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Motion of a driven tracer particle in a one-dimensional symmetric lattice gas
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Consider the dynamics of a tracer particle subject to a constant driving Eoiic@ one-dimensional lattice
gas of hard-core particles whose transition rates are symmetric. We show that the mean displacement of the
driven tracerX+(E,t) grows in timet as X1(E,t) = /at, rather than the linear time dependence found for
noninteractingl[ghos) bath particles. The prefacter is determined implicitly, as the solution of a transcen-
dental equation, for an arbitrary magnitude of the driving force and an arbitrary concentration of the lattice-gas
particles. In limiting cases the prefactor is obtained explicitly. Analytical predictions are seen to be in good
agreement with the results of numerical simulatidig063-651X96)01809-0

PACS numbeps): 05.40:+j, 02.50~r, 05.70.Ln, 47.40.Nm

[. INTRODUCTION symmetric lattice gas shows a sublinear growth with time
[35,36
Dynamic and equilibrium properties of lattice gases, i.e.,
systems involving randomly moving particles with hard-core
interactions, have received much interest within the last sev-
eral decades. A number of important theoretical results have
been obtained for such systems revealing nontrivial, many-
body behaviof1-12). Lattice-gas models often serve as mi-

croscopic models of complex physical phenomena. To nam@here C,, 0<Cy<1, denotes the meafTonstant concen-

a few we mention dynamics of motor protein$3,14,  tration of vacant sites and the argumé&t0 signifies that
growth of interfaces15—17 traffic jams, and queuing prob- the external force is absent and that all particles have sym-
lems[18]. A lattice-gas approach has been used for the defimetric transition rates. Hence, in 1D trajectories
vation of Euler-type hydrodynamic equations, e.g., the Burx_(E=0t) of such a tracer particle are more compact than
gers equatio19,20. Another important example concerns those of particles without the hard-core constraints. In 2D the

the_spreading qf molecularly thin yvetting films, _vv_here e_x'mean-square displacemm shows a linear depen-
perimental studie$21-23 have evidenced surprising uni- joca on time with additional logarithmic terrfis,37; in

?/er_sal laws wh(;chzrecgntly ha;ellbeen TXpli'ned n germs 9f aD it grows linearly in time with the diffusion constant being
attlce—ggs mode24-26. We believe aiso t at. arobust mi- » hontrivial function of the particle concentration.

croscopic, molecular ap.proe_\ch to S_UCh phyS|caI. phenomena In the present paper we focus on the less studied and less
as shear-induced ordering in colloidal suspensi@# or understood situation in which only one parti¢tbe tracer

stick-slip motion of mica planes separated by an ultrathin,,periences the action of an extertednstant driving force
liquid layer [28-31 could also begin with a description g gng thus has asymmetric transition rates, while all other
based on a lattice-gas picture. o particles(bath particlesare not subject to this force and have
At the present time two models are well studied in thesymmetric transition rates. The tracer behavior in such a sys-
literature. In the first, the so-called asymmetric exclusiontem with a vanishingly small driving force has first been
process, all particles in the system perform stochastic moexamined in3] in which the question of the validity of the
tion, constrained by hard-core interactions, in the field of aEinstein relation for the hard-core lattice gases has been ad-
constant driving forcg1-9,32—34. Here the velocity, diffu-  dressed(This point will be discussed in more detail in Sec.
sion constant and equilibrium configurations have been call/ D.) Such a model has been ug&8] in a numerical study
culated exactly for different types of boundary conditionsof the gravity driven motion of a finite rigid rod in a “sea”
[e.g.,[2,7,8,34, and references therdinin the second, no of hard-core monomers. Another physical example corre-
external force is present and all particles have symmetrigponds to the situation in which a charged particle diffuses in
transition rates. Remarkably, in such a situation, the motior lattice gas of electrically neutral particles in the presence of
of a labeled, tracer particle is nondiffusive in low dimen- a constant electric fieldE. The extreme case of infinitely
sions. For example, the mean-square displacemenrirong electric fields E=), which means that the tracer
X%(E=O,t) of a tracer particldidentical except for its ob- particle may move only in one direction, has been studied in
servability to all other particloesin a one-dimensionallD) [39]. It has been shown, for example, that in 1D

