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ABSTRACT

e (MOTIVATION]

Reduced geometries and [-wave resonant 2-body scattering:

[0 Fermions in quasi-1D trap: Fermi-Tonks Gas (I = 1)
M. Girardeau and E. M. Wright, Phys. Rev. Lett. 95, 010406 (2005)
dmapping: strongly interacting fermionic gas = non interacting bosons

[0 Exotic superfluidity in 2D (I > 0)
V. Gurarie, L. Radzihovsky, and A. V. Andreev, Phys. Rev. Lett. 94, 230403 (2005).

e [ TOOL

Short range potential = use the zero range approach.

e (RESULTS]

[ For 1D and 2D atomic wave guides, determination of the scattering
amplitude in high partial waves as a function of the 3D scattering
parameters and of the atomic wave-guide frequency.

[ Characterization of the Confinement Induced Resonances in high par-
tial waves.

o (CONSEQUENCES)

[1 The finite width of the resonances is an essential parameter for describ-
ing the BEC-BCS transition in 1D and 2D fermionic gases.

[ For spin polarized fermions in quasi-1D: strong constraints for achieving
a Fermi-Tonks gas.



CONTEXT

e Dilute phase of particles (density n).
e Traps with high aspect ratio.
e Short range 2-body potential of radius b (nb® < 1):

1/4
b= ('uh—i%) O(1) . of the order of the van der Waals range.

e Feshbach resonance in the [-wave channel

[1 Resonance between the scattering state and a [-wave molecular state
in the closed channel.

[ 2-body scattering amplitude f; described in 3D with 2 parameters:

w; :generalized scattering length.
oy :generalized effective range — linked to the width of the resonance.
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[J Molecular state tuned with a magnetic field B — w;



PARAMETERS AT RESONANCE IN 3D

o /=0
[0 wy: s-wave scattering length |, ag = —71./2, 7. effective range.
No specific constraint on 7, in general.
h2

[ wy > b: existence of a shallow bound state of energy —5,
Hw

1
[0 Unitary limit (f, = = Vkb < 1) corresponds to the regime:
0

lwg| = 00 and  ay = O(b)

o[>0
[ Zero energy resonance for |wy| > b**+1:
hQ
existence of a shallow (quasi-)bound state of energy — .
2w

[ Interaction on a compact support of radius b:

(21 — 3)11(21 — 1)!!

= P21

L.P., PRA 73, 012701 (2006)

1

—> No possibility of unitary limit (f; = — Vkb < 1).
i

—> Question:

“Consequences of Eq.(2) on the low-D scattering properties ?”



PRINCIPLE OF THE ZERO RANGE APPROACH

1) Wave function solution of the non-interacting Schrédinger equa-
tion for non vanishing interparticle distances (r # 0).

2) Interaction replaced by a contact condition as r — 0:

the wave function coincide with the real one outside the potential range.
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Figure 1: Dotted line: radial wave function of a s-wave bound state in a square well of radius b. Solid
line: radial wave function obtained in a zero-range approach. By construction, the outer parts (r > b) of
the two wave functions coincide.

3) Contact condition constructed using Eq.(1) only:

asymptotic 3D scattering states are eigenstates of the model.



ZERO RANGE APPROACH INCLUDING [ > 0 CHANNELS

e Formulation in the k-representation = simplification of the calculations.

Ul , wave function |U):

k), (3)

e 2 particles of reduced mass p, energy E =

27rh2z / &k kY k\a ) (Ry-Six)

W) = Vo) + M

[ Hy: free Hamiltonian which includes the external potential.

[0 |Wy) belongs to the kernel of Hy — E: regular solution.

O lim_o(r|d.) = d(r). We choose here: (k|d,) = exp(—k?e?/4).

O (R;-Six): contraction of two Symmetric Trace Free tensors of rank .

[ &k tensors appearing in the standard multipolar expansion

af...] ( ) I+1 -1
S = (k0 ) &
Kok 1

__gep
k2 3

e.q. 83’6:

[0 R, fixes the balance between the regular and irregular solutions of (3).

e Contact condition:

d’k Ngi(q) Ry
K (kUNS) = -2
et / ot KWISue= —5r

[J Reg: means the regular part of the integral obtained as € — 0.
e—0



SPIN POLARIZED FERMIONS IN 1D

H hQA Y (4)
= ——Ap + —pw| p” — hwy,
0 2 2,“ 1P i

L=\

e Interaction in the p-wave channel (Pauli)

e monomode regime E < 2hw | :

(x|0) = exp (—p?/2a%) x [exp(igz) + sign(z) f**C exp(ig|z])] . (5)

odd —1q :
_ _ , 6)
!0 +ig+ g%

3
1
I, = 6a, [a—l —12¢(

1
——)] . odd-wave scattering length
w1 2

alai

&=

. 1D p-wave effective range

[1 Gas of atomic density n, conditions for the Fermi-Tonks regime:

Il =00 and n§ K1
ay

1
Not satisfied in general because Eq.(2) gives ay > - = ¢, > n

b
e.g. YK, w, =2r x 70 kHz and w, = 27 x 10 Hz at T =0 K

—> FTG for N < 14 atoms: few-body systems.



SCATTERING IN QUASI-2D

p

_ 2 ! 1 imZ(p,q)
Vip) = exp(=2"/ 2a7) X [6 m;}@ i" I H D (gp)e ]
2m

Fliml d wh ~539xa’ and wh~13xa’

=0 (wy,! — wi)

e resonance shift 7 as a. \

wy,! = wi )/ (2p0n)

e Scattering cross section o = | f,,|?/4q resonant for £ ~ Ej,

e (quasi-) bound state energy: Ej ~ —h?(

—> only in presence of a quasi-bound state.

e resonance width of the m-wave resonance:

AE/Ey < (Ey/hw.)™ ' /(apa®™ ) < 1

e Exact expressions for the low energy behavior of f™ induced by a 3D
resonant m-wave interaction

61/7¢" 6 E N\
g form =1: fIl = 2 +i07"

g E 1
e 5 iy (o)

Jin defined by J, (1) = Pf. [ duu™ ("D exp(ru)[1 — exp(—u)]~/2.




PERSPECTIVES

e BEC-BCS crossover in the resonant quasi-1D spin-polarized fermionic gas:
— many-body problem using the A-potential which reproduces Eq.(6):
Rl
V, = — L__§'(2) lim (A + 0, — £,0° — —
(IVAI6) = gy =y (2) B (A +8, = 02) Ban(e) — wunl—o]
VA € R: A is a free parameter.

—> Equation of State and collective modes at [, = 0o 7

e BEC-BCS crossover in quasi-2D fermionic gases by varying (w, ' — w"
from positive to negative values



