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Consider the dynamics of a tracer particle subject to a constant driving forceE in a one-dimensional lattice
gas of hard-core particles whose transition rates are symmetric. We show that the mean displacement of the
driven tracerXT(E,t) grows in timet asXT(E,t)5Aat, rather than the linear time dependence found for
noninteracting~ghost! bath particles. The prefactora is determined implicitly, as the solution of a transcen-
dental equation, for an arbitrary magnitude of the driving force and an arbitrary concentration of the lattice-gas
particles. In limiting cases the prefactor is obtained explicitly. Analytical predictions are seen to be in good
agreement with the results of numerical simulations.@S1063-651X~96!01809-0#

PACS number~s!: 05.40.1j, 02.50.2r, 05.70.Ln, 47.40.Nm

I. INTRODUCTION

Dynamic and equilibrium properties of lattice gases, i.e.,
systems involving randomly moving particles with hard-core
interactions, have received much interest within the last sev-
eral decades. A number of important theoretical results have
been obtained for such systems revealing nontrivial, many-
body behavior@1–12#. Lattice-gas models often serve as mi-
croscopic models of complex physical phenomena. To name
a few we mention dynamics of motor proteins@13,14#,
growth of interfaces,@15–17# traffic jams, and queuing prob-
lems@18#. A lattice-gas approach has been used for the deri-
vation of Euler-type hydrodynamic equations, e.g., the Bur-
gers equation@19,20#. Another important example concerns
the spreading of molecularly thin wetting films, where ex-
perimental studies@21–23# have evidenced surprising uni-
versal laws which recently have been explained in terms of a
lattice-gas model@24–26#. We believe also that a robust mi-
croscopic, molecular approach to such physical phenomena
as shear-induced ordering in colloidal suspensions@27# or
stick-slip motion of mica planes separated by an ultrathin
liquid layer @28–31# could also begin with a description
based on a lattice-gas picture.

At the present time two models are well studied in the
literature. In the first, the so-called asymmetric exclusion
process, all particles in the system perform stochastic mo-
tion, constrained by hard-core interactions, in the field of a
constant driving force@1–9,32–34#. Here the velocity, diffu-
sion constant and equilibrium configurations have been cal-
culated exactly for different types of boundary conditions
@e.g., @2,7,8,34#, and references therein#. In the second, no
external force is present and all particles have symmetric
transition rates. Remarkably, in such a situation, the motion
of a labeled, tracer particle is nondiffusive in low dimen-
sions. For example, the mean-square displacement
XT
2(E50,t) of a tracer particle~identical except for its ob-

servability to all other particles! in a one-dimensional~1D!

symmetric lattice gas shows a sublinear growth with time
@35,36#

XT
2~E50,t !5

C0

12C0
S 2tp D 1/2, ~1!

whereC0, 0<C0,1, denotes the mean~constant! concen-
tration of vacant sites and the argumentE50 signifies that
the external force is absent and that all particles have sym-
metric transition rates. Hence, in 1D trajectories
XT(E50,t) of such a tracer particle are more compact than
those of particles without the hard-core constraints. In 2D the
mean-square displacementXT

2(E50,t) shows a linear depen-
dence on time with additional logarithmic terms@11,37#; in
3D it grows linearly in time with the diffusion constant being
a nontrivial function of the particle concentration.

In the present paper we focus on the less studied and less
understood situation in which only one particle~the tracer!
experiences the action of an external~constant! driving force
E and thus has asymmetric transition rates, while all other
particles~bath particles! are not subject to this force and have
symmetric transition rates. The tracer behavior in such a sys-
tem with a vanishingly small driving force has first been
examined in@3# in which the question of the validity of the
Einstein relation for the hard-core lattice gases has been ad-
dressed.~This point will be discussed in more detail in Sec.
IV D.! Such a model has been used@38# in a numerical study
of the gravity driven motion of a finite rigid rod in a ‘‘sea’’
of hard-core monomers. Another physical example corre-
sponds to the situation in which a charged particle diffuses in
a lattice gas of electrically neutral particles in the presence of
a constant electric fieldE. The extreme case of infinitely
strong electric fields (E5`), which means that the tracer
particle may move only in one direction, has been studied in
@39#. It has been shown, for example, that in 1D
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systems the mean displacementXT(E5`,t) of a charged
tracer particle grows sublinearly with time,

XT~E5`,t !}~a`t !
1/2, ~2!

wherea` is a constant@39#. Equation~2! indicates that hard-
core interactions give rise to an effective friction. In the one-
dimensional case this force is much stronger than the viscous
friction for one particle and grows in proportion to the mean
displacement of the tracer, i.e., asAt, as this is a measure of
the size of the compressed region preceding the tracer which
hinders the ballistic motion of the driven particle.

