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Trapping reactions with randomly moving traps: Exact asymptotic results for compact exploration
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In a recent paper, Bray and Blythe have shown that the survival probabilityPA(t) of anA particle diffusing
with a diffusion coefficientDA in a one-dimensional system with diffusive trapsB is independent ofDA in the
asymptotic limit t→` and coincides with the survival probability of an immobile target in the presence of
diffusive traps. Here, we show that this remarkable behavior has a more general range of validity and holds for
systems of an arbitrary dimensiond, integer or fractal, provided that the traps are ‘‘compactly exploring’’ the
space, i.e., the ‘‘fractal’’ dimensiondw of traps’ trajectories is greater thand. For the marginal case whendw

5d, as exemplified here by conventional diffusion in two-dimensional systems, the decay form is determined
up to a numerical factor in the characteristic decay time.
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Trapping A1B→B and recombinationA1B→0 reac-
tions ~TR and RR! involving randomly movingA andB par-
ticles which react ‘‘when they meet’’ at a certain distanceb
are ubiquitous in nature. A few stray examples inclu
quenching of delocalized excitations, coagulation, recom
nation of radicals, charge carriers or defects, or biolog
processes related to population survival@1#.

In recent years, there has been much interest in the lo
time behavior of these processes, following a remarkable
covery@2–10# of many-particle effects, which induce esse
tial departures from the conventionally expected behav
@1#.

A pronounced deviation from the text-book predictio
was found for the diffusion-controlled RR in case when i
tially the particles of theA andB species are all distributed a
random with strictly equal mean densitiesn0. It has been
first shown@2# and subsequently proven@3,4# that ast→`
the mean densityn(t) follows n(t);adn0

1/2(Dt)2d/4, where
d is the space dimensionality,ad is a constant andD5DA
1DB is the sum of particles’ diffusion coefficients. This la
contradicts the decay law obtained within the Smoluchow
approach~SA!: n(t);1/fb

(d)(t) @1#, where ast→`,

fb
(d)~ t !5E

0

t

dtKS~t!;5
4ADt/p, d51

4pDt

ln~4Dt/b2!
, d52

4pDbt, d53,

~1!

KS(t) being thed-dimensional Smoluchowski-type ‘‘con
stant,’’ defined as the flux of diffusive particles through t
surface of an immobile sphere of radiusb.

For the TR two situations were most thoroughly studie
the case whenAs diffuse whileBs are static, and the situa
tion in which theAs are immobile whileBs diffuse—the
so-called target annihilation problem~TAP!. In the case of
static, randomly placed~with mean densityr) traps theA
particle survival probability PA(t) shows a nontrivial,
fluctuation-induced behavior@3–10#
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ln PA~ t !;2r2/(d12)~DAt !d/(d12), t→`, ~2!

which is intimately related to many fundamenal problems
statistical physics@3–11#.

Survival probabilityPtarget(t) of an immobile targetA of
radiusb in presence of pointlike diffusive trapsB ~TAP! can
be calculated exactly for anyd ~see Refs.@3,12–14#!,

Ptarget~ t !5exp@2rfb
(d)~ t !#, ~3!

where fb
(d)(t) obeys Eq.~1! with DA50. Decay forms in

systems with hard-core interactions betweenBs @15# or with
fluctuating chemical activity@16# have been also derived.

On contrary, the physically most important case of T
when bothAs andBs diffuse was not solved exactly. It ha
been proven@4# that here,PA(t) obeys

ln PA~ t !52ld~DA ,DB!3H t1/2, d51

t

ln~ t !
, d52

t, d53,

~4!

which equation defines its time-dependence exactly. On
other hand, the factorld(DA ,DB) remained as yet an un
known function of the particles’ diffusivities andd. Since the
time dependence of the function on the right-hand side~rhs!
of Eq. ~4! follows precisely the behavior of* tdt KS(t), one
might expect that the SA provides quite an accurate desc
tion for this situation and following its spirit to setDA50
supposing that traps diffuse with the diffusion coefficientD
5DB1DA . As a matter of fact, it has been often tacit
assumed that when both of species diffusePA(t) obeys Eq.
~3! with fb

(d)(t) defined by Eq.~1! with D5DA1DB . On
the other hand, it has been shown thatld(DA ,DB) is less
than the corresponding prefactor inKS(t) @3# and that it may
be bounded by a nonanalytic function ofDA andDB @17#. A
perturbative approach for calculation ofld(DA ,DB), as well
as corrections to the SA in one-dimensional~1D! systems
were presented@13#. It has been also noticed tha
©2002 The American Physical Society01-1
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ld(DA ,DB) is not a function ofD5DA1DB only, since the
diffusion-reaction equation is not separable@13#. This lack of
knowledge of the precise form ofld(DA ,DB), of course,
constitutes an annoying gap in the general understandin
the fluctuation phenomena in chemical kinetics.

