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We study the dynamics of a probe particle, which performs biased diffusive
motion in a one-dimensional adsorbed monolayer composed of mobile hard-
core particles undergoing continuous exchanges with a vapor phase. In terms of
a mean-field-type approach, based on the decoupling of the third-order correla-
tion functions into the product of pairwise correlations, we determine analyti-
cally the density profiles of the monolayer particles, as seen from the stationary
moving probe, and calculate the terminal velocity Vpr , mobility +pr and the self-
diffusion coefficient Dpr of the probe. Our analytical results are confirmed by
Monte Carlo simulations.

KEY WORDS: Hard-core lattice gas; Langmuir adsorption�desorption
model; tracer diffusion and mobility.

1. INTRODUCTION

When a solid surface is brought in contact with an ambient gas phase, the
interactions between the molecules of both systems often result in forma-
tion of a layer of gas particles covering the solid surface. Following a semi-
nal work of Langmuir (see, e.g., in ref. 1), who has invented a somewhat
simplified description in which the interactions between the adsorbed
molecules were regarded as a mere hard-core, thermodynamic properties of
such adsorbed layers, as well as different forms of possible phase transfor-
mations have been extensively studied and a number of important develop-
ments have been made. In particular, subsequent studies included more
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realistic forms of intermolecular interactions or allowed for the possibility
of multilayer formation. In consequence, more sophisticated forms of
adsorption isotherms have been evaluated which explain quite well
available experimental data (see, e.g., refs. 1�3).

Considerable effort has been also invested in understanding of
molecular diffusion in adsorbed layers, which has a strong impact on their
properties.(4, 5) Here, some approximate results have been obtained for both
dynamics of an isolated adatom on a corrugated surface and collective
diffusion, describing spreading of the macroscopic density fluctuations in
interacting adsorbates being in contact with the vapor phase.(4�9) On the
other hand, available studies of the tracer diffusion in adsorbed layers,
which is observed experimentally in STM or field ion measurements and
provides a useful information about such properties of monolayers as, e.g.,
their intrinsic viscosity, pertain to stricktly two-dimensional models exclud-
ing the possibility of particles adsoption or desorption (see, e.g., refs. 8�10
and references therein). Analysis of the tracer diffusion and mobility of
impure molecules in adsorbed monolayers undergoing exchanges with the
vapor phase seems to be lacking at present.

In this paper we study the time evolution of a model system consisting
of a solid substrate covered by a monolayer of mobile hard-core particles
undergoing continuous exchanges with a vapor, and a single impure, probe
particle, which is subject to a constant external force E and hence performs
a biased random walk constrained by hard-core interactions with the
monolayer particles. Here, we concentrate on the one-dimensional case and
model, in a usual fashion, the solid substrate as a regular one-dimensional
lattice of adsorbing sites, which can support, at most, a single occupancy;
results for the two-dimensional monolayer will be published elsewhere. In
terms of a mean-field-type approach of ref. 11, which pressumes certain
decoupling of the third-order correlation functions, we define the density
profiles of the monolayer particles, as seen from the stationary moving
probe, and determine analytically the probe terminal velocity Vpr(E ). In
the most general case Vpr(E ) is obtained implicitly, as a solution of a non-
linear equation relating its value to the system parameters. This equation
simplifies in the limit of small E and here the probe velocity can be found
explicitly; we show that it obeys Vpr(E )rE�`, where the friction coefficient `,
which is inverse of the probe mobility +pr , is expressed through the
microscopic parameters characterizing the system under study. This result
establishes the frictional drag force exerted on the probe by the monolayer
particles in the low-E limit and thus can be thought off as the analog of the
Stokes' law for the one-dimensional monolayer in contact with a vapor.
Lastly, we determine the self-diffusion coefficient Dpr of the probe, which is
computed here by assuming heuristically the validity of the Einstein relation
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between the self-diffusion coefficient and the mobility. Our analytical
results for the probe terminal velocity and the self-diffusion coefficient, as
well as for the stationary density profiles around it are confirmed by Monte
Carlo simulations of the corresponding master equation by the method of
Gillespie.(15)

The paper is structured as follows: In Section 2 we formulate the
model and introduce basic notations. In Section 3 we write down the
dynamical equations which govern the time evolution of the monolayer
particles and of the probe. Sections 4 and 5 are devoted to the analytical
solutions of these evolution equations in the continuous-space limit and on
the discrete lattice, respectively. In these sections we also present a com-
parison of the analytical results and Monte Carlo simulations data. Finally,
we conclude in Section 6 with a brief summary and discussion of our
results.

