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Pascal principle for diffusion-controlled trapping reactions
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In this paper, we analyze the long-time behavior of the survival probaliljt) of an A particle, that
performs lattice random walk in the presence of randomly moving Bajy8e show that for both perfect and
imperfect trapping reactions, for arbitrary spatial dimensiand for a rather general class of random walks,
PA(t) is less than or equal to the survival probability of iammobiletargetA in the presence of randomly
moving traps.
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Pascal has once asserted that all misfortune of man comésllistic A+ A—0 annihilation procesgll]. For trappingA
from the fact that he does not stay peacefully in his r¢éin ~ +B—B reactions(TR) involving diffusive species the au-
Taking this statement out of its philosophical context, itthors of Ref[5] were unable, however, to prove the inequal-
might be tempting to evoke it as the “Pascal principle” in ity in Eqg. (1), but furnished only some arguments in favor of
regard to the problem of survival of aA particle, which  it. Consequently, results oexact asymptotic behavior of
moves randomly in a sea of randomly moving trépgre-  Pa(t) depend crucially on whether the inequality in Ed))
sented at mean density" ), and is annihilated upon the first 1S indeed correct. _ . _
encounter with any of them. This complex problem, which is  In this paper, we analyze, in the lattice formulation of the
intimately related to many fundamental problems of statisti-model, the Pascal-principle-like inequality in EQG.). Fol-
cal physics, has been attracting a great deal of attentiofpWing the line of argument of Ref$6,8], we show that for
within the last three decadésee, e.g., Ref§2—4], and ref- both_ mst_antant_aou(s',)erfect and imperfect TRs, for arbitrary
erences therejnMany important results have been obtainedSPatial dimensiom, and for a rather general class of random
but an exact solution is lacking as yet. walks (not necessarily conventional dlﬁ_usﬁ)rPA(_t) of a

In a recent papdi5], which focused on the behavior in the moblleA_ particle in _the presence of r_noblle traps is less than
particular case when both and B's perform conventional the survival probability of an immobile targétin the pres-
diffusive motion, it has been claimed that it is intuitively €Nce of mobileBs. Our proof assumes essentially tfis
clear that when the traps are initiallgtatistically symmetri-  Perform a space and time homogeneous, unbiased jump pro-
cally placed with respect to aA particle, the latter will on €SS on the lattice sites. Behavior in the continuous-space
average survive longer if it stays still than if it diffuses. This Systéms, which requires a somewhat more delicate analyzis
represents, if true, a clear illustration of the Pascal principle(€specially ford=2), will be presented elsewhef&2].

and implies that the particle’s survival probabilityP (t) _ Consider a-dimensional hypercubic lattice containiivy
obeys the inequality sites. A singleA particle is initially located at the origin,
while N traps B are placed on the lattice at positioivg
Pa(D)<Pa(1), ) #0, where the superscripthere and henceforth numerates
the trapsi=1, ... N.
whereP,(t) stands for the corresponding survival probabil-  In regard to particles dynamics, we suppose thatAhe

ity of animmobiletargetA in the presence of diffusive traps. Particle performs a continuous-time jump process on the lat-
The latter can be evaluated exaciB;6]. Furthermore, fol- tice sites and that the time interval between the consecutive
lowing the reasonings of earlier workg,7], the authors of jumps is a random variable. We denote thenlasthe A
Ref.[5] constructed a lower bound d,(t) and showed that Particle trajectory recorded at integer time momeits
these bonds converge s o for systems of spatial dimen- =0, ..., such thal’a={X,=0Xy, ... X,}, whereX, is

sion d<2, defining thus the large-asymptotic form of the vector of a lattice site at which thReparticle resides at
PA(t) exactly. Subsequently, in Reff9], the arguments of time momenk. Note that since the time interval between the
Ref. [5] have been generalized to arbitrary symmetric ran-consecutive jumps is a random variable, two successive po-
dom motion with particles’ and traps’ trajectories characterSitiOﬂS_ are not necessarily different and not necessarily near-
ized by a fractal dimensiod,, (not necessarily equal to 2, €st neighbors.

which is specific for conventional diffusive motignand Now, we suppose that tH#&'s perform identical and inde-
here exact |arge_asymptotic forms OPA(t) have been ob- pendentdlscrete time random walkshat is, at each tick of
tained for systems of spatial dimensidsed,, . the clock eactB can jump with a given probability from a

We note that the inequality in Eq1) has been derived lattice siteY to anothei(not necessarily neighboringite Y”,
previously for the process of hopping transport of an excitaOr it may also remain a¥. We define then a&§) the tra-
tion on a disordered array of immobile donor centers in thgectory of theith B particle, re={yy,yP, o y0y,
presence of randomly placed, immobile quenchéf. On  whereY() denotes the position of thigh trap at time mo-
the other hand, EqJ) is compatible with recent results on mentk, k=0,1, ... n.
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Next, let P(Y!|Y{)) be the conditional probability of 1 N
finding theith trapB at siteY " at time momenh, knowing Pa(n)= <{ M YZO Pn(FA|Y0)] >
that it started its random walk at{’ . We assume now that ° r
random walks executed by tiBeparticles satisfy the follow-

