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We study the sample-size dependence of the ground-state energy in a one-dimensional localization problem,
based on a supersymmetric quantum mechanical Hamiltonian with a random Gaussian potential. We deter-
mine, in the form of bounds, the precise form of this dependence and show that the disorder-averaged ground-
state energy decreases with an increase of the sizeR of the sample as a stretched-exponential function
exp(2Rz) where the characteristic exponentz depends merely on the nature of correlations in the random
potential. In the particular case where the potential is distributed as a Gaussian white noise we prove that
z51/3. We also predict the value ofz in the general case of Gaussian random potentials with correlations.
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PACS number~s!: 02.50.2r, 05.40.1j, 72.15.Rn

I. INTRODUCTION

The one-dimensional Schro¨dinger Hamiltonian

Ĥ52
d2

dx2
1f2~x!1

df~x!

dx
~1!

arises in such diverse areas of quantum mechanics as studies
of solitons in conjugated polymers~polyacetylene! @1,2#, in
whichf(x) describes the dimerization pattern of the carbon-
hydrogen sequence, or of electrons dynamics in two-
dimensional systems subjected to random magnetic fields
@3#. It also represents a celebrated toy model of supersym-
metric quantum mechanics introduced by Witten@4#.

In case of nonrandom potentialsf(x) the properties of
the Hamiltonian in Eq.~1! have been thoroughly studied
within the last two decades and several interesting results
have been obtained. In particular, exact solutions of the
Schrödinger equation have been derived for a class of the
so-called shape invariant potentials@5#. Besides, such a form
of the Hamiltonian inspired a different method of semiclas-
sical quantization@6,7#.

More recent studies ofĤ have focused on situations in
which f(x) is random@3,8–11#. Here Eq.~1! describes a
localization problem in which, remarkably, the average den-
sity of states, the localization length and the Lyapunov ex-
ponent can be computed exactly@8–10#. In fact, this problem
represents an addition to the two known@12–14# examples
of localization problems which can be solved exactly in the
continuum.

In the present paper we study a different aspect of the
one-dimensional localization problem associated with the
Hamiltonian in Eq.~1! in which the potentialf(x) is a ran-
dom function of the space variablex. We focus on the physi-

cally interesting situation whereĤ is defined on a finite in-
terval @2R,R# and analyze the sample-size dependence of
the ground-state energyE0(R,$f%), which may be expressed
in terms of nonlocal exponential functionals of the random
potentialf(x). We consider mostly throughout the paper the
case wheref(x) is Gaussian,d-correlated white noise with
the moments

^f~x!&50 ~2!

and

^f~x!f~x8!&5sd~x2x8!, ~3!

where the brackets denote the average with respect to real-
izations off(x). The relevance of the short-range correla-
tions in the distribution off(x) and their influence on the
sample-size dependence are also succinctly addressed and
several predictions are made. We find that for such potentials
the disorder-averaged ground-state~DAGS! energy

E0~R![^E0~R,$f%!&

decreases as the sizeR grows as a stretched-exponential
function, E0(R)}exp(2Rz), where the characteristic expo-
nentz depends only on the correlation properties of the ran-
dom potential. In the particular case where fluctuations in
f(x) are d correlated, as in Eq.~3!, we prove thatz51/3.
The value of the exponentz is also predicted, on heuristic
grounds, for the general case of the random Gaussian poten-
tials with correlations. We show that such a stretched-
exponential dependence onR stems from the atypical real-
izations off(x), which are reminiscent of the representative
trajectories supporting long-time anomalous decay laws of
the survival probability for diffusion in the presence of ran-
domly placed traps@15,16# or of the Lifschitz singularities
@17# in the low-energy spectrum of an electron in the pres-
ence of randomly dispersed scatterers. Our results are pre-
sented in the form of lower and upper bounds onE0(R),
which show the same dependence onR and thus define this
dependence exactly. The method of the derivation of bounds,
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which we invoke here, has been previously discussed in
@18,19# and is based on the statistics of the extremes of the
random potentialf(x).