2. THE MODEL

The model consists of a one-dimensional regular, infinite in both direc-
tions lattice of spacing _, the sites X of which are connected to a reservoir
(a vapor phase) containing an infinite number of identical, electrically
neutral gas particles (Fig. 1). The particles from the reservoir may adsorb
onto the lattice sites, desorb from them or move along the lattice by per-
forming symmetric random walk between the neighboring sites; adsorption
onto the lattice and hops between the lattice sites are constrained by hard-
core exclusion��each lattice site can be either singly occupied or vacant.

Fig. 1. One-dimensional lattice partially occupied by identical hard-core particles (filled
circles) undergoing exchanges with the reservoir��the vapor phase. g, f, and l, l=(1& g)�2,
denote respectively particles desorption, adsorption and hopping probabilities. The open circle
denotes the probe molecule, whose hopping probabilities are p and q, respectively.

353Biased Diffusion in 1D Adsorbed Monolayer



The state of each lattice site X at time t is described by time-dependent
occupation variable '(X ), which can take two values

'(X )={1,
0,

if the site X is occupied by a gas particle
otherwise

(1)

As one may readily notice, the just-described system corresponds to a one-
dimensional version of the Langmuir adsorption�desorption model, with
the only difference being that the lateral diffusion of the adsorbed
molecules is allowed. Note, however, that the possibility of particles lateral
diffusion makes the model more complicated, compared the Langmuir's
one, since now the evolution of particle local densities at different sites is
coupled due to diffusion.

Further on, we place at the site X=0 at time t=0 an extra particle,
which will be referred to in what follows as the ``probe,'' since it allows us
to probe the resistance offered by the adsorbed layer to an external pertur-
bance. Position of this particle at time t for a given realization of the pro-
cess will be denoted as Xpr(t). We stipulate that this particle is different
from the monolayer particles in that it can not desorb back into the vapor
phase, i.e., is constrained to move along the lattice only. Second, we sup-
pose that this only particle is charged (for simplicity, we set the charge
equal to unity in what follows) and is subject to a constant external electric
field E, which favors its motion in a preferential direction. The questions
which we address here are, first, the dependence of the probe particle
terminal velocity Vpr(E )=limt � � Vpr(t) on the magnitude of the driving
force E and other system parameters; second, the form of the density
profiles as seen from the stationary moving probe, and lastly, the self-diffu-
sion coefficient of the probe in absence of the driving force.

Now, we define particle dynamics and system parameters more
precisely:

(a) Diffusion and Desorption. Each of the adsorbed at time moment
t gas particles waits a random, exponentially distributed time with mean {*,
and then selects between either of three possibilities; it may choose to leave
the lattice with a probability g, or attempt to hop, with the probability
l=(1& g)�2, to one of the two neighboring sites. If the desorption event is
chosen��the particle leaves the lattice instantaneously. On the other hand,
in case when the particle attempts to hop to one of the neighboring sites,
the jump can actually occur only if the target site is empty; otherwise, the
particle remains at its position.
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(b) Adsorption. Particles of the reservoir wait a random, exponen-
tially distributed time with mean3 {ad={* and then attempt to adsorb onto
the lattice with a probability f. As previously, an adsorption event takes
place only if the chosen site is empty.

Note, that the total number of particles on the lattice is not conserved
in such a dynamics. Mean density \=('(X )) , however, approaches as
t � � a constant value

\s=
f

f +g
(2)

which relation is often called in the literature as the Langmuir adsorption
isotherm.(1)

Here we suppose that parameters f and g are independent of each
other and may take arbitrary values from the interval [0; 1]. In reality,
their values are prescribed by the pressure of the gas phase, precise form of
the solid-gas interaction potential and the temperature. As well, the latter
determine the characteristic time {*, which is also considered here as an
independent given parameter.

