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Trapping reactions with randomly moving traps: Exact asymptotic results for compact exploration
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In a recent paper, Bray and Blythe have shown that the survival probaBjty) of anA particle diffusing
with a diffusion coefficienD , in a one-dimensional system with diffusive trapss independent ob 4 in the
asymptotic limitt—occ and coincides with the survival probability of an immobile target in the presence of
diffusive traps. Here, we show that this remarkable behavior has a more general range of validity and holds for
systems of an arbitrary dimensial integer or fractal, provided that the traps are “compactly exploring” the
space, i.e., the “fractal” dimensiod,, of traps’ trajectories is greater thah For the marginal case whety,
=d, as exemplified here by conventional diffusion in two-dimensional systems, the decay form is determined
up to a numerical factor in the characteristic decay time.
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Trapping A+B—B and recombinatio’A+B—0 reac- INPA(t)~—p2@T2(D,t)dd+2) - {00, 2)
tions (TR and RR involving randomly movingA andB par-
ticles which react “when they meet” at a certain distarfice which is intimately related to many fundamenal problems of
are ubiquitous in nature. A few stray examples includestatistical physic$3—11].
quenching of delocalized excitations, coagulation, recombi- Survival probabilityP,4e(t) of an immobile targef of
nation of radicals, charge carriers or defects, or biologicatadiusb in presence of pointlike diffusive trag (TAP) can

processes related to population survija. be calculated exactly for any (see Refs[3,12-14),
In recent years, there has been much interest in the long-
time behavior of these processes, following a remarkable dis- Prargedt) =exg —p o (1)], (3)

covery[2-10] of many-particle effects, which induce essen-
tial departures from the conventionally expected behaviowhere ¢{%(t) obeys Eq.(1) with D,=0. Decay forms in
[1]. systems with hard-core interactions betw@&s{15] or with

A pronounced deviation from the text-book predictionsfluctuating chemical activity16] have been also derived.
was found for the diffusion-controlled RR in case when ini- On contrary, the physically most important case of TR
tially the particles of theA andB species are all distributed at when bothAs andBs diffuse was not solved exactly. It has
random with strictly equal mean densitieg. It has been been proveri4] that here,PA(t) obeys
first shown[2] and subsequently provdB,4] that ast— o

the mean densitp(t) follows n(t)~ agndADt) =¥, where t'2 d=1
d is the space dimensionalityy is a constant an@ =D t
+ Dg is the sum of particles’ diffusion coefficients. This law INPA(t)=—Ag4(Da,Dp) X D’ d=2 (4)
contradicts the decay law obtained within the Smoluchowski
approachSA): n(t)~1/¢{(t) [1], where ag— o, t, d=3,
— _ which equation defines its time-dependence exactly. On the
4VDt/m, d=1 other hand, the factoxy4(D,,Dg) remained as yet an un-
(@ t 47Dt known function of the particles’ diffusivities ardl Since the
bp (t)=J drKg(1)~y ————-, d=2 (1)  time dependence of the function on the right-hand $itle
0 In(4Dt/b%) of Eq. (4) follows precisely the behavior gitdrK¢(7), one
47Dbt, d=3, might expect that the SA provides quite an accurate descrip-

tion for this situation and following its spirit to s&@,=0
Ks(7) being thed-dimensional Smoluchowski-type “con- supposing that traps diffuse with the diffusion coefficiént
stant,” defined as the flux of diffusive particles through the=Dg+D,. As a matter of fact, it has been often tacitly
surface of an immobile sphere of radibs assumed that when both of species diffisgt) obeys Eg.
For the TR two situations were most thoroughly studied:(3) with ¢{(t) defined by Eq(1) with D=D,+Dg. On
the case whers diffuse whileBs are static, and the situa- the other hand, it has been shown tha{D,,Dg) is less
tion in which the As are immobile whileBs diffuse—the than the corresponding prefactorkiy(t) [3] and that it may
so-called target annihilation problefAP). In the case of be bounded by a nonanalytic function@f, andDg [17]. A
static, randomly placedwith mean densityp) traps theA  perturbative approach for calculationXof(D A ,Dg), as well
particle survival probability P5(t) shows a nontrivial, as corrections to the SA in one-dimensioriaD) systems
fluctuation-induced behavidB-10] were presented[13]. It has been also noticed that
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Ng(Da,Dg) is not a function oD =D 5+ Dg only, since the  of motion provided that the pointlike traps are ignorant of
diffusion-reaction equation is not separaf8]. This lack of  each other and, thus, move independently. In the IXy¥
knowledge of the precise form ofy(D4,Dg), of course, —=(N/V=p) one has
constitutes an annoying gap in the general understanding of
the fluctuation phenomena in chemical kinetics. _ ,