The paper is structured as follows: In Sec. II we present a
simple derivation of the ground-state energyE0(R,$f%) in
the case of the deterministic potentialsf(x). We recover in
a straightforward way an explicit formula forE0(R,$f%),
which coincides when the appropriate notations are intro-
duced with the one found in@20#, where the influence of the
finite-size effects on the ground-state energy in conventional
quantum mechanics has been examined. We then present
some arguments showing that this formula is still valid in the
case of a random potentialf(x). In Sec. III we estimate the
sample-size dependence of the ground-state energy consider-
ing only typical realizations of the random potentialf(x).
Employing the standard Jensen inequality we show then that
such an estimate constitutes a lower bound on the average
ground-state energy. Additionally, we illustrate that such an
estimate allows us to recover the correct low-energy behav-
ior of the integrated density of states of the Hamiltonian~1!.
Further on, in Sec. IV, we devise a more accurate approach
and derive a lower bound~subsection A! and an upper bound
~subsection B! onE0(R), which exactly determine its behav-
ior in the large-R limit. In subsection C we address the ques-
tion of the DAGS behavior in situations, in which the fluc-
tuations of the random potentialf(x) are correlated, and
also discuss some similar features between the realizations of
the disorder supporting the large-R behavior of the DAGS
and the realizations of random walks which support anoma-
lous long-time tails of the survival probability for the diffu-
sion in the presence of traps. Finally, in Sec. V we conclude
with a summary of our results.

II. CALCULATION OF THE ENERGY SHIFT
IN A FINITE SAMPLE

The structure of the Hamiltonian in Eq.~1! is such that,
for an arbitrary functionf(x), two independent solutions of
the Schro¨dinger equation

Ĥw0
~1,2!~x!50, ~4!

may be explicitly expressed as functionals off(x)

w0
~1!~x!5expS E

0

x

dx8f~x8! D ~5!

and

w0
~2!~x!5w0

~1!~x!E
0

x dx

@w0
~1!~x!#2

. ~6!

A. Deterministic potentials f„x…

In this subsection we consider the case of the determinis-
tic potentialsf(x), which decay fast enough whenx→6`
to makew0

(1) normalizable on the whole axis, i.e.,

E
2`

`

dx@w0
~1!~x!#2,`.

Therefore,w0
(1) is a zero-energy wave function of the Hamil-

tonian Ĥ defined on the whole axis.
Consider now how the situation will be changed if one

assumes that the Schro¨dinger equation with the Hamiltonian
in Eq. ~1! is defined not on the wholex axis, but only on a
finite interval@2R,R#. The new ground-state wave function
Ĉ0(x) on this finite interval satisfies the Schro¨dinger equa-
tion

F2
d2

dx2
1f2~x!1

df~x!

dx GĈ0~x!5E0~R,$f%!Ĉ0~x!, ~7!

with an a priori unknown energyE0(R,$f%) that will de-
pend on the explicit form of the potentialf(x). Equation~7!
has to be supplemented by the following Dirichlet boundary
conditions at the ends of the interval, i.e., at pointsx52R
andx5R,

Ĉ0~x52R!5Ĉ0~x5R!50. ~8!

Our goal will be to estimate the energy shiftE0(R,$f%) of
the ground state caused by the introduction of the boundary
conditions imposed on a finite interval.

Multiplying both sides of Eq.~7! by w0
(1)(x) and integrat-

ing from 2R to R, we get the following identity

E0~R,$f%!E
2R

R

dxw0
~1!~x!Ĉ0~x!

5E
2R

R

dxw0
~1!~x!F2

d2

dx2
1f2~x!1

df~x!

dx GĈ0~x!.

~9!

Integrating by parts the kinetic term on the right-hand side
~rhs! of Eq. ~9! yields

E0~R,$f%!E
2R

R

dxw0
~1!~x!Ĉ0~x!

5w0
~1!~2R!

dĈ0~x!

dx
U
x52R

2w0
~1!~R!

dĈ0~x!

dx
U
x5R

.

~10!