(c) Dynamics of the Probe. The probe particle waits an exponen-
tially distributed time with mean {, (which can be, in general case, different
of {*) and then selects, at random, a jump direction: It chooses a right-
hand or left-hand adjacent site with probabilities p and q=1& p, respec-
tively. Similarly to the gas particles, the jump is only then fulfilled when the
selected site is vacant at this moment of time.

In a usual fashion, the jump probabilities are related to the external
electric field E, (oriented in the positive direction, such that E�0), and the
reciprocal temperature ; by

p�q=exp(;_E ) (3)

where we have set the probe charge equal to unity. This relation together
with the condition p+q=1 defines the values of p and q.

3. EVOLUTION EQUATIONS

Let P(Xpr , '; t) denote the probability of finding at time t the probe
at the site Xpr and all other adsorbed particles in the configuration
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'=['(X)]. Further on, let 'z, z+1 be the configuration obtained from ' by
exchanging the occupation variables of sites X=z and X=z+1, i.e.,
'(z) W '(z+1), and 'z - the configuration obtained from ' by replacement
'(X=z) � 1&'(X=z). Then, summing up all events which may change
or result in a configuration (Xpr , '), we find that the time evolution of
P(Xpr , '; t) is guided by the following master equation:

P4 (Xpr , '; t)=
1& g
2{*

:
z{Xpr&_, Xpr

[P(Xpr , 'z, z+1; t)&P(Xpr , '; t)]

+
p
{

[(1&'(Xpr)) P(Xpr&_, '; t)&(1&'(Xpr+_)) P(Xpr , '; t)]

+
q
{

[(1&'(Xpr)) P(Xpr+_, '; t)&(1&'(Xpr&_)) P(Xpr , '; t)]

+
g
{*

:
z{Xpr

[(1&'(z)) P(Xpr , 'z; t)&'(z) P(Xpr , '; t)]

+
f

{*
:

z{Xpr

['(z) P(Xpr , 'z; t)&(1&'(z)) P(Xpr , '; t)] (4)

where the dot denotes the time derivative, the terms in the first three lines
describe respectively the diffusion of the adsorbed gas particles and of
the probe, which proceed due to the Kawasaki-type particle-vacancy
exchanges, while the last two lines account respectively for the Glauber-
type desorption and adsorption processes.

Equation (4) allows to compute the instantaneous velocity of the
probe molecule. Multiplying both sides of Eq. (4) by Xpr , and summing
over all possible states (Xpr , ') of the system, we find that:

Vpr(t)=
dXpr(t)

dt
=

_
{

[ p(1&k(_; t))&q(1&k(&_; t))] (5)

where Xpr(t) denotes the mean displacement of the probe at time t and

k(*; t)= :
(Xpr , ')

'(Xpr+*) P(Xpr , '; t) (6)

defines the probability of having at time t an adsorbed gas particle at dis-
tance * from the probe, or in other words, can be interpreted as the
monolayer density profile as seen from the moving probe.

Hence, in order to compute Vpr(t) we have to determine the evolution
of k(*; t). From Eq. (4) it follows that we have to consider separately the
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evolution of k(*; t) for |*|>_ and |*|=_, since the monolayer particles
dynamics is different in these two domains. We start first with the case
|*|>_, in which domain the evolution of k(*; t) is not directly affected by
the presence of the probe. In this case we find from Eq. (4) the following
equation

k4 (*; t)=
1& g
2{*

[k(*+_; t)+k(*&_; t)&2k(*; t)]&
f +g
{*

k(*; t)+
f

{*

+
p
{

:
(Xpr , ')

(1&'(Xpr+_)) P(Xpr , '; t)['(Xpr+*+_)&'(Xpr+*)]

&
q
{

:
(Xpr , ')

(1&'(Xpr&_)) P(Xpr , '; t)['(Xpr+*)&'(Xpr+*&_)]
(7)

where the terms in the first line represent the contributions due to the par-
ticles diffusion, desorption and adsorption, while the terms in the last two
lines are associated with the translation of the configuration ' � 'z, z\1 due
to the backward and forward hops of the probe particle. These terms are
non-linear with respect to the occupation variables and thus couple the
evolution of the ``pairwise'' correlation function k(*; t) to the evolution of
the third-order correlations. Thus, to define the behavior of k(*; t) one
faces the problem of solving an infinite hierarchy of coupled differential
equations for the higher-order correlation functions.

