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Pascal principle for diffusion-controlled trapping reactions
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In this paper, we analyze the long-time behavior of the survival probabilityPA(t) of an A particle, that
performs lattice random walk in the presence of randomly moving trapsB. We show that for both perfect and
imperfect trapping reactions, for arbitrary spatial dimensiond and for a rather general class of random walks,
PA(t) is less than or equal to the survival probability of animmobile targetA in the presence of randomly
moving traps.
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Pascal has once asserted that all misfortune of man co
from the fact that he does not stay peacefully in his room@1#.
Taking this statement out of its philosophical context,
might be tempting to evoke it as the ‘‘Pascal principle’’
regard to the problem of survival of anA particle, which
moves randomly in a sea of randomly moving trapsB ~pre-
sented at mean density ‘‘b’’ !, and is annihilated upon the firs
encounter with any of them. This complex problem, which
intimately related to many fundamental problems of stati
cal physics, has been attracting a great deal of atten
within the last three decades~see, e.g., Refs.@2–4#, and ref-
erences therein!. Many important results have been obtain
but an exact solution is lacking as yet.

In a recent paper@5#, which focused on the behavior in th
particular case when bothA and B’s perform conventional
diffusive motion, it has been claimed that it is intuitive
clear that when the traps are initially~statistically! symmetri-
cally placed with respect to anA particle, the latter will on
average survive longer if it stays still than if it diffuses. Th
represents, if true, a clear illustration of the Pascal princip
and implies that theA particle’s survival probabilityPA(t)
obeys the inequality

PA~ t !<PA8 ~ t !, ~1!

wherePA8 (t) stands for the corresponding survival probab
ity of an immobiletargetA in the presence of diffusive traps
The latter can be evaluated exactly@2,6#. Furthermore, fol-
lowing the reasonings of earlier works@2,7#, the authors of
Ref. @5# constructed a lower bound onPA(t) and showed tha
these bonds converge ast→` for systems of spatial dimen
sion d<2, defining thus the large-t asymptotic form of
PA(t) exactly. Subsequently, in Ref.@9#, the arguments of
Ref. @5# have been generalized to arbitrary symmetric r
dom motion with particles’ and traps’ trajectories charact
ized by a fractal dimensiondv ~not necessarily equal to 2
which is specific for conventional diffusive motion!, and
here exact large-t asymptotic forms ofPA(t) have been ob-
tained for systems of spatial dimensiond<dv .

We note that the inequality in Eq.~1! has been derived
previously for the process of hopping transport of an exc
tion on a disordered array of immobile donor centers in
presence of randomly placed, immobile quenchers@10#. On
the other hand, Eq.~1! is compatible with recent results o
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ballistic A1A→0 annihilation process@11#. For trappingA
1B→B reactions~TR! involving diffusive species the au-
thors of Ref.@5# were unable, however, to prove the inequ
ity in Eq. ~1!, but furnished only some arguments in favor
it. Consequently, results onexact asymptotic behavior of
PA(t) depend crucially on whether the inequality in Eq.~1!
is indeed correct.

In this paper, we analyze, in the lattice formulation of t
model, the Pascal-principle-like inequality in Eq.~1!. Fol-
lowing the line of argument of Refs.@6,8#, we show that for
both instantaneous~perfect! and imperfect TRs, for arbitrary
spatial dimensiond, and for a rather general class of rando
walks ~not necessarily conventional diffusion!, PA(t) of a
mobileA particle in the presence of mobile traps is less th
the survival probability of an immobile targetA in the pres-
ence of mobileBs. Our proof assumes essentially thatB’s
perform a space and time homogeneous, unbiased jump
cess on the lattice sites. Behavior in the continuous-sp
systems, which requires a somewhat more delicate ana
~especially ford>2), will be presented elsewhere@12#.

Consider ad-dimensional hypercubic lattice containingM
sites. A singleA particle is initially located at the origin
while N traps B are placed on the lattice at positionsY0

( i )

Þ0, where the superscripti here and henceforth numerate
the traps,i 51, . . . ,N.