In a recent paper, Bray and Blyth@&B) [18] made a PA(t)—E{exp<—pj dxof (Xt’xt»{xt}vxto—xo)]' @)
considerable step towards the solution of this general case by
showing that, surprisingly, the survival probability of &an ~ Where brackets denote now averaging with respect to the
particle diffusing in a 1D system with diffusive traps is in- trajectories of a single traB whose starting point is at po-
dependent oD, in the asymptotic limit— o and coincides Sition Xo, while I'(X;,X) is the indicator function
with the survival probability of an immobile target in the .
presence of dlffuswg traps, E@). The convergence to this I"(X¢ %) =1—1 ( f So( X ,— xT)dr), @)
asymptotic result might be, however, rather slow as shows 0
the comparisor{18] with extensive numerical simulations
[19]. which shows whether two given realizations of trajectories

One may, however, pose quite a legitimate questionX; andx; have “intersected” each other at least once within
whether such a remarkable result is constrained to physicallihe time interva[O,t]. Note that averaging over trajectories
not very realistic 1D systems with conventional diffusion orx; in the exponential is to be taken for fixet and after
if it is just a particular case of a more general behavior whichperforming such an averaging we have to average an expo-
persists also for highed? nential of the result with respect to the trajectorfigs which

In this paper, we show that indeed this remarkable resultepresents a fairly complex mathematical problem. Such a
holds for a more general case. Namely, we show that foromplexity emphasizes, of course, the significance of the BB
systems of an arbitrary dimensiah integer or fractal, the result.
larget behavior of the survival probability of a randomly ~ Now, BB have noticed18], although not proven rigor-
moving A particle in the presence of randomly moving trapsously, that theA particle will on average survive longer if it
is given exactly by the solution of the exactly solvable TAP,stays still than if it diffuses. They have also furnished some
provided that the traps are “compactly exploring” the space;arguments in favor of this statement showing that this is true
in other words, the “fractal” dimensiod\(NB) of traps’ trajec-  for systems with dinite number of traps since here the low-
tories is greater thad [20]. For lattice random walks, this €st value of the decay exponent correspond® fe=0. In
corresponds to situations in which random walks are recurother words, it means th&,(t) in Eqg. (7) is bounded from
rent[21]. Random motion withl{®)>2 is widespread in na- above by
ture and is most often encountered in porous and disordered _ (d)
systems, amorphous and polymer materjals|, for which PA()=Prargel) =exfl —pp”(1)], ©)
systems it will take place in two and even three dimensions @)\ e
(see, e.g., Refd20,22 and[23]). Finally, we examine the where ¢y (1) is given by
behavior in the marginal case wheff’=d, as exemplified .
here by conventional diffusion in 2D systems, and show that ¢gd)(t):f dx0< 1- |< f 5b(XT)dT> >

0 e Xe=0=%0

t
1—I<f05b(xr—xo)dr)

here the decay form can be determined up to a numerical
factor in the characteristic decay time.