Here we will resort to an approximate, mean-field-type decoupling
scheme, which has been first applied in ref. 11 to describe tracer diffusion
in a one-dimensional hard-core lattice gas with conserved number of par-
ticles, i.e., a gas for which the exchanges with the reservoir are forbidden
and both f and g are equal to zero, while the ratio f �g is kept fixed. It has
been shown in ref. 11 that results of such an approach are in a very good
agreement with the Monte Carlo simulations data. Moreover, rigorous
probabilistic analysis(13) of this model produced essentially the same results
as ref. 11, thus proving that such a decoupling scheme renders exact
description of the model. The reason why the decoupling is correct here is
apparently due to the so-called propagation of local equilibrium; that is, in
a large space-time scale, the system is locally in equilibrium, and the par-
ticle distribution is given by a set of product measures.(16) We note also
parenthetically that a very good agreement between the numerical data and
analytical predictions, based on the same decoupling scheme, have been
observed for a slightly different model of hard-core gas spreading on a one-
dimensional lattice from a reservoir connected to one of the lattice sites, in
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which case density profiles do have a structure.(12) We thus adopt here this
mean-field-type approach, which provides quite a good description of
related dynamical models, and will verify in what follows our analytical
predictions against the results of Monte Carlo simulations.

The decoupling scheme of ref. 11 is based on the assumption that the
average with the weight P(Xpr , '; t) of the product of several occupation
variables of different sites factorizes into the product of their average values
with the weight P(Xpr , '; t). Namely, it assumes that the average product
of the occupation variables factorizes as

:
(Xpr , ')

'(Xpr+*)(1&'(Xpr\_)) P(Xpr , '; t)

={ :
(Xpr , ')

'(Xpr+*) P(Xpr , '; t)=_{ :
(Xpr , ')

(1&'(Xpr\_)) P(Xpr , '; t)=
=k(*; t)(1&k(\_; t)) (8)

Then, taking advantage of Eq. (8), we can rewrite Eq. (7), which holds for
|*|>_, in the following form:

k4 (*; t)=
1& g
2{*

[k(*+_; t)+k(*&_; t)&2k(*; t)]&
f +g
{*

k (*; t)

+
f

{*
+

p
{

[1&k(_; t)][k(*+_; t)&k(*; t)]

&
q
{

[1&k(&_; t)][k(*; t)&k(*&_; t)] (9)

Note, however, that despite the fact that the decoupling in Eq. (8) allows
us to close the hierarchy in Eq. (7) at the level of pairwise correlations, the
resulting equations still pose some technical problems for solving them;
namely, they are non-linear with respect to k(*; t) differential equations.
The method of solution will be discussed in the next two sections.

Now, similar analysis can be carried out to derive the dynamical equa-
tions, which govern the evolution of k(*; t) at points |*|=_. We find,
respectively,

k4 (_; t)=
1& g
2{*

[k(2_; t)&k(_; t)]&
f +g
{*

k(_; t)+
f

{*

+
1
{

[&qk(_; t)(1&k(&_; t))+ p(1&k(_; t)) k(2_; t)] (10)
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and

k4 (&_; t)=
1& g
2{*

[k(&2_; t)&k(&_; t)]&
f +g
{*

k(&_; t)+
f

{*

+
1
{

[&pk(&_; t)(1&k(_; t))+q(1&k(&_; t)) k(&2_; t)] (11)

Equations (5) and (9)�(11) constitute a closed system of non-linear equa-
tions, which suffice the computation of the probe velocity and other
characteristic properties.