To proceed further on, we assume thatR is sufficiently
large and estimate the behavior of the derivative ofĈ0(x) in
this limit. SinceE0(R,$f%) vanishes whenR→`, one ex-
pects that the ground-state wave function on the finite~large!
interval may be well approximated by a suitable linear com-
bination of the two independent zero-energy solutions,
w0
(1)(x) andw0

(2)(x). In the vicinity of x5R one has

Ĉ0~x!'w0
~1!~x!F11aE

0

x dx

@w0
~1!~x!#2G , ~11!

wherea is determined through the boundary condition at
x5R, which gives

a52H E
0

R dx

@w0
~1!~x!#2 J 21

, ~12!
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and consequently, we find that the derivative ofĈ0(x) obeys

dĈ0~x!

dx
U
x5R

'
a

w0
~1!~R!

52H w0
~1!~R!E

0

R dx

@w0
~1!~x!#2 J 21

.

~13!

Similarly, for the derivative of the ground-state wave
function in the vicinity ofx52R one finds

dĈ0~x!

dx
U
x52R

'2H w0
~1!~2R!E

0

2R dx

@w0
~1!~x!#2 J 21

.

~14!

Now, combining Eqs.~10! to ~14! we have

E0~R,$f%)E
2R

R

dxw0
~1!~x!Ĉ0~x!

5H E
2R

0 dx

@w0
~1!~x!#2 J 21

1H E
0

R dx

@w0
~1!~x!#2 J 21

~15!

and, finally, replacing in the integral on the left hand side of
Eq. ~15! the function Ĉ0(x) by w0

(1)(x) ~which results in
exponentially small withR errors@20#! we find the following
explicit expression for the ground-state energy on a finite
interval:

E0~R,$f%!'
1

*2R
0 @w0

~1!~x!#22dx*2R
R @w0

~1!~x8!#2dx8

1
1

*0
R@w0

~1!~x!#22dx*2R
R @w0

~1!~x8!#2dx8
.

~16!

Equation ~16! reproduces the result of@20#, derived in
terms of a different approach, when the notation
V(x)5f2(x)1df(x)/dx is introduced. We note also paren-
thetically that expressions of quite identical structure were
recently obtained for the diffusion constant for the random
motion in an external periodic potential@21–24#. Therefore
the results which will be obtained in the following also apply
to this problem, provided that the potential is defined as in
Eqs.~2! and ~3!.

B. Random potentialsf„x…

We now have to explain why Eq.~16! is still valid in the
case of the random potentialsf(x). We first mention that the
analysis of the previous subsection is based on the assump-
tion that the wave functions are normalizable on the whole
line. In case of random potentialsf(x), as defined in Eqs.
~2! and~3!, the integral*0

Rdxf(x) may show an unbounded
growth whenR→` and thus the wave functions are not
normalizable. Therefore, it is not possible to use directly the
results of the preceding subsection. One may, however, no-
tice that due to the presence of disorder the zero-energy so-
lutions are localized. This observation allows us to get rid of
the problem at infinity. For a given realization of the random
potentialf(x) one choosesR in such a way that

f~2R!.0 and f~R!,0 ~17!

and then define an auxiliary configurationf̃(x) @see Figs.
1~a! and 1~b!# such that,

f̃~x!5f~x! for 2R,x,R, ~18!

f̃~x!5f~2R! for x,2R, ~19!

and

f̃~x!5f~R! for x.R. ~20!

The corresponding wave-functionC̃0(x)5exp@*0
xf̃(x8)dx8#

is therefore an exact zero mode of the Hamiltonian

H̃52
d2

dx2
1f̃2~x!1

df̃~x!

dx
~21!

on the whole line. WhenR is sufficiently large, it follows
from our previous discussion that there exists a ground-state
wave function of the HamiltonianH̃ on the interval
@2R,R#, whose ground-state energy is given by Eq.~16!.
Since this state has its support on@2R,R# the functions
C̃0(x) and w0(x) coincide, and thus it is also a quasizero
mode ofĤ with the ground-state energy defined by Eq.~16!.

III. TYPICAL REALIZATIONS OF DISORDER
AND THE JENSEN INEQUALITY

We start our analysis of the behavior of the disorder-
average ground-state energy in Eq.~16! first considering the
typical realizations of the random potentialf(x). To do this,

FIG. 1. Schematic picture of a two-level random potential
f(x). ~b! An auxiliary configurationf̃(x).