X2(E=0)=

2t 1/2
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systems the mean displacemet$(E=x,t) of a charged mean 1 and then attempts to jump, with equal probability

tracer particle grows sublinearly with time, (1/2) to the right or left neighboring site. The jump actually
occurs if the chosen site is empty. The tracer particle motion
Xt(E=00,t)oc (@, t)Y?, 2 is asymmetric: the tracer waits a random exponentially dis-

tributed time with mean 1 and then randomly selects a jump
wherea., is a constan39]. Equation(2) indicates that hard- direction. It chooses a right-handeft-hand adjacent site
core interactions give rise to an effective friction. In the one-with probability p (g=1—p). The jump occurs if the se-
dimensional case this force is much stronger than the viscoudected site is vacant. If the asymmetry in tracer jump prob-
friction for one particle and grows in proportion to the meanabilities is due to an external electric fieEl one has the
displacement of the tracer, i.e., db, as this is a measure of relation p/q=exp(8E), whereg is the inverse temperature.
the size of the compressed region preceding the tracer whidhor simplicity we have set the tracer charge to unity. We also
hinders the ballistic motion of the driven particle. assume, without loss of generality, thHatis oriented in the

Here we study the motion of a driven tracer particle in apositive direction, i.e.E>0, and thugp>q.

symmetric lattice gas in the general case of fields of arbitrary

strength and at arbitrary concentrations of the lattice-gas par- IIl. DEFINITIONS AND BASIC EQUATIONS
ticles. Focusing on one-dimensional situations in which the . ) i _
hindering effect of the lattice-gaéath particles on the We start by writing the equations which describe dynam-

tracer motion is most pronounced, we devise a mean-fieldSS Of the tracer particle. Leét+(E,t) denote the position of
type theory which allows simple calculation of the meanthe tracer at time [by definition X+(0)=0] andP(X,t) be
displacement of the tracer particle as a function of time andh€ Probability that the tracer is at siXeat timet. The mean
other pertinent parameters. We find thg(E, t) has the fol-  displacement of the tracer particle, i.¥5(E,t), is then de-
lowing dependence: fined as

X7(E,t)=(at)'? ©) xT(E)=§x) XP(X,1). (4a)

where the parameter is a time-independent constant, which
is a complicated function of field strengt, which deter-
mines the transition probabilitigs andq, and concentration
of the bath particle€,, . This constant is determined here for

The time evolution oP(X,t) is governed by the equation

P(X,t)=—P(X,)[p7xs 1(t) +q7x_1(1)]

arbitrary values of andC,. Our analytical findings are in + x(D[PP(X-1)+qP(X+11)], (4b)
excellent agreement with the results of the numerical simu-
lations. where the dot denotes the time derivative. The first two terms

The paper is structured as follows: In Sec. Il we describeon the right-hand sidéhs) of Eq. (4) describe, respectively,
the model. In Sec. Il we present definitions and write downthe change ifP(X,t) due to jumps of the tracer particle from
basic equations describing the motion of particles. In Sec. IMhe site X to sitesX* 1, while the third and fourth terms
we determine explicitly the growth law for the mean dis- account for jumps from the site$é+ 1 to the siteX. Multi-
placement of the tracer particle E®) and evaluate a closed plying both sides of Eq(4) by X and summing over all
transcendental equation for the parametein several lim-  lattice sites we arrive at the rate equation
iting cases the dependence @fon the pertinent parameters i
is explicitly obtained. Section V presents results of numerical Xt(E,t)=pf;—qf_q, 5)
simulations and comparison of these with our analytical pre-
dictions. Finally, in Sec. VI we conclude with a summary of where
our results and a discussion.