4. STATIONARY SOLUTION OF THE EVOLUTION EQUATIONS
IN THE CONTINUOUS-SPACE LIMIT.

Consider first the solution to Eqs. (5) and (9)�(11) in the continuous-
space limit. Expanding k(*\_; t) in Taylor series up to the second order
in powers of _ (diffusion limit), we have that k(*; t) with |*|>0 obeys the
following approximate equation:

k4 (*; t)=D0

�2k(*; t)
�*2 +Vpr(t)

�k(*; t)
�*

&
f +g
{*

k(*; t)+
f

{*
(12)

where D0 denotes the ``bare'' diffusion coefficient of the adsorbed gas par-
ticles, D0=(1& g) _2�2{*, and the velocity Vpr(t) is now given by

Vpr(t)=
p_
{

[1&k(*=+0; t)]&
q_
{

[1&k(*=&0; t)] (13)

Similarly, we find that Eqs. (9) and (10) take the form

_k4 (*=+0; t)

=D0

�k(*; t)
�* } *=+0

+{Vpr(t)&( f +g)
_
{*= k(*=+0; t)+

_f
{*

(14)

and

_k4 (*=&0; t)

=&D0

�k(*; t)
�* } *=&0

&{Vpr(t)+( f +g)
_
{*= k(*=&0; t)+

_f
{*

(15)
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We turn next to the limit t � �. Assuming first that the probe terminal
velocity approaches some constant value Vpr(E ) as t � �, i.e., Vpr(E )=
limt � � Vpr(t), we find the stationary solution k(*)=limt � � k(*; t) of
Eqs.(12), (14), and (15). This reads:

k(*)=\s[1+A\ exp(&|*|�*\)] (16)

In Eq. (16) \s is determined by Eq. (2), the sign ``+'' (``&'') corresponds
to *>0 (*<0), the characteristic lengths *\ are given by

*\=_ {�\Vpr(E ) _
2D0 +

2

+
_

_eff

\
Vpr(E ) _

2D0 =
&1

(17)

where the parameter _eff has the dimensionality of length, _eff =
D0 {*�_( f +g), while the amplitudes A\ in Eq. (16) obey

A\=\\Vpr(E ) _eff

D0 + 1
1+_eff �*�

(18)

Now several comments on the results in Eqs. (16)�(18) are in order. Note,
first, that *&>*+ , and consequently, the local density past the probe
approaches its non-perturbed value \s slower than in front of it; this
signifies that correlations between the probe position and particle distribu-
tion are stronger past the probe and demonstrates the memory effects of
the medium. Next, A+ is always positive, while A&<0; this means that the
density profile is a non-monotoneous function of * and is characterized by
a jammed region in front of the probe, in which the local density is higher
than \s , and a depleted region past the probe in which the density is lower
than \s . It follows from Eqs. (16) to (18) that the depleted region
dominates and the mean density in the adsorbed monolayer perturbed by
the probe is lower than the mean density in the unperturbed monolayer;
one finds from Eqs. (16) to (18) that the integral deviation 0 of the density
from the equilibrium value \s , i.e.,

0=|
�

&�

d*
_

(k(*)&\s) (19)

is always negative,

0=&\s \Vpr(E ) _eff

D0 +
2

_1+
_eff

_
+�4_eff

_
+\Vpr(E ) _eff

D0 +
2

&
&1

(20)
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which implies that the perturbance of the monolayer created by the driven
probe shifts the balance between adsorption and desorption towards par-
ticles desorption into the reservoir. This result, however, is only an artefact
of the continuous-space approximation. As we proceed to show in the next
section, 0#0 and the mean density in the perturbed monolayer is still
equal to \s .

Now, we are in position to calculate the terminal velocity of the probe
molecule. Substituting Eq. (16) into Eq. (13), we arrive at a closed-formed
non-linear equation of the form

Vpr(E )=
( p&q)(1&\s) _

{
&\s _

Vpr(E ) _eff

D0{ _ p
1+_eff �*&

+
q

1+_eff �*+&
(21)

which determines Vpr(E ) implicitly. In Eq. (21) the first term on the rhs is
a trivial, mean-field-type result, which obtains in the limit of, say, perfectly
stirred monolayer with D0 � � (or {* � 0). The second term on the rhs of
Eq. (21), which is proportional to the Peclet-type number P=Vpr_eff �D0

has a more complicated origin and is associated with collective effects��
formation of a non-homogeneous, stationary density profile around the
probe, whose characteristics depend themselves on the velocity.