Consider ad-dimensional volumeV/ containing a single :f dx <
mobile A particle of radiug andN pointlike trapsB. Let X, 0
be the vector denoting th&particle position at time moment

> XehX=0=0

t, while x"’, j=1,... N, be the corresponding vector de- (10)
noting the position of théth trap. Introducing two auxiliary
indicator functions Note also that Eq(9) should hold for any type of random
motion, not necessarily only for conventional diffusion.
1, [x|<b 1, y=0 Alower bound onP,(t) can be constructed in the follow-
Op(X)= [ 0. otherwise, = [ 0. otherwise, (5 ing way[18]: One notices first that all terms in the product in

Eq. (6) are positive definite and hence, if one performs av-
one writesP(t) down formally as follows: eraging of Eq(6) not over allpossiblerealizations of trajec-
tories X, andx", but only over some restricted subset, one
arrives at a lower bound oR,(t). Following Ref.[18], we
)> , (6 define this subset as follows: let us assume that initiallyXhe
{0y particle has been located at the origin, while all traps were
uniformly spread in ad-dimensional system such that the
where the symbokE{- - -} denotes averaging with respect to trap nearest to the origin appeared at distdrfoem it. Then,
the A particle trajectories, while the brackets with the sub-we perform averaging only over such trajectories of fhe
script{xﬁ”} stand for averaging with respect to the trajecto-particles which do not leave within the time interyalt] the
ries of the thgth trap. Note that Eq(6) applies for any type volume of radiud centered around the origin, and such tra-

t .
f Sp(X,—xUdr
0

PA(t)=E{ ﬁl <I<
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jectories of trap® (which all initially are uniformly distrib-  the polymer-free voids distribution in polymer solutions. It
uted outside of this volumedo not enter there within the has been shown that depending on the relation betw&&n

time interval[0t]. For such trajectories and d, two completely different types of behavior may be
N observed. The first type of behavior occurs quIé?kd. In
t _ ; (d) « ;
o) _ this case¢, ’(t), called by de Gennes as the “exploration
11:[1 I( fo O(Xr =%z )dT) L (1) volume,” is smaller than the volume', where the particle is

confined. This case is called the case of noncompact explo-
and hence, the following lower bound is valid: ration and her@ﬁl(d)(t)~ v4t, where the prefactoy, is some
d function dependent od and the type of random motion. In
Pa(t)=exp —Vgpl®) X Prodmax|X |} this casejyq is proportionalto some positive power df For
<I|Te[0,t])><Proq(min{|x§j)|}>l|re[0,t]), lattice random walks this regime takes_place when random
walks are nonrecurrefi2l]. In the opposite case wheﬁf)

(12)  >d the behavior is completely different. Here, the explora-
tion volume ¢(?(t) increases sublinearly with time, the tra-
jectories are spatially more confined and most of space inside
the volumex{ is indeed visited. This case is called the case
of “compact exploration”(recurrent random walks for the
lattice counterparjsand here

whereV, denotes the volume of &dimensional sphere of a
unit radius, while two other multipliers stand for the prob-
ability that theA particle does not leave a sphere of radius
within the time interval 0,t] and the probability that neither
of traps, initially uniformly distributed with mean densipy
outside this sphere, enters this sphere up to tinote that
exactly the same lower bound has been already proposed in d;,‘d)(t)~(|xt|)d~(DBt)d’dEuB), t—oo. (15)
Refs.[24] and[17].

Now, let us assume that the mean-square displacement ) o ) )
(MSD) of the A particle obeyg X2)~ (D at)2%", while the :’r\]’izags's most important in ”(‘;S case > thatl thehprefactt_lor in

) 24®  (a) ®) ymptotic law isndependenof ! Note also that such a

MSD of traps follows(x;)~(Dgt)*«", d;”, andd,” be-  pehavior is compatible with the Alexander-Orbach result
ing the “fractal” dimensions of theéA particle and traps tra- ¢(d=df)(t)~tdf,dis) for anomalous random walk on fractal
jectories, respectively. For conventional diffusion of has,’!