fr=2 POX,) (1) (6)
Il. THE MODEL X

The model is defined in the following way. Consider ais the pairwise tracer-vacancy correlation function, which
one-dimensional regular lattice of unit spacing, infinite incan be thought of as the probability of finding at time
both directions, the sitefX} of which are either singly oc- vacancy at the distance from the tracer. The correlation
cupied by identical particles or vacant. The particles are inifunction is defined in the frame of reference moving with the
tially placed at random{constrained by the condition that tracer and jumps of the tracer change the valué,of
double occupancy of sites is forbiddewith mean concen- Consider now evolution of, , which completely deter-
tration C,=1-C,, whereC,, is the mean site occupancy, mines the mean displacement of the tracer Ex). The
C, being the mean site vacancy. The tracer particle is puehange inf, results from two different processes
initially at the origin, i.e., atX=0. A configuration of the Ca -
system is characterized by an infinite settihe-dependent fx=Lbath(f)) + Lirac(fr), (7)
occupation variable§ry}, wherery=1 if site X is occupied - o
and 7,=0 if site X is vacant. Consequently, the variable Where the operatdr,,;, accounts for the contribution com-
nyx=1— 7y describes the probability that si¢is vacant. ing from the motion of bath particles, whilk,,. describes

The dynamics of the bath particles is symmetric: eactthe contribution of the tracer motion itself. Explicitly, for
particle waits arandom exponentially distributed time with  Lpa.n(f)) we have(for |\|>1)
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I:bath(fx): F(1=f)(F 1+ i) -fflz%f72(1_f71)_%ffl(l_ffz)"_pfl(l_ffl)

—3h(A-figt1-f),  ® BRIEIE R (15)

Another pair of boundary conditions for EGLO) can be
obtained by assuming that correlations betw&éiX,t) and
7%+ (1) vanish in the limith— xo, which seems quite
plausible on physical grounds, and which may be checked
numerically. We have from Ed6)

where the first term describes the “birth” of a vacancy at the
occupied siteX+\ due to the jumps of a bath particle from
X+ A\ to vacant siteX+\ = 1; the second term describes the
“death” of a vacancy at a vacant sité+ \ due to the jumps
of a bath particle from siteX+\*=1. One readily notices
that the nonlinear terms in E@8) cancel each other and
Lpatn iS Simply the second finite difference operatgor fhmznm(t); P(X,)=Co, (16)
IN[>1)

. where we have used the normalization condition

Lpatn(Fr) =3 (—2f )+ 1+ fy ). (99  =P(X,t)=1 and also the assumption that at infinitely large

separations from the tracer the mean concentration of vacan-

The “diffusive” free particlelike behavior in Eq(9) is, of  cies is unperturbed and equal to its equilibrium valije
course, the consequence of the fact that all bath particles are Equationg5) and(7) to (13) constitute a closed system of
identical, leading to the cancellation of the nonlinear terms irequations for the derivation oX{(E,t), within the frame-

Eq.(8). o _ work outlined. Solutions to these equations will be discussed
Consider now the contribution due to the motion of thejn the next section.

tracer particle. In an explicit form we hayéor |\|>1)

- IV. SOLUTION OF DYNAMIC EQUATIONS AND
Lirac(Fa)=af 1(1=F)f\ 1—af 1\ (1-F\_1) ANALYTICAL RESULTS

Fpfi(I-fOfi—pf(1—Fi Dfy, We first turn to the continuous-space description and re-
(100  Write our equations in the limit of continuous. Then, for
N# *1 we have for the operator
where the terms on the rhs of H4.0) describe, respectively,

the following events(a) an occupiedsite at the distance 3 (f )%} i 17
\ from the tracer becomasacant if the tracer jumps into bathh TAJ ™5 g\

the previously vacant left-hand adjacent site and the site at

distancex — 1 is vacantib) a vacant site at distandefrom  and, at points\=*+1, Eq.(11) yields
the tracer becomes occupied, if the tracer jumps into the
previously vacant left-hand adjacent site and the site at dis-
tanceh—1 is occupied;(c) an occupied site at distanoe
becomes vacant when the tracer jumps into the previously
vacant right-hand site and the site at distaneel is vacant; Next, expanding  fy_y~f\—daf /o and
eventually,(d) a vacant site at distaneebecomes occupied f,.;~f)+df,/IN we obtain for the operatdr,,,. Eq. (10)
when the tracer jumps into the previously vacant right-handhe following approximate expression:

site and the site at distaneet 1 is occupied.