Equation (21) is rather complicated and can be solved for arbitrary
values of the system parameters only numerically. It simplifies consider-
ably, however, in the limit E � 0, in which case Vpr(E ) can be calculated
analytically. Expanding p, q and Vpr(E ) in powers of E and retaining only
linear in E terms, we find that in this limit Vpr(E ) attains the following,
physically revealing form

Vpr(E )r`&1E (22)

which can be thought off as the analog of the Stokes formula for driven
motion in a one-dimensional monolayer undergoing continuous exchanges
with the vapor phase. The friction coefficient in Eq. (22) is given explicitly
by

`=
2{

;_2(1&\s) _1+
_\s_eff

D0{(1+- _eff �_)& (23)

Note, that ` is a sum of two contributions. The first one, `mf , has an essen-
tially mean-field-type form and is just a usual expression for the inverse
mobility of a particle performing biased random walk on a one-dimen-
sional lattice, divided by the fraction of non-occupied lattice sites, (1&\s),
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which is the mean density of vacant sites in a monolayer with homoge-
neous particle distribution, i.e., monolayer being in equilibrium with the
vapor phase. On contrary, the second term, `coop , stems out of the
cooperative effects, associated with formation of a stationary, non-homoge-
neous density profile around the probe, and represents the net resistance
offered by the monolayer particles to the probe. It may be instructive to
single out this contribution explicitly; setting {=0, (which means physi-
cally that the probe slides on the surface without dissipation regardless of
the surface corrugation), we have

`coop=
2{*\s

;_2(1&\s)
1

( f +g)(1+- D0{*�_2( f +g))
(24)

Comparing `mf and `coop , we infer that the latter becomes progressively
more important in the limit, for instance, when both f and g tend to zero
(while their ratio f �g is kept constant, f �g=const=(1&\s)�\s). Of course,
such a behavior can be expected on physical grounds since this limit
corresponds to a lattice gas with a fixed number of particles and suppressed
exchanges with the vapor phase; in this case the friction coefficient (as well
as the characteristic lengths *\) is no longer constant, but rather diverges
as `tXpr(t)tt1�2 in the limit t � �. (11, 13)

Consider finally the situation with E=0, in which case the terminal
velocity vanishes and one expects conventional diffusive motion with the
mean square displacement of the form

X 2
pr(t)=2Dpr t (25)

where Dpr is some unknown function of the system parameters. Heuristi-
cally, we can compute Dpr for the system under study if we assume the
validity of the Einstein relation +pr=;Dpr between the mobility +pr ,
+pr=limE � 0(Vpr(E )�E )=`&1, and the self-diffusion coefficient Dpr of the
probe particle (see for more details ref. 14). We find then that the probe
self-diffusion coefficient should be given by

Dpr=
_2(1&\s)

2{ _1+
_\s_eff

D0 {(1+- _eff �_ )&
&1

(26)

In order to check our analytical predictions in Eqs. (16), (21), and
(26), based on the approximate continuous-space Eq. (12), we have per-
formed numerical Monte Carlo simulations of the system evolution using
the method of Gillespie.(15) Results of these simulations, performed at dif-
ferent values of the parameters f, g, and p, are presented in Figs. 2 to 4.
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These figures show that there is some systematic error between the analyti-
cal predictions of this Section, Eqs. (16), (21), and (26), and the numerical
data; this error seems to be small when f is small but increases with
increase of f or decrease of g, which means, apparently, that the error
grows with the mean density of the monolayer. In particular, the maximal
relative error R appears for g=0.3 and amounts to 5.3, 7.7, and 7.9 per
cent for Figs. 3, 4, and 5, respectively. Hence, the agreement is quite fair,
and consequently, Eqs. (16), (21), and (26) can be regarded as rather
accurate approximate results.

Now, one may attribute the origin of the discrepancy between the
numerical and analytical results to the following two reasons. The first is,

Fig. 2. Density profile around stationary moving probe molecule for f =0.1, g=0.3, and
p=0.98. The solid line is the plot of the solution, Eq. (32), of the discrete-space evolution
equations. The empty triangles denote the corresponding solution in the continuous-space
limit. Filled squares are the results of Monte-Carlo simulations.
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Fig. 3. Terminal velocity of the probe molecule as a function of the adsorption probability
f at different values of the parameter g. The probe hopping probabilities are p=0.6 and
q=0.4. The solid lines give the solution of Eqs. (36) and (37), the dashed lines��of Eq. (21),
while the filled squares denote the results of Monte-Carlo simulations. Upper curves
correspond to g=0.8, the intermediate��to g=0.5 and the lower��to g=0.3, respectively.

