
Physica A 306 (2002) 169–179
www.elsevier.com/locate/physa

Dynamical disorder in di!usion-limited reactions
M. Moreaua ;∗, G. Oshanina, O. B)enichoub

aLaboratoire de Physique Th�eorique des Liquides, University Pierre et Marie Curie, 4 Place Jussieu,
75252 Paris Cedex 05, France

bLaboratoire de Physique de la Mati�ere Condens�ee, Coll�ege de France, 11 place Marcelin Berthelot,
75005, Paris, France

Abstract

We consider a simple model of annihilation reaction, when particles are located on a regular
lattice, one of them presenting a .uctuating activity. Time-correlated .uctuations are addressed.
The reaction probability and the reaction function are determined exactly. It is shown that the
usual, mean-2eld theory of chemical kinetics does not hold. In particular, the classical law of
chemical kinetics does not apply in low dimensions. In three dimensions, a chemical constant
exists and it increases with the relaxation frequency of the .uctuations �. Previously known
results are recovered in the limit case of uncorrelated .uctuations, when � → ∞. Di!erent related
models, which cannot be solved exactly, are discussed in this limit case. c© 2002 Published by
Elsevier Science B.V.

1. Introduction

Natural media are often subject to stochastic time .uctuations, due to their internal
evolution or due to their interaction with a changing environment. These .uctuations
can modify their reactivity. For instance:

• the microscopic description of an elementary reaction can involve a .uctuating
interaction potential, taking into account the stochastic interaction of the reacting
molecules with the surrounding .uid;

• random activation or deactivation of a reagent can be caused by external factors
(photons, solvent molecules: : :);

• because of the complexity of biomolecule structures, some geometrical con2gurations
may inhibit a reaction, whereas stochastic changes in the molecule geometries can

∗ Corresponding author. Tel.: +33-1-4427-4952; fax: +33-1-4427-5100.
E-mail address: moreau@lptl.jussieu.fr (M. Moreau).

0378-4371/02/$ - see front matter c© 2002 Published by Elsevier Science B.V.
PII: S 0378 -4371(02)00495 -8



170 M. Moreau et al. / Physica A 306 (2002) 169–179

allow it to take place. Such .uctuations often exist for reactions in biomembranes,
ligand binding to proteins, or molecular transport in complex molecules, among many
examples.

In the present paper, we consider the e!ects of an activation–deactivation process on
the kinetics of a model di!usion-limited annihilation reaction. It is shown that these
e!ects strongly depend on the dimension of the system, and that, generally, they cannot
be described by a mean-2eld theory.
At 2rst, we recall some results concerning a model, ungated di!usion-limited

reaction, known from a long time, which are necessary for the following sections.
Section 3 addresses the general problem of time-correlated activity .uctuations of one
of the reagents. Conclusions and perspectives are discussed in Section 4.

2. Ungated di�usion-limited reactions

2.1. Target annihilation by scavengers randomly moving on a lattice

After the pioneering work of Smoluchowski [1], di!usion-limited reactions have been
studied by many authors (see Refs. [2–6], for instance) using di!usion calculations as
well as random walks on lattices [6–13], both formalisms giving essentially the same
results. Here, we consider a simple annihilation reaction on a lattice, in the absence of
a .uctuating reactivity.

2.1.1. Model
A particle A (target) and NB particles B (scavengers) are located on the N sites of

a d-dimensional regular lattice. Each site can contain several particles. Particle A is
immobile, whereas particles B perform independent, homogeneous discrete-time random
walks on the lattice sites (including sites occupied by other particles): in the simplest
model, at integer times t = 0; 1; : : : n; : : : each particle B jumps with equal probability
on one of its nearest neighbours, but more complex laws could be considered.
Particle A is destroyed as soon as a particle B reaches it.