Here we study the motion of a driven tracer particle in a
symmetric lattice gas in the general case of fields of arbitrary
strength and at arbitrary concentrations of the lattice-gas par-
ticles. Focusing on one-dimensional situations in which the
hindering effect of the lattice-gas~bath! particles on the
tracer motion is most pronounced, we devise a mean-field-
type theory which allows simple calculation of the mean
displacement of the tracer particle as a function of time and
other pertinent parameters. We find thatXT(E,t) has the fol-
lowing dependence:

XT~E,t !5~at !1/2, ~3!

where the parametera is a time-independent constant, which
is a complicated function of field strengthE, which deter-
mines the transition probabilitiesp andq, and concentration
of the bath particlesCp . This constant is determined here for
arbitrary values ofE andCp . Our analytical findings are in
excellent agreement with the results of the numerical simu-
lations.

The paper is structured as follows: In Sec. II we describe
the model. In Sec. III we present definitions and write down
basic equations describing the motion of particles. In Sec. IV
we determine explicitly the growth law for the mean dis-
placement of the tracer particle Eq.~3! and evaluate a closed
transcendental equation for the parametera. In several lim-
iting cases the dependence ofa on the pertinent parameters
is explicitly obtained. Section V presents results of numerical
simulations and comparison of these with our analytical pre-
dictions. Finally, in Sec. VI we conclude with a summary of
our results and a discussion.

II. THE MODEL

The model is defined in the following way. Consider a
one-dimensional regular lattice of unit spacing, infinite in
both directions, the sites$X% of which are either singly oc-
cupied by identical particles or vacant. The particles are ini-
tially placed at random~constrained by the condition that
double occupancy of sites is forbidden! with mean concen-
tration Cp512C0 , whereCp is the mean site occupancy,
C0 being the mean site vacancy. The tracer particle is put
initially at the origin, i.e., atX50. A configuration of the
system is characterized by an infinite set of~time-dependent!
occupation variables$tX%, wheretX51 if siteX is occupied
and tX50 if site X is vacant. Consequently, the variable
hX512tX describes the probability that siteX is vacant.

The dynamics of the bath particles is symmetric: each
particle waits a~random! exponentially distributed time with

mean 1 and then attempts to jump, with equal probability
(1/2) to the right or left neighboring site. The jump actually
occurs if the chosen site is empty. The tracer particle motion
is asymmetric: the tracer waits a random exponentially dis-
tributed time with mean 1 and then randomly selects a jump
direction. It chooses a right-hand~left-hand! adjacent site
with probability p (q512p). The jump occurs if the se-
lected site is vacant. If the asymmetry in tracer jump prob-
abilities is due to an external electric fieldE one has the
relationp/q5exp(bE), whereb is the inverse temperature.
For simplicity we have set the tracer charge to unity. We also
assume, without loss of generality, thatE is oriented in the
positive direction, i.e.,E.0, and thusp.q.

III. DEFINITIONS AND BASIC EQUATIONS

We start by writing the equations which describe dynam-
ics of the tracer particle. LetXT(E,t) denote the position of
the tracer at timet @by definitionXT(0)50# andP(X,t) be
the probability that the tracer is at siteX at timet. The mean
displacement of the tracer particle, i.e.,XT(E,t), is then de-
fined as

XT~E!5(
X

XP~X,t !. ~4a!