In a recent paper, Bray and Blythe~BB! @18# made a
considerable step towards the solution of this general cas
showing that, surprisingly, the survival probability of anA
particle diffusing in a 1D system with diffusive traps is in
dependent ofDA in the asymptotic limitt→` and coincides
with the survival probability of an immobile target in th
presence of diffusive traps, Eq.~3!. The convergence to thi
asymptotic result might be, however, rather slow as sho
the comparison@18# with extensive numerical simulation
@19#.

One may, however, pose quite a legitimate quest
whether such a remarkable result is constrained to physic
not very realistic 1D systems with conventional diffusion
if it is just a particular case of a more general behavior wh
persists also for higherd?

In this paper, we show that indeed this remarkable re
holds for a more general case. Namely, we show that
systems of an arbitrary dimensiond, integer or fractal, the
large-t behavior of the survival probability of a random
moving A particle in the presence of randomly moving tra
is given exactly by the solution of the exactly solvable TA
provided that the traps are ‘‘compactly exploring’’ the spa
in other words, the ‘‘fractal’’ dimensiondw

(B) of traps’ trajec-
tories is greater thand @20#. For lattice random walks, this
corresponds to situations in which random walks are rec
rent @21#. Random motion withdw

(B).2 is widespread in na
ture and is most often encountered in porous and disord
systems, amorphous and polymer materials@21#, for which
systems it will take place in two and even three dimensi
~see, e.g., Refs.@20,22# and @23#!. Finally, we examine the
behavior in the marginal case whendw

(B)5d, as exemplified
here by conventional diffusion in 2D systems, and show t
here the decay form can be determined up to a nume
factor in the characteristic decay time.

Consider ad-dimensional volumeV containing a single
mobileA particle of radiusb andN pointlike trapsB. Let Xt
be the vector denoting theA particle position at time momen
t, while xt

( j ) , j 51, . . . ,N, be the corresponding vector de
noting the position of thej th trap. Introducing two auxiliary
indicator functions

db~x!5H 1, uxu<b

0, otherwise,
I ~y!5H 1, y50

0, otherwise,
~5!

one writesPA(t) down formally as follows:

PA~ t !5EH )
j 51

N K I S E
0

t

db~Xt2xt
( j )!dt D L

$xt
( j )%
J , ~6!

where the symbolE$•••% denotes averaging with respect
the A particle trajectories, while the brackets with the su
script $xt

( j )% stand for averaging with respect to the trajec
ries of the thej th trap. Note that Eq.~6! applies for any type
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of motion provided that the pointlike traps are ignorant
each other and, thus, move independently. In the limitN,V
→`(N/V5r) one has

PA~ t !5EHexpS 2rE dx0^I 8~Xt ,xt!&$xt%,xt505x0
D J , ~7!

where brackets denote now averaging with respect to
trajectories of a single trapB whose starting point is at po
sition x0, while I 8(Xt ,xt) is the indicator function

I 8~Xt ,xt!512I S E
0

t

db~Xt2xt!dt D , ~8!

which shows whether two given realizations of trajector
Xt andxt have ‘‘intersected’’ each other at least once with
the time interval@0,t#. Note that averaging over trajectorie
xt in the exponential is to be taken for fixedXt and after
performing such an averaging we have to average an e
nential of the result with respect to the trajectoriesXt , which
represents a fairly complex mathematical problem. Suc
complexity emphasizes, of course, the significance of the
result.