2.1.2. Survival probability 
(n)
The probability 
(n) that particle A survives up to time n can be computed in the

thermodynamic limit NB; N → ∞ NB=N → b concentration of scavengers. It can be
shown [7–11] that


(n) = exp(−bD(n)) ; (1)

where D(n) is the expectation value of the number of distinct sites S(n) visited by an
n-step random walk (the average being taken on trajectories)

D(n) = 〈S(n)〉� : (2)
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2.1.3. Expectation value of the number of distinct sites visited
The expectation value D(n) of the number of distinct sites visited by an n-step

random walk depends on the type of the lattice and of the dimensionality. For a
d-dimensional Polya random walk, it is known [14] that when n → ∞

if d= 1; D(n) = (8n=�)1=2 + O(n−1=2) ; (3.1)

if d= 2; D(n) = �Cn=log n+O(n=log2 n) ; (3.2)

if d= 3; D(n) = nS +O(n−1=2) : (3.3)

Here C is a constant depending on the lattice. For instance, C = 4 × 3−3=2, 1 and
2× 3−1=2 for hexagonal, square and triangular lattices, respectively.
S is the probability that a B particle never returns to its initial position
S has a well-known, 2nite value in three dimensions, depending on the lattice,

whereas it vanishes in 1 or 2 dimensions. Thus, it can be concluded that

• the ordinary, mean-2eld kinetics only applies in 3 (or more) dimensions:


′(n) = exp(−Sbn) ; (4)

which corresponds to the chemical reaction constant

k = S : (5)

• On the contrary, 
(n) does not decay exponentially if d = 1 or 2 dimensions: the
mean-2eld theory breaks down for low dimensions.

2.2. Rosenstock trapping model

2.2.1. Model
Following Rosenstock [12], we now consider one single particle A performing a

random walk on a lattice containing NB immobile, randomly placed traps B. Particle
A disappears as soon as it reaches one trap B.

2.2.2. Survival probability 
(n) in thermodynamic limit
If N; NB → ∞; NB=N = b, the survival probability of A at time n is given by


(n) = 〈exp(−bS(n))〉� : (6)

Here, S(n) is the number of distinct sites visited during the n steps trajectory �, and
the average is taken on trajectories.
The average contained in formula (6) cannot be calculated exactly. The simplest

approximation is the Rosenstock approximation:

〈exp(−bS(n))〉� ≈ exp(−b〈S(n)〉�) (7)
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or with previous notations


(n) ≈ exp(−bD(n)) (8)

which is the same result as for the target annihilation problem. In fact, the right-hand
side of (7) is a rigorous lower bound of 
(n). It has been shown that approximation
(8) is fairly good for intermediate values of NB [9], because the logarithm is a slowly
varying function.
For large values of NB, however, this approximation is no longer valid. Donsker and

Varadhan [15] have shown that if NB → ∞

(n) ≈ exp(−adb2=d+2Nd=d+2

B ) : (9)

3. Stochastically gated reaction with memory

We now consider particles with .uctuating activity, according to the motivations
mentioned previously. In the model reactions described in Sections 2.1 and 2.2, either
particle A or particles B, or both, can .uctuate between an inert state and an active
internal state, which leads to a number of problems corresponding to di!erent physical
situations. In the present section, we focus on the case of immobile targets exposed to
mobile, .uctuating scavengers, which can be solved explicitly.

3.1. Immobile target and mobile, 8uctuating scavengers

Particles: NA particles A (targets) and NB particles B (scavengers) are located on the
N sites of a d-dimensional regular lattice, each site can contain several particle. Par-
ticles A are immobile; particles B perform an independent, homogeneous discrete-time
random walk on sites of the lattice (including sites occupied by other particles).
Fluctuations. Particles B .uctuate independently between two internal states: an inert

form B0 (state 0) and an activated form B1 (state 1)

B0 � B1 (10)

(which may, for instance, represent the thermal excitation–deexcitation of molecules,
or any of the processes mentioned in the introduction).
The waiting times T0 in state 0 and T1 in state 1 are independent, stochastic variables

obeying the exponential laws

P(Ti ¿ t) = exp(−�it) for i = 0; 1 : (11)