1 N
ing, quite general conditions. = < { 1-— E [1—- Pn(FA|Yo)]} > . (6)
(i) the random walk is space and time homogeneous: M vo7o r

A

A

Py ydy=py®_yhig 2 Turning next to the thermodynamic limit, i.e., settihngM
(Ya'lYo!) =P(Ya'=Yo'|0), @ = with a fixed ratiob=N/M, we find

(i) at any time momenih and for anyi [13],

Pan)={exp —b >, [1-Pu(TalYo)lf) - (@
. . . . . . 0 T
PYP#YQIYO)=P(YO=YPIY()=R,, (3 g
Consequently, the survival probabiliB,(n) can be thought
i.e., the conditional probabilitp (Y # Y| Y$)) of finding ~ Of as the generating function of the probability
at time momenn theith trap at siteY{)’ different from its .
starting pointY$’, is less than or equal to the probability Qn(I'al Yo) =1=Pu(IalYo) ®
P(YP=Y{YY) of finding it at time momenh exactly at  hat for a givenI',, a singleB, being atY,#0 atn=0,
the starting point; hereR, denotes the return probability of gestroys theA at some time momentn. Note also that
the random walk executed by the traps. By convent®Rf), \hen theA particle is immobile, Eq(7) reduces to
=1.

Finally, we consider two situations with respect to reac- ,

tion; namely, when(a) the A particle gets annihilated with Pa(n)=ex _bYZO [1-Pa(0[Yo)]}, 9)
probability p=1 upon the first encounter with any &'s 0
(perfect reactionand (b) when the annihilation of thé par-  \which can be evaluated explicit[i2,6].
ticle takes place with probabilitg<1 when arA and any of We seek now an upper bound on the survival probability
B’s occur at the same sit@mperfect reaction For compu-  in Eq. (7). Let F(I's|Y,) denotethe conditional probability
tational convenience, we stipulate that for both situations rethat a singleB particle, being at, atk=0, encounters for
action can take place only at integer time moments; that is, ifhe first time at time momerk, given theA particle trajec-
at a noninteger timé jumps on a site which is occupied by tory T, is fixed. Then, the conditional probability

any B, A survives till the departure of this particle or an _(1,|Y,) that a singleB particle, starting fromY,, de-
arrival of anotherB. The probability that botih andB par-  stroysA at or beforek=n obeys

ticles jump on the same site simultaneously is clearly equal
to O.

Let PO(I"y| YY) denotethe conditional probabilitythat Qn(FA|Y0):O<Ek<n Fi(TalYo). (10)
for a given realization of tha particle trajectoryl’s, theith o
B particle starting its walk from the point(’ does not de-  Now, the conditional probability that the trajectory Bf(ex-
stroy (encountey A up to time n SinceB’s move and act tended after the possible annihilationf meetsI’, at time
independently of each other, the conditional probabilityn (not necessarily for the first timas clearly
\Ifn(FA|{Y8)}) that, for a given realization of tha particle
trajectoryl’ , and a given set of the starting poifté{’}, the P(Yq=XaYo) =Fn(TalYo)
A particle survives up to time, is determined by

+ 2 P(Yp=XalYOF(TAlYo).

N 0<k<n
WoCA{YEH =11 PRTAYE), @ (11)
Summing both sides of the last equation over all initial po-
and hence, tha particle survival probability obeys sitions Yo+ 0, we obtain
Pa()=(WaTAHYE D) v, 6 2, PYa=Xi Yo =Kn(Tw)
the average being taken first over the starting point8’'sf + D P(Ya=Xa | YOK(T ),
and then over all possible trajectoriEg . O<k<n
Now, supposing thaB’s were initially uniformly distrib- (12
uted on the latticgexcluding the origin and dropping the
superscript T,” one finds from Eqs(4) and(5) that whereK,(I",) is defined as
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- 1 i
Sra= 7= 2 5“( >

(1—5)2R n=0 0<k=n Kk>, (22)

We note thatk,(I'x) has a meaning of a time-dependent yhich implies that the generating function of the expression

reaction rate; using Eq13), we rewrite Eq.(7) as

PA(n):<eXp{_b > Kk(rA)]> .
0<k=n r

A

14

On the other hand, the survival probabil®j(n) of anim-
mobile Aparticle, Eq.(9), can be written as

P}\(n)=exp[ ~-b >

0<k=n

Kk} —exp{—b(S,~ 1)}, (15)

whereK, =K, (I'y=0), while S, is the expected number of

distinct sites visited by a sing up to time momenh (see,

e.g., Ref[14] for more details The last quantity is obtained

directly by inversion of its generating functiorS
=37_0S:&", which can be evaluated explicitlyé=(1

—£)7?R71, R=3[_,R,&" being the generating function of

the return probabilityr,, .
We turn now to the comparison &, (I"5) andK, . Using
the normalizationZYoP(Yn=Xn|YO)=1, and the condition