Now, BB have noticed@18#, although not proven rigor-
ously, that theA particle will on average survive longer if i
stays still than if it diffuses. They have also furnished so
arguments in favor of this statement showing that this is t
for systems with afinite number of traps since here the low
est value of the decay exponent corresponds toDA50. In
other words, it means thatPA(t) in Eq. ~7! is bounded from
above by

PA~ t !<Ptarget~ t !5exp@2rfb
(d)~ t !#, ~9!

wherefb
(d)(t) is given by

fb
(d)~ t !5E dx0K F12I S E

0

t

db~xt!dt D G L
$xt%,xt505x0

5E dx0K F12I S E
0

t

db~xt2x0!dt D G L
$xt%,xt5050

.

~10!

Note also that Eq.~9! should hold for any type of random
motion, not necessarily only for conventional diffusion.

A lower bound onPA(t) can be constructed in the follow
ing way@18#: One notices first that all terms in the product
Eq. ~6! are positive definite and hence, if one performs a
eraging of Eq.~6! not over allpossiblerealizations of trajec-
toriesXt andxt

( j ) , but only over some restricted subset, o
arrives at a lower bound onPA(t). Following Ref.@18#, we
define this subset as follows: let us assume that initially thA
particle has been located at the origin, while all traps w
uniformly spread in ad-dimensional system such that th
trap nearest to the origin appeared at distancel from it. Then,
we perform averaging only over such trajectories of theA
particles which do not leave within the time interval@0,t# the
volume of radiusl centered around the origin, and such tr
1-2
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jectories of trapsB ~which all initially are uniformly distrib-
uted outside of this volume! do not enter there within the
time interval@0,t#. For such trajectories

)
j 51

N

I S E
0

t

db~Xt2xt
( j )!dt D[1, ~11!

and hence, the following lower bound is valid:

PA~ t !>exp~2Vdr l d!3Prob~max$uXtu%

, l utP@0,t# !3Probj~min$uxt
( j )u%. l utP@0,t# !,

~12!

whereVd denotes the volume of ad-dimensional sphere of a
unit radius, while two other multipliers stand for the pro
ability that theA particle does not leave a sphere of radiul
within the time interval@0,t# and the probability that neithe
of traps, initially uniformly distributed with mean densityr
outside this sphere, enters this sphere up to timet. Note that
exactly the same lower bound has been already propose
Refs.@24# and @17#.

Now, let us assume that the mean-square displacem

~MSD! of the A particle obeyŝ Xt
2&;(DAt)2/dv

(A)
, while the

MSD of traps follows^xt
2&;(DBt)2/dv

(B)
, dv

(A) , anddv
(B) be-

ing the ‘‘fractal’’ dimensions of theA particle and traps tra
jectories, respectively. For conventional diffusion of h
dv

(A)5dv
(B)[2 for anyd. Under quite general conditions, fo

DAt@ l dv
(A)

the probability Prob(max$uXtu%, l utP@0,t#) can
be estimated as@21#

Prob~max$uXtu%, l utP@0,t# !;exp@2bd~DAt !/ l dv
(A)

#,
~13!

where bd is a constant dependent on the type of rand
motion andd. On the other hand, one readily notices th
Probj (min$uxt

( j )u%. l utP@0,t#) is just the probability that an
immobile target of radiusl survives until timet in the pres-
ence of randomly moving traps, i.e.,

Probj~min$uxt
( j )u%. l utP@0,t# !5exp@2rf l

(d)~ t !#, ~14!

wheref l
(d)(t) is defined by Eq.~10!, with b replaced byl.

We turn next to the most delicate point of our analys
We note first that the definition in the first line in Eq.~10!
allows to expressf l

(d)(t), in virtue of the Gauss theorem, a
a time integral ofKS(t) ~see Ref.@3#!. On the other hand, the
definition in the second line in Eq.~10! shows thatf l

(d)(t)
can be thought of as the mean volume swept by rando
moving fictitious particle of radiusl during time t, i.e., the
mean volume of the so-called ‘‘Wiener sausage’’~see, e.g.,
Ref. @17#!. Its lattice counterpart is known as the mean nu
ber of distinct sites visited@21#. General properties of such
volume for different types of random motion have been fi
analyzed in the pioneering papers by de Gennes@20#, in
which he studied RR involving polymerized particles and T
on the percolation cluster. As well, behavior off l

(d)(t) have
been discussed at length in Ref.@22# within the context of
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the polymer-free voids distribution in polymer solutions.
has been shown that depending on the relation betweendv

(B)

and d, two completely different types of behavior may b
observed. The first type of behavior occurs whendv