In regard to particles dynamics, we suppose that theA
particle performs a continuous-time jump process on the
tice sites and that the time interval between the consecu
jumps is a random variable. We denote then asGA the A
particle trajectory recorded at integer time momentsk
50, . . . ,n, such thatGA5$X050,X1 , . . . ,Xn%, whereXk is
the vector of a lattice site at which theA particle resides at
time momentk. Note that since the time interval between t
consecutive jumps is a random variable, two successive
sitions are not necessarily different and not necessarily n
est neighbors.

Now, we suppose that theB’s perform identical and inde-
pendentdiscrete time random walks: that is, at each tick of
the clock eachB can jump with a given probability from a
lattice siteY to another~not necessarily neighboring! siteY8,
or it may also remain atY. We define then asGB

( i ) the tra-
jectory of the i th B particle, GB

( i )5$Y0
( i ) ,Y1

( i ) , . . . ,Yn
( i )%,

whereYk
( i ) denotes the position of thei th trap at time mo-

mentk, k50,1, . . . ,n.
©2003 The American Physical Society04-1
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Next, let P(Yn
( i )uY0

( i )) be the conditional probability o
finding thei th trapB at siteYn

( i ) at time momentn, knowing
that it started its random walk atY0

( i ) . We assume now tha
random walks executed by theB particles satisfy the follow-
ing, quite general conditions.

~i! the random walk is space and time homogeneous:

P~Yn
( i )uY0

( i )!5P~Yn
( i )2Y0

( i )u0!, ~2!

~ii ! at any time momentn and for anyi @13#,

P~Yn
( i )ÞY0

( i )uY0
( i )!<P~Yn

( i )5Y0
( i )uY0

( i )![Rn , ~3!

i.e., the conditional probabilityP(Yn
( i )ÞY0

( i )uY0
( i )) of finding

at time momentn the i th trap at siteYn
( i ) different from its

starting pointY0
( i ) , is less than or equal to the probabili

P(Yn
( i )5Y0

( i )uY0
( i )) of finding it at time momentn exactly at

the starting point; here,Rn denotes the return probability o
the random walk executed by the traps. By convention,R0
[1.

Finally, we consider two situations with respect to rea
tion; namely, when~a! the A particle gets annihilated with
probability p51 upon the first encounter with any ofB’s
~perfect reaction! and~b! when the annihilation of theA par-
ticle takes place with probabilityp,1 when anA and any of
B’s occur at the same site~imperfect reaction!. For compu-
tational convenience, we stipulate that for both situations
action can take place only at integer time moments; that i
at a noninteger timeA jumps on a site which is occupied b
any B, A survives till the departure of this particle or a
arrival of anotherB. The probability that bothA andB par-
ticles jump on the same site simultaneously is clearly eq
to 0.

Let Pn
( i )(GAuY0

( i )) denotethe conditional probabilitythat
for a given realization of theA particle trajectoryGA , the i th
B particle starting its walk from the pointY0

( i ) does not de-
stroy ~encounter! A up to time n. SinceB’s move and act
independently of each other, the conditional probabi
Cn(GAu$Y0

( i )%) that, for a given realization of theA particle
trajectoryGA and a given set of the starting points$Y0

( i )%, the
A particle survives up to timen, is determined by

Cn~GAu$Y0
( i )%!5)

i 51

N

Pn
( i )~GAuY0

( i )!, ~4!

and hence, theA particle survival probability obeys

PA~n!5^^Cn~GAu$Y0
( i )%!&$Y0

( i )%&GA
, ~5!

the average being taken first over the starting points ofB’s
and then over all possible trajectoriesGA .

Now, supposing thatB’s were initially uniformly distrib-
uted on the lattice~excluding the origin! and dropping the
superscript ‘‘i , ’’ one finds from Eqs.~4! and ~5! that
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PA~n!5K H 1

M (
Y0Þ0

Pn~GAuY0!J NL
GA

5K H 12
1

M (
Y0Þ0

@12Pn~GAuY0!#J NL
GA

. ~6!

Turning next to the thermodynamic limit, i.e., settingN,M
5` with a fixed ratiob5N/M , we find

PA~n!5K expH 2b (
Y0Þ0

@12Pn~GAuY0!#J L
GA

. ~7!