(i), we haveEYo#OP(Yn:XnWo):l— P(Y,=X,|0). Con-
sequently, by virtue ofii),

Y};O P(Y,=Xn|Yo)=1-R,. (16)
0

Now, from Egs.(12) and(16), we get
Ka(Tw+ 20 P(Yn=Xy|Y)K(TAZ1-Ry. (17

On the other hand, the inequality in E®) implies that
P(Y,=Xq|Yi)<R, . (18

Recollecting thaRy=1 and making use of E¢18), we thus

enhance the inequality in E¢L7), which now reads

> RiK(Ta)=1-R,,

O<k=n

(19

and also becomes an equality wh&ns immobile
Further on, multiplying both sides of E¢L9) by &" and
performing summation ovar, we get

K(Lp)=2> K ([p)e= ——1. 20
(M= 2 Kn(Tw)é 1-DR (20
Next, taking into account that
. - K(T
Sry=3 g“( > Kk<rA>)=¥, 2D
n=0 O<k=n f

we find from Eq.(20) the following inequality:

in the exponent in Eq14), describing theA particle survival
probability in case when it “leaves the room” and changes
its position with time, is always greater than or equal to the
generating function of the expression in the exponent in Eq.
(15), which applies to the case when tieparticle stays
peacefully at its initial position.

Hence, turning to the limig—1~ (n—«) and making
use of the Tauberian theorerfb], we arrive at the conclu-
sion that the desired inequality in E@L) holds in the limit
n—oo. As a matter of fact, it can be shown that this inequal-
ity holds generally for arbitrary finiten; the proof in this
statement is, however, rather cumbersome and will be pre-
sented elsewheld 2].

Finally, we briefly outline the steps involved in the deri-
vation of Eq.(1) in the general case when reaction between
anA and any ofB’s is not instantaneous, but takes place with
some finite probabilityp. Following Ref.[14], we suppose
that here each trap bears “a gate,” which may be either open
or closed; in the former case the trap is reactive and annihi-
lates theA particle upon the encounter, while in the latter
case it is inert with respect to reaction. The state of the gate
on theith trap is characterized by a random variableuch
that ;=1 (open gatgwith probability p, and ;=0 (closed
gate with the probability 1-p, respectively. Each; up-
dates its state at each tick of the clock; the updating process
proceeds completely at random, without memory in time and
without correlations with the gates imposed on otBegpar-
ticles. As shown in Ref[14], such a model with stochastic,
two-state gates corresponds to situations in which the el-
ementary reaction act is characterized by a finite intrinsic
reaction constark . =p/(1—p).

Now, we notice thaP,(n) in this case can be still written
in the form of Eq.(7) with Q,(I"s|Y) defined by Eqs(8)
and(10), but hereF (I s| Y o) =F{P(I"s| Y,) should be inter-
preted as the conditional probability that tBeparticle en-
counters theA particle for the first time at time momeikt
exactly and moreover, that at this moment of time e
particle is in reactive state; the superscripp){ will signify
that here we deal with imperfect TR. Further on, let
PP(Y,=X,|Y,) be the conditional probability that the tra-
jectory of B meetsI’, at timen (not necessarily for the first
time) and at this time momer is in reactive state. For the
model under study, such a probability obeys

P(p)(Yn:Xn|Y0):pP(Yn:Xn|YO) (23
and

PO(Y =X, Yo) =Fn(TalYo)

+ >

0<k<n

POY(Y =X, | YW F (T Al Yo).

(24)

Summing both sides of Eq24) over Y #0, we get
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2 POy, =X Yo)=0)=p(1-R,) 25 (1—§)IA?<1 and hence, in this limit only the first term in the
n n = n/s

vato square bracket matters. On the other hand, this leading term
_ SP =p(1—-¢)~2/(1—p+pR) coincidesexactlywith the ex-
and hence, we find pression obtained earli¢l4] for the generating function of

the exponent of the survival probability of an immobile tar-

getAin the presence of stochastically gated traps. The Taub-
(1-Ry)=<KP(Tp) + p0§k<n Ro-kKiP(Tw), (26 erian theorenj15] then insures that also in this general case
of imperfect TR the inequality in Eq1) holds asn— oo,

To conclude, we have proven here that in the long-time
limit the survival probability of anA particle performing
random walk on the sites of @dimensional lattice in the
presence of randomly moving traps is less than or equal to

where Kgp)=EY0¢OF§1p)(FA|YO). Multiplying both sides of
Eq. (26) by &" and then summing it over, n=0, ... », we
arrive at the following inequality:

p[1—(1- )R] the survival probability of an immobil& particle in the pres-
é(p)(l“o)z > —, (27 ence of randomly moving traps. This result holds for quite a
(1-9)(1-p+tpR general class of random walks as well as for perfect and

. . . ) imperfect trapping reactions.
where S?P)(T",) is the generating function of the sum

3 0=kenKP(TR)=b" 1 IN[1/PP(n)], PP(n) being theA The authors thank J. Piasecki for fruitful discussions and
particle survival probability for imperfect TR. for directing us to Pascal’s assertion. We also acknowledge

Turning to the limité—1~ (n—), we notice that here discussions with A. J. Bray and R. A. Blythe.
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