(B),d. In
this casef l

(d)(t), called by de Gennes as the ‘‘exploratio
volume,’’ is smaller than the volumext

d , where the particle is
confined. This case is called the case of noncompact ex
ration and heref l

(d)(t);gdt, where the prefactorgd is some
function dependent ond and the type of random motion. In
this case,gd is proportional to some positive power ofl ! For
lattice random walks this regime takes place when rand
walks are nonrecurrent@21#. In the opposite case whendv

(B)

.d the behavior is completely different. Here, the explo
tion volumef l

(d)(t) increases sublinearly with time, the tra
jectories are spatially more confined and most of space in
the volumext

d is indeed visited. This case is called the ca
of ‘‘compact exploration’’~recurrent random walks for the
lattice counterparts! and here

f l
(d)~ t !;~ uxtu!d;~DBt !d/dv

(B)
, t→`. ~15!

What is most important in this case is that the prefactor
this asymptotic law isindependentof l ! Note also that such a
behavior is compatible with the Alexander-Orbach res

f l
(d5df )(t);tdf /dv

(B)
for anomalous random walk on fracta

lattices of dimensiondf @25#.
Now, we note that the function on the rhs of Eq.~12! is

valid for any value ofl and consequently, the ‘‘best’’ lowe
bound would correspond to suchl which provides its maxi-
mal value. Focussing next solely on the case of random
tion with compact exploration, we note that in this case
leading large-t behavior off l

(d)(t) is independent ofl, and
hence, we have to maximize only the product of the first t
terms. This yields

PA~ t !>exp@2ad8r
12z~DAt !z#exp@2rf l

(d)~ t !#, ~16!

wheread8 is a constant,z5d/(d1dv
(A)) and the asymptotic

behavior off l
(d)(t) is defined in Eq.~15!.

For compact exploration, we have thatd,dv
(B) . On the

other hand, on comparing the growth rate in the exponen
the first term on the rhs of Eq.~16! against the growth rate o
f l

(d)(t) defined in Eq.~15!, we infer that the second multi
plier determines the overall decay in case whend, dv

(A) , and
dv

(B) obey:d,dv
(B),d1dv

(A) , which reduces to simple con
dition of compact exploration fordv

(A)5dv
(B) . Further on, for

d, dv
(A) , anddv

(B) , which obey the double-side inequality,
is evident that the leading terms in Eqs.~9! and ~16! coin-
cide, sincefb

(d)(t) is asymptotically independent ofb and
f l

(d)(t) does not depend onl. We infer, thus, that in this quite
general case exact asymptotic solution for trapping react
A1B→B in which both species move randomly is given b
the solution of the corresponding immobile target annihi
tion problem, which represents a substantial generaliza
of the BB result@18#.
1-3
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Finally, we analyze the behavior in the marginal cased
5dv

(B)5dv
(A) using as an example conventional diffusion

2D systems. In this case, an asymptotical behavior
f l

(d52)(t) is well known @26#

f l
(2)~ t !5

4pDBt

@ ln~4DBt/ l 2!22g#
F11

A1

@ ln~4DBt/ l 2!22g#

1O„@ ln~4DBt/ l 2!22g#22
…G , ~17!

whereA1'0.423 andg is the Euler constant. On the othe
hand, for standard diffusive motion one has th
Prob(max$uXtu%, l utP@0,t#) obeys Eq.~13! in which one
setsdv

(A)52 and b2 is the square of the first zero of th
Bessel functionJ0(x). Now, sincef l

(2)(t) is only weakly
~logarithmically! dependent onl, one may assume that th
value of l which maximizes the lower bound forDAt@ l 2 is
p

.

ys

06010
f
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still determined by the derivative of the first two terms on t
rhs in Eq. ~12!, i.e., l;(b2DAt/V2r)1/4. Such an estimate
shows then that in 2D systems with conventional diffusi
the A particle survival probability is bounded by

11
A1

ln~4DBt/b2!
1O~ ln22~ t !!< ln@1/PA~ t !#

ln~4DBt/b2!

4pDBtr

<222
@ ln~4/b2!1 ln~V2rb2!1 ln~DB /DA!#

ln~4DBt/b2!

1O@ ln22~ t !#.

Hence, in this marginal case the suitably extended upper
lower bounds determine the decay form up to a numer
factor in the characteristic decay time.
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