The time evolution ofP(X,t) is governed by the equation

Ṗ~X,t !52P~X,t !@phX11~ t !1qhX21~ t !#

1hX~ t !@pP~X21,t !1qP~X11,t !#, ~4b!

where the dot denotes the time derivative. The first two terms
on the right-hand side~rhs! of Eq. ~4! describe, respectively,
the change inP(X,t) due to jumps of the tracer particle from
the siteX to sitesX61, while the third and fourth terms
account for jumps from the sitesX61 to the siteX. Multi-
plying both sides of Eq.~4! by X and summing over all
lattice sites we arrive at the rate equation

ẊT~E,t !5p f12q f21 , ~5!

where

f l5(
X

P~X,t !hX1l~ t ! ~6!

is the pairwise tracer-vacancy correlation function, which
can be thought of as the probability of finding at timet a
vacancy at the distancel from the tracer. The correlation
function is defined in the frame of reference moving with the
tracer and jumps of the tracer change the value off l .

Consider now evolution off l , which completely deter-
mines the mean displacement of the tracer Eq.~5!. The
change inf l results from two different processes

ḟ l5L̂bath~ f l!1L̂ trac~ f l!, ~7!

where the operatorL̂bath accounts for the contribution com-
ing from the motion of bath particles, whilstL̂ trac describes
the contribution of the tracer motion itself. Explicitly, for
L̂bath( f l) we have~for ulu.1)
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L̂bath~ f l!5 1
2 ~12 f l!~ f l211 f l11!

2 1
2 f l~12 f l211 12 f l11!, ~8!

where the first term describes the ‘‘birth’’ of a vacancy at the
occupied siteX1l due to the jumps of a bath particle from
X1l to vacant sitesX1l61; the second term describes the
‘‘death’’ of a vacancy at a vacant siteX1l due to the jumps
of a bath particle from sitesX1l61. One readily notices
that the nonlinear terms in Eq.~8! cancel each other and
L̂bath is simply the second finite difference operator~for
ulu.1)

L̂bath~ f l!5 1
2 ~22 f l1 f l211 f l11!. ~9!

The ‘‘diffusive’’ free particlelike behavior in Eq.~9! is, of
course, the consequence of the fact that all bath particles are
identical, leading to the cancellation of the nonlinear terms in
Eq. ~8!.

Consider now the contribution due to the motion of the
tracer particle. In an explicit form we have~for ulu.1)

L̂ trac~ f l!5q f21~12 f l! f l212q f21f l~12 f l21!

1p f1~12 f l! f l112p f1~12 f l11! f l ,

~10!

where the terms on the rhs of Eq.~10! describe, respectively,
the following events:~a! an occupiedsite at the distance
l from the tracer becomesvacant if the tracer jumps into
the previously vacant left-hand adjacent site and the site at
distancel21 is vacant;~b! a vacant site at distancel from
the tracer becomes occupied, if the tracer jumps into the
previously vacant left-hand adjacent site and the site at dis-
tancel21 is occupied;~c! an occupied site at distancel
becomes vacant when the tracer jumps into the previously
vacant right-hand site and the site at distancel11 is vacant;
eventually,~d! a vacant site at distancel becomes occupied
when the tracer jumps into the previously vacant right-hand
site and the site at distancel11 is occupied.

Next, similar reasoning gives the behavior off l in the
immediate neighborhood of a tracer, i.e., at sites with
l561, which can be thought of as the boundary conditions
for Eq. ~7!. Time evolution off61 again is due to both the
motion of the bath particles and of the tracer, i.e., can be
represented in the form of Eq.~7!, but here the operators
L̂bath and L̂ trac are given as

L̂bath~ f61!5 1
2 f62~12 f61!2 1

2 f61~12 f62!, ~11!

L̂ trac~ f 1!52p f1~12 f 2!1q f21~12 f 1!, ~12!

and

L̂ trac~ f21!5p f1~12 f21!2q f21~12 f22!. ~13!

Explicitly, we have forf61 the following equations:

ḟ 15
1
2 f 2~12 f 1!2 1

2 f 1~12 f 2!2p f1~12 f 2!1q f21~12 f 1!,
~14!

ḟ215
1
2 f22~12 f21!2 1

2 f21~12 f22!1p f1~12 f21!

2q f21~12 f22!. ~15!