Next, similar reasoning gives the behavior iyf in the
immediate neighborhood of a tracer, i.e., at sites with
A= =1, which can be thought of as the boundary conditions
for Eq. (7). Time evolution off ., again is due to both the which holds forh# = 1.
motion of the bath particles and of the tracer, i.e., can be The approximation of Eq(19), in which the coefficient
represented in the form of Eq7), but here the operators before the gradient term is equal to ttme anvelocity of the
Lpath andL 4 are given as tracer particle, is equivalent to the neglect of fluctuations in

the tracer trajectoryX+(E,t) . In the following we show,
[ _1 _ _1 _ however, that such a “deterministic” approximation is quite
Loarn(f21) = 2 Fep(1=Tr) = 5fea(1Far), - (1) appropriate and leads to results which are in good agreement
~ with simulation data. The reason this approximation works
Lirac(f1)=—pfi(1-fy)+af_1(1-fy), (12 here is that in such a system the fluctuations of the tracer
trajectories are essentially suppressed. This is due to the ac-
cumulation of the bath particles in front of the tracer which
hinders fluctuations withX{(E,t)>X+(E,t). At the same
time, the fluctuations witiX+(E,t) <X+(E,t) are suppressed
by the driving force. This leads to the mean-square deviation
o?(t)=[X+(E,t) 12— X3(E,t) growing only as\t (see the
fi=3fy(1—fy)—Lf,(1—fy)—pfy(1—Ff,)+qf_,(1—f,),  numerical results in Fig. 2, where thie(t)]*? is plotted
(14)  versusylt), in a striking contrast to the linear time depen-

1 9f,

3 on h==1s (18)

Lpatn(f+1)=~=

~ (?fk (?f)\ —é’f)\
Lirac(fy)~ _qf—lﬁ—’_ ple:XT(E-t)Ka (19

and

Liac(f_ 1) =pf(1—f_)—qf _1(1-f 5. (13

Explicitly, we have forf ., the following equations:
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We hasten to remark that such an approach presumes al-
ready that @ is a time-independent constant and thus
X+(E.,t) grows as/at. However, such an assumption will be
seen to be self-consistent if it turns out to be possibted
we set out to show that this is actually the gatsefind the
solution of Eq.(23) satisfying the boundary conditions in
Egs.(25).

The appropriate solution to E@23), which satisfies the
boundary condition at infinity, reads

(Co— fwo)f“’

0

f =

w

do exd — a(o+w?2)]+f,-0,
(26)

I

I (a)=Il,.= f:dw exd — a(w+ w?/2)]

T 1/2
:(Z) explal2)[1 —erf(\al2)], (27)

FIG. 1. Theoretical values of the prefactor in the dependence of

the average tracer displacemift) ont*2vs the probability of the
“back step” q.

dence for conventional driven diffusive motion. Finally,

within the same “deterministic” picture we obtain

Lirac(fe1)~F Xq(E,t)(1—f.y). (20)

Combining Egs.(17) to (20) we obtain the following
continuous-space equation:

2

CX(EoTh
( ’)K’

f)

hi=3 o2 e

which is to be solved subject to the boundary conditions

Jf,

1
=+ —
2 I\

faox1 |)\=il:>.(T(E1t)(l_ft1) (22

and boundary conditions at— = oo, defined in Eq(16).

A. Solutions for A=1

Let us consider first the behavior d¢f for A=1. We
introduce a scaled variable w=(\—1)/X4(E,1),
(0= w=wx). In terms ofw Eg. (21) takes the following form:

*f, df,
W-Fa(w—k 1)%20, (23)
in which we have set
d 2
a= S [X(E.T (24

erf(x) being the error function. The value &f_,, which is
the probability of having the rhs adjacent to the tracer site
vacant, is to be defined from the boundary condition at
=0, Eq.(25), which gives
Co—f“’zoza(l —f o)
I

(28)

We note here that is as yet unspecified parameter.