Consequently, the survival probabilityPA(n) can be thought
of as the generating function of the probability

Qn~GAuY0!512Pn~GAuY0! ~8!

that for a givenGA , a singleB, being atY0Þ0 at n50,
destroys theA at some time moment<n. Note also that
when theA particle is immobile, Eq.~7! reduces to

PA8 ~n!5expH 2b (
Y0Þ0

@12Pn~0uY0!#J , ~9!

which can be evaluated explicitly@2,6#.
We seek now an upper bound on the survival probabi

in Eq. ~7!. Let Fk(GAuY0) denotethe conditional probability
that a singleB particle, being atY0 at k50, encountersA for
the first time at time momentk, given theA particle trajec-
tory GA is fixed. Then, the conditional probabilit
Qn(GAuY0) that a singleB particle, starting fromY0, de-
stroysA at or beforek5n obeys

Qn~GAuY0!5 (
0<k<n

Fk~GAuY0!. ~10!

Now, the conditional probability that the trajectory ofB ~ex-
tended after the possible annihilation ofA) meetsGA at time
n ~not necessarily for the first time! is clearly

P~Yn5XnuY0!5Fn~GAuY0!

1 (
0<k,n

P~Yn5XnuYk!Fk~GAuY0!.

~11!

Summing both sides of the last equation over all initial p
sitionsY0Þ0, we obtain

(
Y0Þ0

P~Yn5XnuY0!5Kn~GA!

1 (
0<k,n

P~Yn5XnuYk!Kk~GA!,

~12!

whereKn(GA) is defined as
4-2
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Kn~GA!5 (
Y0Þ0

Fn~GAuY0!. ~13!

We note thatKn(GA) has a meaning of a time-depende
reaction rate; using Eq.~13!, we rewrite Eq.~7! as

PA~n!5K expH 2b (
0<k<n

Kk~GA!J L
GA

. ~14!

On the other hand, the survival probabilityPA8 (n) of an im-
mobile Aparticle, Eq.~9!, can be written as

PA8 ~n!5expH 2b (
0<k<n

KkJ 5exp$2b~Sn21!%, ~15!

whereKk[Kk(GA[0), while Sn is the expected number o
distinct sites visited by a singleB up to time momentn ~see,
e.g., Ref.@14# for more details!. The last quantity is obtained
directly by inversion of its generating functionŜ
5(n50

` Snjn, which can be evaluated explicitly,Ŝ5(1

2j)22R̂21, R̂5(n50
` Rnjn being the generating function o

the return probabilityRn .
We turn now to the comparison ofKk(GA) andKk . Using

the normalization(Y0
P(Yn5XnuY0)51, and the condition

~i!, we have(Y0Þ0P(Yn5XnuY0)512P(Yn5Xnu0). Con-
sequently, by virtue of~ii !,

(
Y0Þ0

P~Yn5XnuY0!>12Rn . ~16!

Now, from Eqs.~12! and ~16!, we get

Kn~GA!1 (
0<k,n

P~Yn5XnuYk!Kk~GA!>12Rn . ~17!

On the other hand, the inequality in Eq.~3! implies that

P~Yn5XnuYk!<Rn2k . ~18!

Recollecting thatR051 and making use of Eq.~18!, we thus
enhance the inequality in Eq.~17!, which now reads

(
0<k<n

Rn2kKk~GA!>12Rn , ~19!

and also becomes an equality whenA is immobile.
Further on, multiplying both sides of Eq.~19! by jn and

performing summation overn, we get

K̂~GA!5 (
n50

`

Kn~GA!jn>
1

~12j!R̂
21. ~20!

Next, taking into account that

Ŝ~GA!5 (
n50

`

jnS (
0<k<n

Kk~GA! D 5
K̂~GA!

12j
, ~21!

we find from Eq.~20! the following inequality:
04510
t

Ŝ~GA!>
1

~12j!2R̂
2

1

12j
[ (

n50

`

jnS (
0<k<n

KkD , ~22!

which implies that the generating function of the express
in the exponent in Eq.~14!, describing theA particle survival
probability in case when it ‘‘leaves the room’’ and chang
its position with time, is always greater than or equal to t
generating function of the expression in the exponent in
~15!, which applies to the case when theA particle stays
peacefully at its initial position.