Another pair of boundary conditions for Eq.~10! can be
obtained by assuming that correlations betweenP(X,t) and
hX1l(t) vanish in the limit l→6`, which seems quite
plausible on physical grounds, and which may be checked
numerically. We have from Eq.~6!

f l→6`5h6`~ t !(
X

P~X,t !5C0 , ~16!

where we have used the normalization condition
(XP(X,t)51 and also the assumption that at infinitely large
separations from the tracer the mean concentration of vacan-
cies is unperturbed and equal to its equilibrium valueC0.

Equations~5! and~7! to ~13! constitute a closed system of
equations for the derivation ofXT(E,t), within the frame-
work outlined. Solutions to these equations will be discussed
in the next section.

IV. SOLUTION OF DYNAMIC EQUATIONS AND
ANALYTICAL RESULTS

We first turn to the continuous-space description and re-
write our equations in the limit of continuousl. Then, for
lÞ61 we have for the operator

L̂bath~ f l!'
1

2

]2f l

]l2 , ~17!

and, at pointsl561, Eq. ~11! yields

L̂bath~ f61!'
1

2

] f l

]l
ul561 , ~18!

Next, expanding f l21' f l2] f l /]l and
f l11' f l1] f l /]l we obtain for the operatorL̂ trac Eq. ~10!
the following approximate expression:

L̂ trac~ f l!'2q f21

] f l

]l
1p f1

] f l

]l
5ẊT~E,t !

] f l

]l
, ~19!

which holds forlÞ61.
The approximation of Eq.~19!, in which the coefficient

before the gradient term is equal to themeanvelocity of the
tracer particle, is equivalent to the neglect of fluctuations in
the tracer trajectoryXT(E,t) . In the following we show,
however, that such a ‘‘deterministic’’ approximation is quite
appropriate and leads to results which are in good agreement
with simulation data. The reason this approximation works
here is that in such a system the fluctuations of the tracer
trajectories are essentially suppressed. This is due to the ac-
cumulation of the bath particles in front of the tracer which
hinders fluctuations withXT(E,t).XT(E,t). At the same
time, the fluctuations withXT(E,t),XT(E,t) are suppressed
by the driving force. This leads to the mean-square deviation
s2(t)5@XT(E,t)#

22XT
2(E,t) growing only asAt ~see the

numerical results in Fig. 2, where the@s2(t)#1/2 is plotted
versusAt), in a striking contrast to the linear time depen-
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dence for conventional driven diffusive motion. Finally,
within the same ‘‘deterministic’’ picture we obtain

L̂ trac~ f61!'7ẊT~E,t !~12 f61!. ~20!

Combining Eqs.~17! to ~20! we obtain the following
continuous-space equation:

ḟ l5
1

2

]2f l

]l2 1ẊT~E,t !
] f l

]l
, ~21!

which is to be solved subject to the boundary conditions

ḟ l56156
1

2

] f l

]l
ul5617ẊT~E,t !~12 f61! ~22!

and boundary conditions atl→6`, defined in Eq.~16!.

A. Solutions for l>1

Let us consider first the behavior off l for l>1. We
introduce a scaled variable v5(l21)/XT(E,t),
(0<v<`). In terms ofv Eq. ~21! takes the following form:

d2f v

dv2 1a~v11!
d fv
dv

50, ~23!

in which we have set

a5
d

dt
@XT~E,t !#

2, ~24!

and which is to be solved subject to the boundary conditions

f v5`5C0 ;
d fv
dv

uv505a~12 f v50!. ~25!

We hasten to remark that such an approach presumes al-
ready that a is a time-independent constant and thus
XT(E,t) grows asAat. However, such an assumption will be
seen to be self-consistent if it turns out to be possible~and
we set out to show that this is actually the case! to find the
solution of Eq.~23! satisfying the boundary conditions in
Eqs.~25!.

The appropriate solution to Eq.~23!, which satisfies the
boundary condition at infinity, reads

f v5
~C02 f v50!

I1
E
0

v

dv exp@2a~v1v2/2!#1 f v50 ,

~26!

where

I1~a![I15E
0

`

dv exp@2a~v1v2/2!#

5S p

2a D 1/2exp~a/2!@12erf~Aa/2!#, ~27!

erf(x) being the error function. The value off v50, which is
the probability of having the rhs adjacent to the tracer site
vacant, is to be defined from the boundary condition at
v50, Eq. ~25!, which gives

C02 f v50

I1
5a~12 f v50!. ~28!