B. Solutions forA<—1

Consider next the behavior 6f , Eq.(21), past the tracer
particle, i.e., in the domailn<—1. Now we choose the
scaled variableg= — (N +1)/X+(E,t), (0<#=<»). In terms
of # Eq. (21) takes the form

il nale_y 29

gz Tal0-D 4 =0, (29
with boundary conditions
df,

fy-=Co; Wﬁ:O:_a(l_ff):O). (30

The solution of Eq(29), which satisfies the boundary at
0= reads

— 0

faz
where

| (a)=]_= f:da exd (0 62/2)]

T 1/2
:(Z) expa/2)[1 +erf(Val2)]. (32

and which is to be solved subject to the boundary conditions e constant of integratiofy_, (which defines the probabil-

f

|

w=x="Co; do (25

o—o=a(1=f, o).

ity of having the left-hand sidélhs) adjacent to the tracer
site vacantis to be determined from the boundary condition
at #=0, which gives
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FIG. 2. Typical dependence of squared mean
tracer displacement and mean-squared deviation
on time.
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CO_f9:0 _

|7 _a(l_f‘gzo).

(33

Now we have a system of equatior(®8),(33) and
(5),(24), which determine the behavior &&(E,t), f,—, and

_ Co(p—q)+al_(pCo—q)
2pl (p—qCo+(p—a)al - )X1(E,t)

(39

Finally, noticing thatX{(E,t)=p¢, and using the defini-

f 5—o. In the following subsection we construct a closed-formtion of the parameterr Eq. (24) we obtain the following

transcendental equation for the parameier

C. Closed-form equation for &

We may formally rewrite Eq(5) in terms of the param-
etersf,_o andf,_g as

X+(E,1)=pfy-0=0f 0. (34)
Further, using Eq9.34), (24), and(28) we have
(CO_waO)
e fw= - f= 1_fw= . 35
21 X(ED (Pfu=0—dfs=0)( o) (35

Let us note now that the rhs of E(B5) tends to zero as
X+t(E,t) grows. This means thafexcept for the case
Co=1, when Eq.(35 has only a trivial solutiorf ,_,=1]
the valuepf,_o should tend taqf,-o ast— . Expressing
fo=0 as

:qfazo
w=0 p

+ ¢, (36)

where¢ is a deviation from the equilibrium value,_,, and

assuming that at sufficiently large times this deviation is
small enough to allow linearization of the equation near the

equilibrium, we have

Co—qfy=
b~ PLo—q =0 37
2pli(p—afy-o)X1(E )

Now, from Eq.(33) we expresd ,— through the param-
eter a, which gives

Co+a|,

fo-o= o 38

and substituting Eq(38) into Eq. (37) we get

closed transcendental equation ter

_ Co(p—a)+al_(pCy—q)
I [p—aCo+(p—q)al ]’

a

(40)

which, after some algebraic transformations, can be cast into
a compact, symmetric form

qa-pCo
pP—q

P—aCo| _ pa(1-Co)°

al (@) p—q (p—0)?

)(al (a)+
(41

where thea dependence df. [Egs.(27) and(32)] has been
made explicit.

A simple analysis shows that Edq41) has positive
bounded solutionsy(p,Cy) for any values ofp, qg=1—p
andC, (except the trivial cas€,=1 when bath particles are
absent This means, in turn, that our approach to the solu-
tions of coupled Eqs(23), (25, (29), and (30) is self-
consistent an&(E,t) actually grows in proportion tqlt. In
the trivial case wherCy=1 [when one expects, of course,
the linear growth ofX;(E,t)] Eq. (41) reduces to

(al,—1)(al _+1)=0 (42)

whose root is given by

al =1,

(43)

which means thatv=o and thusX;(E,t) grows at a faster
rate thanyft.