(A)_ 4(B)— ; . lattices of dimensiom; [25].
d;”=d;’=2 for anyd. Under quite general conditions, for Now, we note that the function on the rhs of Ea2) is

o) N
Dat>1%" the probability Prob(maX.[}<I|7<[0t]) can  yajid for any value off and consequently, the “best” lower

be estimated af21] bound would correspond to suthwhich provides its maxi-
) mal value. Focussing next solely on the case of random mo-
Protimax{|X,[}<I|re [0t]) ~exd — Ba(Dat)/1% ], tion with compact exploration, we note that in this case the
13 |eading large- behavior of{?(t) is independent of, and

. hence, we have to maximize only the product of the first two
where B4 is a constant dependent on the type of random[errns .\#‘is yi\(/elds imiz y produ rstiw

motion andd. On the other hand, one readily notices that
Pro(min{lx|}>1|7<[04]) is just the probability that an
immobile target of radius survives until timet in the pres- Pa()=exyd —agp' ADat)?lexd —ps{P(1)], (16)
ence of randomly moving traps, i.e.,

whereay is a constantz=d/(d+dEOA)) and the asymptotic
behavior of¢|(d)(t) is defined in Eq(15).
Wheregb,(d)(t) is defined by Eq(10), with b replaced byl. For compact explorz_mon, we have tkm{:_ dEuB). On the .
We turn next to the most delicate point of our analysis.Other hand, on comparing the growth rate in the exponent in
We note first that the definition in the first line in E(.0) th(%)f'rSt term on the rhs of E416) against the growth rate of
allows to express(?(t), in virtue of the Gauss theorem, as ¢i (1) defined in Eq.(15), we infer that the secc()p)d multi-
a time integral oK (t) (see Ref[3]). On the other hand, the pI(|Be)r determme(sB)the ove(rgll degay In case W“eqw , and
definition in the second line in Eq10) shows thatp(®(t)  d.~ obey:d<d,”<d+d,", which reduces to simple con-
can be thought of as the mean volume swept by randomigiition of compact exploration fod ;" =d"> . Further on, for
moving fictitious particle of radiu$ during timet, i.e., the d, d®  andd®, which obey the double-side inequality, it
mean volume of the so-called “Wiener sausadsge, e.g., is evident that the leading terms in EqS) and (16) coin-
Ref.[17)). Its lattice counterpart is known as the mean num-<cide, sinces{?(t) is asymptotically independent df and
ber of distinct sites visitef21]. General properties of such a ¢{%(t) does not depend dnWe infer, thus, that in this quite
volume for different types of random motion have been firstgeneral case exact asymptotic solution for trapping reactions
analyzed in the pioneering papers by de Genj#®, in A+ B—B in which both species move randomly is given by
which he studied RR involving polymerized particles and TRthe solution of the corresponding immobile target annihila-
on the percolation cluster. As well, behavior ¢f”(t) have  tion problem, which represents a substantial generalization
been discussed at length in RE22] within the context of of the BB resulf18].

Prof(min{|x[}>1|7e[0t])=exd —po(P(1)], (14)
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Finally, we analyze the behavior in the marginal cdse still determined by the derivative of the first two terms on the
=d®=d® using as an example conventional diffusion inrhs in Eq.(12), i.e., | ~(B2Dat/V,p) Y% Such an estimate
2D systems. In this case, an asymptotical behavior oshows then that in 2D systems with conventional diffusion

(@=2)(t) is well known[26] the A particle survival probability is bounded by
¢|(2)(t)= 47Dt 1+ A 1+ LZ+O(In*2(t))sln[1/PA(t)]M
[IN(4Dgt/12)—2y]| ™ [IN(4Dgt/12)—2] In(4Dgt/b?) 4mDgtp
[In(4/B,)+In(V,pb?)+In(Dg/Dy)]
+O([In(4Dgt/12)—2y]7?)|, (17) =2-2 In(4Dt/b?)
+O[In2(t)].

whereA;~0.423 andy is the Euler constant. On the other
hand, for standard diffusive motion one has that
Prob(max|X,|}<I|7e[0}t]) obeys Eq.(13) in which one
setsd™W=2 and 3, is the square of the first zero of the
Bessel functionJo(x). Now, since¢(?)(t) is only weakly
(logarithmically dependent or, one may assume that the  The authors acknowledge helpful discussions with Profes-
value ofl which maximizes the lower bound f@t>1?is  sor Bray and Professor Blythe on the matters of this paper.

Hence, in this marginal case the suitably extended upper and
lower bounds determine the decay form up to a numerical
factor in the characteristic decay time.
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