We note here thata is as yet unspecified parameter.

B. Solutions for l<21

Consider next the behavior off l , Eq. ~21!, past the tracer
particle, i.e., in the domainl<21. Now we choose the
scaled variableu52(l11)/XT(E,t), (0<u<`). In terms
of u Eq. ~21! takes the form

d2f u

du2
1a~u21!

d fu
du

5 0, ~29!

with boundary conditions

f u5`5C0 ;
d fu
du uu5052a~12 f u50!. ~30!

The solution of Eq.~29!, which satisfies the boundary at
u5` reads

f u5
~C02 f u50!

I2
E
0

u

du exp@a~u2u2/2!#1 f u50 , ~31!

where

I2~a![I25E
0

`

du exp@a~u2u2/2!#

5S p

2a D 1/2exp~a/2!@11erf~Aa/2!#. ~32!

The constant of integrationf u50 ~which defines the probabil-
ity of having the left-hand side~lhs! adjacent to the tracer
site vacant! is to be determined from the boundary condition
at u50, which gives

FIG. 1. Theoretical values of the prefactor in the dependence of
the average tracer displacementX(t) on t1/2 vs the probability of the
‘‘back step’’ q.
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C02 f u50

I2
52a~12 f u50!. ~33!

Now we have a system of equations~28!,~33! and
~5!,~24!, which determine the behavior ofXT(E,t), f v50 and
f u50. In the following subsection we construct a closed-form
transcendental equation for the parametera.

C. Closed-form equation fora

We may formally rewrite Eq.~5! in terms of the param-
etersfv50 and f u50 as

ẊT~E,t !5p fv502q fu50 . ~34!

Further, using Eqs.~34!, ~24!, and~28! we have

~C02 f v50!

2I1XT~E,t !
5~p fv502q fu50!~12 f v50!. ~35!

Let us note now that the rhs of Eq.~35! tends to zero as
XT(E,t) grows. This means that@except for the case
C051, when Eq.~35! has only a trivial solutionf v5051#
the valuep fv50 should tend toq fu50 as t→`. Expressing
f v50 as

f v505
q fu50

p
1f, ~36!

wheref is a deviation from the equilibrium valuefv50, and
assuming that at sufficiently large times this deviation is
small enough to allow linearization of the equation near the
equilibrium, we have

f'
pC02q fu50

2pI1~p2q fu50!XT~E,t !
. ~37!

Now, from Eq.~33! we expressf u50 through the param-
etera, which gives

f u505
C01aI2

11aI2
, ~38!

and substituting Eq.~38! into Eq. ~37! we get

f'
C0~p2q!1aI2~pC02q!

2pI1~p2qC01~p2q!aI2!XT~E,t !
. ~39!

Finally, noticing thatẊT(E,t)5pf, and using the defini-
tion of the parametera Eq. ~24! we obtain the following
closed transcendental equation fora:

a5
C0~p2q!1aI2~pC02q!

I1@p2qC01~p2q!aI2#
, ~40!

which, after some algebraic transformations, can be cast into
a compact, symmetric form

S aI1~a!1
q2pC0

p2q D S aI2~a!1
p2qC0

p2q D5
pq~12C0!

2

~p2q!2
,

~41!

where thea dependence ofI6 @Eqs.~27! and~32!# has been
made explicit.

A simple analysis shows that Eq.~41! has positive
bounded solutionsa(p,C0) for any values ofp, q512p
andC0 ~except the trivial caseC051 when bath particles are
absent!. This means, in turn, that our approach to the solu-
tions of coupled Eqs.~23!, ~25!, ~29!, and ~30! is self-
consistent andXT(E,t) actually grows in proportion toAt. In
the trivial case whenC051 @when one expects, of course,
the linear growth ofXT(E,t)# Eq. ~41! reduces to

~aI121!~aI211!50 ~42!

whose root is given by

aI151, ~43!

which means thata5` and thusXT(E,t) grows at a faster
rate thanAt.

Behavior of the prefactora is presented in Fig. 1, in
which we plot the numerical solution of Eq.~41! for different
values of the transition probabilities and different concentra-
tions C0. In the next subsection we present analytical esti-
mates of the behavior ofa in several limiting situations.