For this random telegraph process, the conditional probability p(j; t + �=i; t) to 2nd a
scavenger B in state j at time t + �, knowing that it is in state i at time t is

p(j; t + �=i; t) = pji(�) = (�ji − �i)e−�� + �j ; (12)

where � is the Kronecker symbol, and �= �0 + �1; �j = 1− �j=�.
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Interactions. Particles B do not interact with each other. Particles B0 do not inter-
act with particles A, but if an active particle B1 meets a A, particle A is destroyed
instantaneously, whereas B1 remains unchanged

A+ B1 → B1 : (13)

However, it results from Section 2 that the kinetics of this “reaction” is not correctly
described by the usual, mean-2eld reaction kinetics. In fact, because the .uctuations
of each B particle are correlated along its trajectory, a complete stochastic theory is
needed to compute 〈NA(t)〉, average number of A particles at time t.

〈NA(t)〉 is the sum of the probability for each particle A to survive from time 0 up
to time t:

〈NA(t)〉= NA(0) (t) ; (14)

 (t) being the probability for a given A to survive up to time t.

3.2. Survival probability of a target with NB scavengers

From now on, we consider a given target A, and NB scavengers. If a scavenger B
reaches target A in state 0 at time t, and returns to A at a further time t + �, then
the probability that B is then in state i (i = 0 or 1) is p00 (�). Thus, to compute the
probability that A is annihilated by B at time n, it is necessary to consider the complete
trajectory of B from t = 0 to n.
Let us label the scavengers by the integers from 1 to NB and denote them as Bi; i=

1; 2; : : : NB. Given their trajectories {�i} i = 1; 2; : : : NB, the conditional probability that
particle Bi is in state 0 at all its visits to A between t = 0 and n is

Pi(n=�i) = �0
m−1∏
h=1

p00(�hi ) if m¿ 0 (=1 if m= 0) (15)

with

p00(�) = �0 + �1e−�� : (16)

The conditional probability that particle A survives at time n is

 (n={�j}) =
NB∏
i=1

Pi(n=�i)

and since particles B are independent, the survival probability of A at time n, averaged
on trajectories, is

 (n) = 〈 (n={�j})〉= 〈P1(n=�)〉NB (17)

which permits to compute the survival probability of A from the conditional probability
P1(n=�) concerning a given particle B.
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3.2.1. Thermodynamic limit of survival probability
Let M be the initial position of particle B, and �M a trajectory starting from M at

time 0. If the probability of the initial position of B is uniformly distributed among
the N sites, then we have

〈P1(n=�)〉= N−1
∑
M

〈P1(n=�M )〉�M ; (18)

where 〈P1(n=�M )〉�M denotes the average on all trajectories starting from M . Writing

 (n) =

(
1− N−1

∑
M

(1− 〈P1(n=�M )〉�M 〉)
)NB

: (19)

we obtain, in the thermodynamic limit N; NB → ∞ and NB=N = b

 (n) ≈ exp

(
−b
∑
M

(1− 〈P1(n=�M )〉�M 〉
)

; (20)

where 1 − 〈P1(n=�M )〉 is the probability that B, starting from M , destroys A at some
time t6 n.
In the case where particle B is always activated (�1 = 1) 〈P1(n=�M )〉�M 〉 is the

probability LM (n) that B, starting from M , reaches A at t6 n, and D(n)=
∑

M LM (n) is
the average number of distinct sites visited by a B particle during the n-steps trajectory.

3.3. First reaction time and reaction probability

We de2ne the following:

• the probability QM (n) that B has never reached A at time n;
• the probability PM (n) that B reaches A for the 2rst time at time n;

PM (n) = QM (n− 1)− QM (n) (n¿ 0)

• the similar probabilities Q
M
(n) and PM (n) for arrival at A of B under activated

form, with

Q
M
(n) = 〈P1(n=�M )〉�M : (21)

As mentioned in Section 2.1, the probabilities PM (n) and QM (n) are known for most
random walks and networks in d dimensions. They permit to compute Q

M
(n) and

PM (n) easily. In fact, consider a trajectory �M starting from M at time 0 and reaching
A at the successive times t1i ; t

2
i ; : : : ; t

m
i with �hi = th+1

i − thi ¿ 1 (i = 0; : : : ; m− 1); �mi =
n− tm−1

i ¿ 0.
The probability that B never reaches A under its activated form up to t = n is