evidently, the decoupling of the hierarchy of equations for the correlation
functions in Eq. (8), which allowed us to close this hierarchy at the level
of pairwise correlations. Despite the fact that such a decoupling scheme
yields exact results for tracer diffusion in one-dimensional hard-core lattice
gases with conserved number of particles, (11, 13) it may well be that it fails
for systems in which the total number of particles is not conserved. Second,
such a discrepancy may result from the fact that here solution of the dis-
crete-space equations has been found by turning to a continuous-space
limit; as a matter of fact, the only scaling limit in which Eq. (12) has some
chance to be correct is speeding up the hopping of the particle by _2 and
letting _ � 0 (see ref. 17). We will show in the next section, that the latter
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Fig. 4. Terminal velocity of the probe molecule as a function of the adsorption probabil-
ity f. Notations and values of g are the same as in Fig. 3 except that the probe hopping
probabilities are p=0.98 and q=0.02.

approximation is actually most crucial and the solution of the discrete-
space equations (5), (9)�(11) is in a very good agreement with the numeri-
cal data. This implies, in turn, that the decoupling in Eq. (8) is also quite
a plausible assumption for the system under study.

5. STATIONARY SOLUTION OF THE DISCRETE-SPACE
EVOLUTION EQUATIONS.

Consider now the solution of the discrete-space (9)�(11) in the limit
t � �. Denoting kn=k(*=n_), and introducing auxiliary variables

z1=1+
p_2

D0{
(1&k1) (27)
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Fig. 5. Self-diffusion coefficient of the probe molecule as a function of the adsorption prob-
ability f. Notations and values of g are the same as in Figs. 3 and 4.

and

z&1=1+
q_2

D0{
(1&k&1) (28)

in order to avoid too lengthy formulae, we can rewrite Eq. (9) in form of
the following recursion relation

z1kn+1&_z1+z&1+
_

_eff & kn+z&1kn&1+\s
_

_eff

=0 (29)
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which holds for |n|>1. Equation (29) has to be solved subject to the
boundary conditions

z1k2&_z&1+
_

_eff & k1+\s
_

_eff

=0 (30)

and

z&1k&2&_z1+
_

_eff & k&1+\s
_

_eff

=0 (31)

Solution to these equations can be conveniently obtained by applying the
discrete-space Fourier transformation, which yields an equation of essen-
tially the same form as Eq. (16), i.e.,

kn=\s[1+A$\ exp(&_ |n|�*$\)] (32)

with, however, different amplitudes A$\ and different characteristic lengths
*$\ compared to those given by Eqs. (18) and (17); we use here the prime
to distinguish between the discrete and the continuous-space solutions. In
the discrete-space Eq. (32) the characteristic lengths obey

*$\=�_ ln&1 _z1+z&1+(_�_eff )�- (z1+z&1+(_�_eff ))2&4z1z&1

2z1 &
(33)

while the amplitudes are given respectively by

A$+=
z1&z&1

z&1&z1 exp(&_�*$+)
(34)

and

A$&=
z1&z&1

z&1 exp(&_�*$&)&z1

(35)

Now, we are in position to obtain a system of equations, determining
implicitly the unknown parameters z1 and z&1 , which will allow us to com-
pute the terminal velocity of the probe molecule; the latter is related to z\1

by V $pr(E )=D0(z1&z&1)�_. Substituting Eq. (32) into Eqs. (27) and (28),
we find

z1=1+
p_2

D0{ _1&\s&\s
z1&z&1

z&1 exp(_�*$+)&z1 & (36)
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and

z&1=1+
q_2

D0{ _1&\s&\s
z1&z&1

z&1&z1 exp(_�*$&)& (37)

For arbitrary values of p, f, and g the parameters z\1 , defined by Eqs. (36)
and (37), and consequently, the terminal velocity V $pr(E ) can be deter-
mined only numerically (see Figs. 3 and 4). However, V $pr(E ) can be found
analytically in the explicit form in the limit of a vanishingly small force E,
E � 0. Expanding z\1 in the Taylor series in powers of E and retaining
only linear with E terms, i.e., setting

z\1r:+:#\1E (38)

where :=1+_2(1&\s)�2D0{, we find that coefficients #\1 are determined
by the system of two linear equations:

:#1=&
_2\s

2D0{
(#1&#&1)

[exp(_�*$+(E=0))&1]
+

;_3(1&\s)
4D0{

(39)

and

:#&1=&
_2\s

2D0{
(#1&#&1)

[1&exp(_�*$&(E=0))]
&

;_3(1&\s)
4D0 {

(40)

which yield the Stokes-type law in Eq. (22) with the friction coefficient

`$=
2{

;_2(1&\s) _1+
_\s_eff

D0{
2

1+- 1+4:_eff �_& (41)

Note, that similarly to Eq. (23) the friction coefficient `$, calculated from
the discrete-space evolution equations, is a sum of two terms; the first one
describes a trivial, mean-field-type behavior and coincides with the result
obtained within the continuous-space approximation. The second one,
which is associated with the formation of a stationary, non-homogeneous
density profile around the probe, is given explicitly by

`$coop=
4{*\s

;_2(1&\s)( f +g)
1

1+- 1+4:_eff �_
(42)

and has a different form compared to Eq. (24); Eq. (42) reduces to Eq. (24)
only in the limit : _eff �_<<1.
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Next, Eq. (41) allows to obtain the probe self-diffusion coefficient
explicitly. Assuming again the validity of the Einstein relation, we find

D$pr=
_2(1&\s)

2{ _1+
_\s _eff

D0{
2

1+- 1+4:_eff �_&
&1

(43)

which has a different form compared to Eq. (26).
Lastly, we determine from Eqs. (32) to (35) an expression for the

integral deviation from the equilibrium density. It follows then that 0 is
given by

0=A$+
exp(&_�*$+)

1&exp(&_�*$+)
+A$&

exp(&_�*$&)
1&exp(&_�*$&)

(44)

Upon some lengthy calculations, we find that the rhs in Eq. (44) is exactly
equal to zero. This implies that the perturbance created by the driven
probe does not change the mean density of the adsorbed monolayer,
contrary to the prediction in Eq. (20), based on the continuous-space
approximation.

Comparison between the discrete-space solution and numerical data is
presented in Figs. 2 to 5. We see now that Eqs. (36), (37), (32), and (43)
agree with the Monte-Carlo results essentially better than their continuous-
space counterparts; the maximal relative error is now independent of g
and f, and amounts to only 1.9, 0.8, and 3 per cent for Figs. 3, 4, and 5,
respectively. We note finally that despite this good agreement we certainly
can not claim that Eqs. (36), (37), (32), and (43) provide an exact solution
of the model.

6. CONCLUSIONS

To conclude, we have studied dynamics of a driven probe molecule in
a one-dimensional adsorbed monolayer composed of mobile, hard-core
particles undergoing continuous exchanges with the vapor phase. Within
the framework of a decoupling procedure of ref. 11, based on the decom-
position of the third-order correlation functions into a product of pairwise
correlations, we have derived dynamical discrete-space equations describ-
ing evolution of the density profiles, as seen from the moving probe, and
its velocity Vpr(E ). These equations have been solved both in the con-
tinuous-space (diffusion) limit, as well as in their original discrete-space
form, which allowed us to check the appropriance of the continuous-space
description. In both cases we have determined the probe particle terminal
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velocity Vpr(E ) implicitly, as a solution of non-linear equations relating its
value to the system parameters. We have shown that the discrete-space
solution provides a very good agreement between analytical and numerical
results, while the continuous-space approach can be regarded only as a
rather accurate approximation. Further on, we have found that in the limit
of a vanishingly small driving force the probe velocity attains the form
Vpr(E )rE�`, where E is the driving force and the friction coefficient ` is
expressed through the microscopic parameters characterizing the system
under study. This result establishes the frictional drag force exerted on the
probe by the monolayer particles in the low-E limit and thus can be
thought off as the analog of the Stokes' law for the one-dimensional
monolayer in contact with the vapor phase. Lastly, we have determined
explicitly the self-diffusion coefficient Dpr of the probe, which result has
been also confirmed by Monte Carlo simulations.
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