FIG. 2. Typical dependence of squared mean
tracer displacement and mean-squared deviation
on time.
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D. Analytical estimates of limiting behaviors
of the parameter a

We start by considering situations in which the parameter
a can be expected to be small; namely, whenp is close to
q ~in other words whenp is only slightly above 1/2) or when
the vacancy concentration is smallC0!1. In the limit of
smalla the leading terms in Eqs.~27! and ~32! behave as

I6'S p

2a D 1/2 ~44!

and Eq.~41! takes the form

F S pa

2 D 1/21 q2pC0

p2q GF S pa

2 D 1/21 p2qC0

p2q G5
pq~12C0!

2

~p2q!2
,

~45!

and gives for smalla, a!1,

a'
2

p SC0~p2q!

12C0
D 2. ~46!

Consequently, in this limit the explicit formula for the mean
displacement will read

XT~E,t !'
C0~p2q!

12C0
S 2 tp D 1/25C0tanh~bE/2!

12C0
S 2 tp D 1/2.

~47!

At this point it might be instructive to recall the analysis
in @3# which concerned the validity of the Einstein relation
for one-dimensional hard-core lattice gases. Define the ‘‘dif-
fusion coefficient’’ of the tracer particle in the symmetric
case asD5 limt→`D(t), whereD(t)5XT

2(E50,t)/(2t) and
the ‘‘mobility’’ as m5 limE→0@U(E)/E#, where the station-
ary velocity is given by U(E)5 limt→`U(E,t),
U(E,t)5XT(E,t)/t. In @3# it was shown that for the infi-
nitely large system the Einstein relation, i.e., the equation
m5bD, holds trivially, since bothD and m are equal to
zero. A somewhat stronger result has been obtained for the
case when the one-dimensional lattice is a ring of lengthl . It

was shown that here bothD andm are finite, vanish with the
length of the ring as 1/l , and obey the Einstein relation
m( l )5bD( l ). Our result in Eq.~47! reveals that for the in-
finite lattice Einstein relation is valid for the time-dependent
‘‘diffusion coefficient’’ and mobility, i.e., equation
m(t)$5 limE→0@U(E,t)/E)#%5bD(t) holds exactly, pro-
vided that the time is sufficiently large such that both Eqs.
~1! and ~47! are valid.

Consider next the situation whena is expected to be
large, i.e., whenC0 is close to unity. Expanding the func-
tions I1 and I2 as

I1'
1

a
2

1

a2→0 when a→`, ~48!

and

I2'S 2p

a D 1/2exp~a/2!→` when a→`, ~49!

we arrive at the following equation:

S 11
q2pC0

p2q
2
1

a D5
pq~12C0!

2

~p2q!2 FA2paexp~a/2!

1
p2qC0

p2q G21

. ~50!

One may readily notice that whena is large, the rhs of Eq.
~50! tends to zero and thus we have

a'
p2q

p~12C0!
. ~51!

Equation~51! allows formulation of the conditions whena
is large, more precisely: this happens whenC0 obeys the
inequality 1.C0@q/p5exp(2bE).

In this limit the mean displacement of the tracer particle
obeys

FIG. 3. Theoretical and experimental values
of the prefactor in the dependence of the average
tracer displacementX(t) on t1/2 vs the inverse
concentration of bath particles (q50).
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XT~E,t !'F ~p2q!t

p~12C0!
G1/25S @12exp~2bE!#t

12C0
D 1/2.

~52!

Finally, let us consider the case of the directed walk in a
one-dimensional lattice gas, whenp51 and q50, which
was previously examined in@39#. In this case Eq.~41! sim-
plifies considerably and reads

a`I15C0 . ~53!

WhenC0 is small,C0!1, we have from Eq.~53!

a`'
2C0

2

p
, ~54!

which is consistent with the result in Eq.~47!, while in the
limit C0'1, Eq. ~53! yields

a`'
1

12C0
, ~55!

i.e., exactly the behavior in Eq.~51! with p51 andq50.