Q
M
(n) =QM (n) +

∑
m¿1

∑
�0+�1+···+�m=n

�0PM (�0)p00(�1)PA(�1) : : :

×p00(�m−1)PA(�m−1)QA(�m)
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with

p00(�) = �0 + �1e−�� :

The Laplace transform Q̂
M
(s) of Q

M
(n) is found to be

Q̂
M
(s) = Q̂M (s) + �0P̂M (s)[1− �0P̂A(s)− �1P̂A(s+ �)]−1Q̂A(s) ; (22)

where Q̂A and P̂A refer to the return of particle B to A, starting from A: assuming that
the medium is homogeneous we drop index A and obtain one of our main results

P̂ M (s) = P̂ M (s) = P̂M (s)

[
1 +

�0
�1

1− P̂(s)

1− P̂(s+ �)

]−1

: (23)

3.3.1. Reaction probability
PM ≡ P̂ M (0) is the reaction (or annihilation) probability, i.e. the probability that B

will ever destroy A. On the other hand, we notice that
PM ≡ P̂M (0) is the probability that B, starting from M , will ever reach A, and

P̂(0) =
∑

P(n) ≡ R ≡ 1− S is the probability that a B particle will ever return to its
initial position, whereas S is the probability that it will never returns.
Taking s= 0 in the previous formula, we see that

(i) in one and two dimensions, where R = PM = 1, we have PM = 1: the reaction
occurs with probability 1, independent of the internal .uctuations of particle B.

(ii) in three (or more) dimensions, PM = R= 1− S and

PM

PM
= 1 +

�0
�1

S

1− P̂(�)
: (24)

As a result, P̂(�) decreases with �; PM is an increasing function of the internal relax-
ation frequency: when � increases from 0 to ∞, the reaction probability PM increases
from �1PM to �1(�1 + �0S)−1PM independent of the dimension d¿ 3 and of the type
of the lattice.
A similar conclusion was obtained [16] in a very di!erent model of reaction with a

.uctuating reaction potential (in2nite dichotomic barriers).

3.3.2. Limit cases
The limit cases of 0 and in2nite relaxation frequency � are important in practice.

They permit to recover results obtained previously in simpler theories:
Frozen disorder: If the relaxation frequency � tends to 0, the internal state of particle

B does not change with time. Then

P̂(�) → S and PM = �1PM

which is obvious: if B is activated, then annihilation occurs at the 2rst encounter of B
with A, whereas it never occurs if B is inert.
Fluctuations without memory: If the relaxation frequencies �0 and �1 become in2nite,

then P̂(�) → 0 and we recover the case of .uctuations without memory [17], further
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discussed in Section 4, for which

PM

PM
= 1 +

�0
�1

S :

3.4. Reaction kinetics

The kinetics of the annihilation reaction is de2ned by the survival probability  (n)
and formula (20)

 (n) = exp(−bD(n)) ; (25)

D(n) being the “integrated reaction function”

D(n) =
∑
M

(1− Q
M
(n)) : (26)

The usual reaction function k(n) can be de2ned by

k(n) =−1
b

@
@n

ln  (n) = D(n)− D(n− 1) (27)

and is related to the reaction probability by

k(n) =
∑
M

(Q
M
(n− 1)− Q

M
(n)) =

∑
M

PM (n) : (28)

Its Laplace transform is

k̂(s) = k̂(s)

[
1 +

�0
�1

1− P̂(s)
1− P(s+ �)

]−1

; (29)

k̂(s) being the Laplace transform of the reaction constant k(n) in the absence of internal
.uctuations (�0 = 1). It can be noticed that k(n) is the probability that at its nth step
the B particle visits a site which was never visited previously.

3.4.1. Results

• in one or two dimensions, k̂(s) ≈ k̂(s) if s → 0: thus, k(n) has the same asymptotic
behavior as k(n) when n → ∞: neither k nor k tends to a 2nite limit when n → ∞:
there is no reaction constant, and the ordinary law of chemical kinetics does not
apply.