Hence, turning to the limitj→12 (n→`) and making
use of the Tauberian theorems@15#, we arrive at the conclu-
sion that the desired inequality in Eq.~1! holds in the limit
n→`. As a matter of fact, it can be shown that this inequ
ity holds generally for arbitrary finiten; the proof in this
statement is, however, rather cumbersome and will be
sented elsewhere@12#.

Finally, we briefly outline the steps involved in the der
vation of Eq.~1! in the general case when reaction betwe
anA and any ofB’s is not instantaneous, but takes place w
some finite probabilityp. Following Ref. @14#, we suppose
that here each trap bears ‘‘a gate,’’ which may be either o
or closed; in the former case the trap is reactive and ann
lates theA particle upon the encounter, while in the latt
case it is inert with respect to reaction. The state of the g
on thei th trap is characterized by a random variablez i such
that z i51 ~open gate! with probability p, andz i50 ~closed
gate! with the probability 12p, respectively. Eachz i up-
dates its state at each tick of the clock; the updating proc
proceeds completely at random, without memory in time a
without correlations with the gates imposed on otherB par-
ticles. As shown in Ref.@14#, such a model with stochastic
two-state gates corresponds to situations in which the
ementary reaction act is characterized by a finite intrin
reaction constantKel5p/(12p).

Now, we notice thatPA(n) in this case can be still written
in the form of Eq.~7! with Qn(GAuY0) defined by Eqs.~8!
and~10!, but hereFk(GAuY0)5Fk

(p)(GAuY0) should be inter-
preted as the conditional probability that theB particle en-
counters theA particle for the first time at time momentk
exactly and moreover, that at this moment of time theB
particle is in reactive state; the superscript ‘‘(p)’’ will signify
that here we deal with imperfect TR. Further on,
P(p)(Yn5XnuY0) be the conditional probability that the tra
jectory of B meetsGA at timen ~not necessarily for the firs
time! and at this time momentB is in reactive state. For the
model under study, such a probability obeys

P(p)~Yn5XnuY0!5pP~Yn5XnuY0! ~23!

and

P(p)~Yn5XnuY0!5Fn~GAuY0!

1 (
0<k,n

P(p)~Yn5XnuYk!Fk~GAuY0!.

~24!

Summing both sides of Eq.~24! over Y0Þ0, we get
4-3
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(
Y0Þ0

P(p)~Yn5XnuY0!50)>p~12Rn!, ~25!

and hence, we find

~12Rn!<Kn
(p)~GA!1p (

0<k,n
Rn2kKk

(p)~GA!, ~26!

whereKn
(p)5(Y0Þ0Fn

(p)(GAuY0). Multiplying both sides of

Eq. ~26! by jn and then summing it overn, n50, . . . ,̀ , we
arrive at the following inequality:

Ŝ(p)~G0!>
p@12~12j!R̂#

~12j!2~12p1pR̂!
, ~27!

where Ŝ(p)(GA) is the generating function of the sum
(0<k<nK (p)(GA)5b21 ln@1/PA

(p)(n)#, PA
(p)(n) being theA

particle survival probability for imperfect TR.
Turning to the limitj→12 (n→`), we notice that here
tt.

.

04510
(12j)R̂!1 and hence, in this limit only the first term in th
square bracket matters. On the other hand, this leading

Ŝ(p)5p(12j)22/(12p1pR̂) coincidesexactlywith the ex-
pression obtained earlier@14# for the generating function o
the exponent of the survival probability of an immobile ta
getA in the presence of stochastically gated traps. The Ta
erian theorem@15# then insures that also in this general ca
of imperfect TR the inequality in Eq.~1! holds asn→`.

To conclude, we have proven here that in the long-ti
limit the survival probability of anA particle performing
random walk on the sites of ad-dimensional lattice in the
presence of randomly moving traps is less than or equa
the survival probability of an immobileA particle in the pres-
ence of randomly moving traps. This result holds for quite
general class of random walks as well as for perfect a
imperfect trapping reactions.

The authors thank J. Piasecki for fruitful discussions a
for directing us to Pascal’s assertion. We also acknowle
discussions with A. J. Bray and R. A. Blythe.
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