V. NUMERICAL SIMULATIONS

In order to check the analytical predictions of Sec. IV and
V Monte Carlo~MC! simulations have been performed. The
simulation algorithm was defined as follows: The total num-
ber of particles in the system was held constant at 399
(398 bath particles and one tracer!. We constructed a one-
dimensional regular lattice of unit spacing and length
2L11, sites of which were labeled by integers on the inter-
val @2L,L#. For eachCp , the length was chosen as
L5399/Cp . The number of particles and, thus,L was cho-
sen to be large enough so that over the time scale of the
simulations the mean vacancy density nearL6 was unaf-
fected by the dynamics of the tracer which always occupied
the lattice site 0 att50. At the zero moment of MC time
particles were placed randomly on the lattice with the pre-
scribed mean concentration and the constraint that no two
particles can simultaneously occupy the same site. The tracer
particle was placed at the origin. The subsequent particle
dynamics employed in simulations follows the definitions of
Sec. II closely. At each MC time step we select, at random,
one particle and let it choose a potential jump direction. If
the selected particle is a bath particle, it chooses the direction
of the jump — to the right or to the left, with the probability
1/2. If the selected particle is the tracer — it chooses the hop
to the right with probabilityp and the hop to the left with
probabilityq, q512p. For any particle the jump is instantly
fulfilled if at this moment of time the adjacent site in the
chosen direction is vacant.

In simulations we followed the time evolution of the dis-
placement of the tracer particle and plotted it versus the
‘‘physical time,’’ which is the time needed for each particle
to move once, on average. Figure 2 presents typical behavior
of the average displacement calculated for fixedq andC0
~the actual parameter for the presented results areq50 and
C051/3, the results for other values ofC0 andq are similar!
plotted versusAt. The dotted line in this figure shows the
evolution of the deviation from the mean average displace-

ment (s2)1/2 which shows growth in proportion tot1/4.
Numerical results for the time evolution of the mean dis-

placement, performed for different values of parametersC0
and p, were used to obtain a numerical evaluation of the
prefactor in Eq.~3! as a function ofC0 andp. In Fig. 3 we
plot, for the particular case of totally directed walkq50, the
prefactora versus the inverse concentration of vacancies.
The solid line represents the results of our analytic calcula-
tions while the squares show the numerical results. In Fig. 4,
for fixed concentration of the vacanciesC051/3 we present
the comparison between the analytical predictions of the
prefactora and the numerical MC results.

VI. CONCLUSIONS

To conclude, we have examined the behavior of the mean
displacement of a driven tracer particle moving in a symmet-
ric hard-core lattice gas. We have shown that the mean dis-
placement grows in proportion toAt, i.e., the hard-core in-
teractions hinder the ballistic motion of the tracer and
introduce effective frictional forces. The prefactors in the
growth law are determined implicitly, in a form of the tran-
scendental equation, for arbitrary magnitude of the driving
force and arbitrary concentration of the lattice-gas particles.
In several asymptotic limits we find explicit formulas for
these prefactors. Our analytical findings are in a very good
agreement with the results of the numerical simulations.
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FIG. 4. Theoretical and experimental values of the prefactor in
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Szasz~Birkhäuser, Boston, 1985!, p. 405.

@4# H. Beijeren, K.W. Kehr, and R. Kutner, Phys. Rev. B28, 5711
~1983!.

@5# J.W. Haus and K.W. Kehr, Phys. Rep.150, 263 ~1987!.
@6# H. Spohn,Large Scale Dynamics of Interacting Particles~Ber-

lin, Springer, 1991!.
@7# S.A. Janowski and J.L. Lebowitz, Phys. Rev. A45, 618

~1992!.
@8# B. Derrida, M.R. Evans, and D. Mukamel, J. Phys. A26, 4911

~1993!.
@9# B. Derrida, S.A. Janowski, J.L. Lebowitz, and E.R. Speer, Eu-

rophys. Lett.22, 651 ~1993!.
@10# A. Blumen, J. Klafter, and G. Zumofen, Phys. Rev. B27, 3429

~1983!.
@11# L.F. Perondi and P.M. Binder, Phys. Rev. B48, 4136~1993!.
@12# K.W. Kehr, O. Paetzold, and T. Wichmann, Phys. Lett. A182,

135 ~1993!.
@13# J. Prost, J.F. Chauwin, L. Peliti, and A. Ajdari, Phys. Rev.

Lett. 72, 2652~1994!.
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