Behavior of the prefactow is presented in Fig. 1, in
which we plot the numerical solution of E(1) for different
values of the transition probabilities and different concentra-
tions Cy. In the next subsection we present analytical esti-
mates of the behavior af in several limiting situations.
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D. Analytical estimates of limiting behaviors was shown that here both and . are finite, vanish with the
of the parameter & length of the ring as 1/ and obey the Einstein relation

We start by considering situations in which the parametert(!)=8D(l). Our result in Eq(47) reveals that for the in-
« can be expected to be small: namely, wheis close to fmyte I:?\ttme Emst'e!n relation is valld'flor thg tlme-deperjdent
q (in other words whep is only slightly above 1/2) or when diffusion  coefficient” and mobility, i.e., equation
the vacancy concentration is smab<1. In the limit of  #(D{=lme_c[U(E,t)/E)]}=BD(t) holds exactly, pro-

small « the leading terms in Eq$27) and (32) behave as vided that the time is sufficiently large such that both Egs.
(1) and(47) are valid.

o \Y2 Consider next the situation whem is expected to be
~\%2a (44) large, i.e., wherC, is close to unity. Expanding the func-
tionsl, andl_ as

I

and Eq.(41) takes the form
1 1

(E)m+ q_pc"} (2)“1 p_qCO}:pq“‘Cg)z, |l ~~=—3-0 when a—=, 48)
2 p-a ]Il 2 p-a ] (p-q)
49 and
and gives for smalky, a<1, )1
v
2(Colp—a)\? L%(;) expla/2)—x when a—x, (49
a~ |\ T _c. (46)
an 1_C0

o o we arrive at the following equation:
Consequently, in this limit the explicit formula for the mean

displacement will read —nCn 1 1-Cp)2
1+q P> - =L20)—[\/277aexqal2)
— Cyp—q)[2t\¥2 CytanhBE/2) (2t 2 p-a «a (p—a)
Xi(Et)y~———r—|—| =—F7F+—|—| . _
l_CO a l_Co a p_QCO 1
(47 + s : (50)

At this point it might be instructive to recall the analysis ) ) )
in [3] which concerned the validity of the Einstein relation One may readily notice that when s large, the rhs of Eq.
for one-dimensional hard-core lattice gases. Define the “dif{50) tends to zero and thus we have
fusion coefficient” of the tracer particle in the symmetric
case aD =lim,_..D(t), whereD(t)=X3(E=0;)/(2t) and g~ P4
the “mobility” as u=limg_ o[U(E)/E], where the station- p(1—Cyp)"
ary velocity is given by U(E)=Ilim,_,U(Et),
U(E,t)=X(E,t)/t. In [3] it was shown that for the infi- Equation(51) allows formulation of the conditions whem
nitely large system the Einstein relation, i.e., the equations large, more precisely: this happens whép obeys the
w=pBD, holds trivially, since bothD and u are equal to inequality 1>Cy>q/p=exp(—BE).
zero. A somewhat stronger result has been obtained for the In this limit the mean displacement of the tracer particle
case when the one-dimensional lattice is a ring of lehmgth  obeys

(51)

25+

20
FIG. 3. Theoretical and experimental values

of the prefactor in the dependence of the average
tracer displacemenX(t) on t*2 vs the inverse
concentration of bath particleg|€0).

Neeoon®mo o N2 ILELRLRANRIRANERBSNBI S

Inverse concentration of bath particles
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X+(E,t)~

[ (p—a)t }1/2_<[1_9Xq_ﬁE)]t 2
p(1-Co)| 1-Cq '

(52

Finally, let us consider the case of the directed walk in a
one-dimensional lattice gas, when=1 and g=0, which
was previously examined if89]. In this case Eq(41) sim- 08T
plifies considerably and reads

0.6+

leocl += CO . (53)
WhenCy is small,Cy<1, we have from Eq(53) 04
2C2
Ho™~ —, (54) 02t

T
which is consistent with the result in E¢7), while in the 3 U S S =
||m|t C %1 E (53) ie|dS 0 0.05 01 0.15 0.2 0.25 03 0356 04 0.45 0.5

o~41, EQ. Yl a
|—Theoreﬁcal Prediction & Numerical Resunﬂ
1
™ ——, (55 . . .
1-C, FIG. 4. Theoretical and experimental values of the prefactor in
the dependence of the average tracer displacegnton t? vs

i.e., exactly the behavior in E¢51) with p=1 andq=0. q (C=1/3).

