\right].$$
 (5)

$$f_p^{\text{odd}} \stackrel{=}{=} \frac{-iq}{\frac{1}{p} + iq + q^2 \xi_p},$$

$$l_p = 6a_{\perp} \left[\frac{a_{\perp}^3}{w_1} - 12\,\zeta(-\frac{1}{2})\right]^{-1}: \text{ odd-wave scattering length}$$
(6)

$$\xi_p = \frac{\alpha_1 a_\perp^2}{6}$$
: 1D *p*-wave effective range

 ${\ensuremath{\en$

$$|l_p| = \infty$$
 and $n\xi_p \ll 1$

Not satisfied in general because Eq.(2) gives $\alpha_1 > \frac{1}{b} \Longrightarrow \xi_p > \frac{a_{\perp}^2}{6b}$ e.g. ⁴⁰K, $\omega_{\perp} = 2\pi \times 70$ kHz and $\omega_z = 2\pi \times 10$ Hz at T = 0 K \Longrightarrow FTG for $N \ll 14$ atoms: few-body systems.

SCATTERING IN QUASI-2D

$$\Psi(\boldsymbol{\rho}) = \exp(-z^2/2a_z^2) \times \left[e^{i\mathbf{q}\cdot\boldsymbol{\rho}} - \frac{i}{4} \sum_{m=-\infty}^{m=\infty} i^m f^{[m]} H_m^{(1)}(q\rho) e^{im \angle(\boldsymbol{\rho},\mathbf{q})} \right]$$
$$f^{[m]} \propto_{q \to 0} \frac{q^{2m}}{(w_m^{-1} - w_m^{\star^{-1}})} \quad w_1^{\star} \simeq 5.39 \times a_z^3 \quad \text{and} \quad w_2^{\star} \simeq 1.3 \times a_z^5$$

- resonance shift \nearrow as $a_z \searrow$
- (quasi-) bound state energy: $E_b \sim -\hbar^2 (w_m^{-1} w_m^{\star -1})/(2\mu\alpha_m)$
- Scattering cross section $\sigma = |f_m|^2/4q$ resonant for $E \sim E_b$ \implies only in presence of a quasi-bound state.
- resonance width of the m-wave resonance:

$$\Delta E/E_b \propto (E_b/\hbar\omega_z)^{m-1}/(\alpha_m a_z^{2m-1}) \ll 1$$

• Exact expressions for the low energy behavior of $f^{[m]}$ induced by a 3D resonant *m*-wave interaction

e.g., for
$$m = 1$$
: $f^{[1]} = \frac{6\sqrt{\pi}q^2}{a_z} \left[g_1(q) + \frac{6}{a_z^3\sqrt{\pi}} J_1\left(\frac{E}{2\hbar\omega_z} + i0^+\right) \right]^{-1}$
for $m = 2$: $f^{[2]} = \frac{15\sqrt{\pi}q^4}{2a_z} \left[g_2(q) + \frac{60}{a_z^5\sqrt{\pi}} J_2\left(\frac{E}{2\hbar\omega_z} + i0^+\right) \right]^{-1}$

 J_m defined by $J_m(\tau) = \text{P.f.} \int_0^\infty du \, u^{-(m+1)} \exp(\tau u) [1 - \exp(-u)]^{-1/2}.$

PERSPECTIVES

• BEC-BCS crossover in the resonant quasi-1D spin-polarized fermionic gas: \implies many-body problem using the Λ -potential which reproduces Eq.(6):

$$\langle z | V_{\Lambda} | \phi \rangle = -\frac{\hbar^2 l_p}{2\mu (1 - \Lambda l_p)} \delta'(z) \lim_{\epsilon \to 0^+} (\Lambda + \partial_{\epsilon} - \xi_p \partial_{\epsilon}^2) \left[\psi_{1D}(\epsilon) - \psi_{1D}(-\epsilon) \right]$$

 $\forall \Lambda \in \mathbb{R}: \Lambda \text{ is a free parameter.}$

 \implies Equation of State and collective modes at $l_p = \infty$?

• BEC-BCS crossover in quasi-2D fermionic gases by varying $(w_m^{-1} - w_m^{\star -1})$ from positive to negative values