• in three (or more) dimensions,

k̂(s) ∼ Ss−1
[
1 +

�0
�1

S

1− P̂(�)

]−1

(30)

when

s → 0 ;
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which implies that if n → ∞; k(n) tends to a constant k, which is the usual reaction
constant

k(n) → k = S
[
1 +

�0
�1

S

1− P̂(�)

]−1

or
1
k
=

1
S
+

�0
�1

1

1− P̂(�)
; (31)

where P̂(s) is the Laplace-transformed probability of 2rst return of scavenger B to
its initial position at step n; S = 1− P̂(0) is the probability that B never returns to
its initial position.

Thus, like the reaction probability, the reaction constant k increases with the re-
laxation frequency �: if � increases from 0 to ∞, then k increases from �1S to
�1S(�1 + �0S)−1.
This result can be understood intuitively. In fact, if a scavenger B reaches A under

inert form, then it has a large probability to return to A after a few steps: if the
relaxation frequency of B is low, then it has a high probability to be still inactive at
these returns and the reaction rate will be low.

3.4.2. Limit cases

• Frozen disorder: when � → 0; k → �1k = �1S, which amounts to multiplying the
concentration of B by �1, as it should be.

• Uncorrelated time 8uctuations: when � → ∞; P̂(�) → 0 and we obtain an inverse
addition law for the rate constants

1
k
=

1
S
+

�0
�1

: (32)

Such “inverse addition laws” for rate constants are frequently obtained for di!usion-
limited reactions, or more generally for chain processes (reaction can only be completed
by performing a number of successive steps).

4. Other models of stochastically gated reactions: uncorrelated time !uctuations

It has been observed that other .uctuation schemes can be studied in the model
annihilation reaction of a particle A by particles B. For instance, either A or B can
move, and either A or B can .uctuate. Only the case treated in Section 3 can be
solved analytically, even in the limit of uncorrelated time .uctuations. However, a
number of approximate results or exact bounds have been obtained in this limit case
[17], and we now focus on this situation. It has been shown in particular that:
at moderate times n, the Rosenstock approximation can be used, then all the models

have the same behaviour, and they are insensitive to the fact as to which species is
mobile. This behaviour is essentially the same as for ungated reactions, but corrections
do depend on the probability �0 that an encounter is reactive;
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at large n, di!erent models have di!erent behaviours:

• the integral reaction rate D(n); de2ned by (25), is smaller when A is .uctuating and
B is ungated, than in the contrary situation, either when A is immobile or when A
is mobile (but only one kind of particle moves, while another kind .uctuates);

• exact lower and upper bounds for D(n) have been determined for each model;
• they show that the asymptotic dependence D(n) on n is the same as for ungated

case, but the prefactors depend on the precise model.

These points remain to be considered in the case of correlated .uctuations.

5. Perspectives

The previous studies should be extended in many directions. In particular, correlated
.uctuations should be addressed for all models mentioned in the previous section, and
more general ones, considering for instance that both chemical species can move and
.uctuate. Obviously, time correlations make it necessary to consider the trajectories of
all moving particles, and calculations can become very intricate.
On the other hand, space correlations between particles may have a very important

role, and they should also be considered.
It should be pointed out that the simple processes studied previously can also

represent

• other elementary reactions, for instance

B0 + C � B1 ;

A+ B1 → B1 + D ;

where B1 is a catalyst for the production of D, whereas B1 is produced reversibly
by random interactions of the inert molecules B0 with particles C, maintained at a
2xed concentration.

• interaction processes in di!erent 2elds, such as population dynamics (as implied by
the name “scavengers” used for particle B).

Thus, although these processes are rather simple, they can be used, in a 2rst approx-
imation, for modelling some complex phenomena, which would be untreatable in a
realistic description. This may be the case, in particular, in biophysics, where media
are likely to .uctuate and, on the other hand, reactions can often occur in low dimen-
sion media. Thus a stochastic theory of their reactivity is necessary, and simple models
like the models mentioned previously, or more elaborate ones, can be especially useful.
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