V. NUMERICAL SIMULATIONS —. . . .
ment (o°)¥? which shows growth in proportion tg/*.

In order to check the analytical predictions of Sec. IV and Numerical results for the time evolution of the mean dis-
V Monte Carlo(MC) simulations have been performed. The placement, performed for different values of parame@ys
simulation algorithm was defined as follows: The total num-and p, were used to obtain a numerical evaluation of the
ber of particles in the system was held constant at 39@refactor in Eq(3) as a function ofC, andp. In Fig. 3 we
(398 bath particles and one tragewe constructed a one- Plot, for the particular case of totally directed waljk-0, the
dimensional regular lattice of unit spacing and lengthPrefactora versus the inverse concentration of vacancies.
2L +1, sites of which were labeled by integers on the inter-The soI|(_1I line represents the results of our analytic cak_:ula-
val [—L,L]. For eachC,, the length was chosen as t|on§ while the squares show the numencal results. In Fig. 4,
L=399/C,. The number c’;f particles and, thus,was cho- for fixed concentration of the vacanC|_€%=1/3 we present
sen to be large enough so that over the time scale of th@e comparison between_the analytical predictions of the
simulations the mean vacancy density nkar was unaf- prefactora and the numerical MC results.
fected py thg dynamics of the tracer which always ocgupied VI. CONCLUSIONS
the lattice site O at=0. At the zero moment of MC time
particles were placed randomly on the lattice with the pre- To conclude, we have examined the behavior of the mean
scribed mean concentration and the constraint that no twgisplacement of a driven tracer particle moving in a symmet-
particles can simultaneously occupy the same site. The tracéf hard-core lattice gas. We have shown that the mean dis-
particle was placed at the origin. The subsequent particlflacement grows in proportion tot, i.e., the hard-core in-
dynamics employed in simulations follows the definitions ofteractions hinder the ballistic motion of the tracer and
Sec. Il closely. At each MC time step we select, at randomintroduce effective fI’IC.tIOI’la! forg:es. The prefactors in the
one particle and let it choose a potential jump direction. 1f9rowth law are determined implicitly, in a form of the tran-
the selected particle is a bath particle, it chooses the directiopcendental equation, for arbitrary magnitude of the driving
of the jump — to the right or to the left, with the probability force and arbitrary cpnc_erytratmn c_)f the Iat_tl_ce—gas particles.
1/2. If the selected particle is the tracer — it chooses the hof? Séveral asymptotic limits we find explicit formulas for
to the right with probabilityp and the hop to the left with these prefactprs. Our analytical flndlngs_ are in a very good
probabilityq, q=1— p. For any particle the jump is instantly agreement with the results of the numerical simulations.
fulfilled if at this moment of time the adjacent site in the
chosen direction is vacant.

In simulations we followed the time evolution of the dis-  The authors address special thanks to J.L. Lebowitz for
placement of the tracer particle and plotted it versus thenany encouraging discussions and interest in this work. We
“physical time,” which is the time needed for each particle also acknowledge helpful discussions with K.W. Kehr,
to move once, on average. Figure 2 presents typical behavi@r. G.D. Cohen, and H. van Beijeren. S.F.B. and W.P.R. ac-
of the average displacement calculated for fixedndC,  knowledge the support of ONR Grant No. N00014-94-1-
(the actual parameter for the presented resultsjar® and 0647 and, and S.F.B. by the University of Paris VI. G.O.
Co=1/3, the results for other values Gf andq are similay  acknowledges financial support from the CNRS. The Lab-
plotted versusyt. The dotted line in this figure shows the oratoire de Physique Theque des Liquides is Unitde Re-
evolution of the deviation from the mean average displacecherche Assoceau CNRS URA No. 765.
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