54 233SAMPLE-SIZE DEPENDENCE OF THE GROUND-STATE . . .



we rewrite the ground-state energy for a given sample with a
particular realization of the random potentialf(x) Eq. ~16!
in terms of the following exponential functionals of the po-
tentialf(x):

t6~z,y!5E
z

y

dx@w0
~1!~x!#625E

z

y

dxexpF62E
0

x

f~x8!dx8G ,
~22!

which gives

E0~R,$f%!5
1

t1~2R,R! S 1

t2~2R,0!
1

1

t2~0,R! D .
~23!

We notice now that the functionW(x)5*0
xdxf(x),

which appears in the definition oft2(0,R) Eq. ~22! for the
potentials as in Eqs.~2! and ~3! is simply a trajectory of a
symmetric random walk. Consequently, for the typical real-
izations of the random potentialf(x) the value ofW(R)
should be of the order (sR)1/2; hencet2(0,R) should grow
typically as exp@2(sR)1/2# and then Eq.~23! entailsE0(R)
}exp@24(sR)1/2#. Therefore for most realizations off(x)
one may expect thatE0(R,$f%) vanishes with an increase of
R as

E0~R,$f%! typ;exp~2s1/2R1/2!. ~24!

This typical behavior may be used to evaluate correctly
the low-energy asymptotic behavior of the density of states
of the Hamiltonian in Eq.~1!. Equation~24! means that a
wave function of low-energyE typically has a spatial exten-
sion 2R such that

R}
ln2~E!

s
. ~25!

Therefore the number of such states per unit length behaves
typically as

N~E!}
1

2R
}

s

ln2~E!
. ~26!

It is now interesting to compare Eq.~26! with the exact result
@9#

N~E!5
2s

p2

1

J0
2~z!1N0

2~z!
, ~27!

wherez5AE/s andJ0 ,N0 are Bessel functions. In the limit
E→0 one has from Eq.~27! that N(E);2s ln22(E/4s2),
i.e., the behavior which is quite consistent with our estimate
in Eq. ~26!. Therefore Eq.~26! shows that anomalous singu-
lar behavior of the integrated density of states is supported
by the typical realizations of the disorder and thus is quite
distinct from the Lifschitz singularity@17#, which is most
often encountered in the disordered quantum mechanical sys-
tems.

We now show that the estimate based on typical realiza-
tions of the disorder represents actually a lower bound on the
DAGS energy. To show it explicitly we invoke the standard

Jensen inequality between the average of the exponential of
some functionF and the exponent of the averaged value of
F,

^exp@2F#&>exp@2^F&#. ~28!

Now, choosing

F52 lnE0~R,$f%! ~29!

we find, taking into account Eq.~23!, thatE0(R) is bounded
from below by

E0~R!>exp$^ ln@t2~2R,R!#&2^ ln@t1~2R,R!#&

2^ ln@t2~2R,0!#&2^ ln@t2~0,R!#&%. ~30!

One may readily notice that for any random function
f(x) of zero mean, not all terms in the exponent on the
right-hand side of Eq.~30! are to be calculated indepen-
dently; obviously,

^ ln@t2~2R,R!#&5^ ln@t1~2R,R!#& ~31!

and

^ ln@t2~2R,0!#&5^ ln@t2~0,R!#&. ~32!

Consequently, the first two terms on the rhs of Eq.~30! can-
cel each other and we have only to perform the averaging of
ln@t2(0,R)#.

These functionalst6(0,R) appear in different physical
backgrounds@25,26#. Their discrete-x counterpart, which is
the sum of the products of the independent random variables
of the form

t2~N!511z11z1z21z1z2z31•••1z1z2z3 . . . zN ,

with

zn5exp~fn!,

is known as the Kesten variable@27# and plays an important
role in the theory of the renewal processes. The distribution
function of the continuous-x functional t2(0,R) has been
recently examined in@18,28,29,19# within the context of dif-
fusion in the presence of a random quenched force~the Sinai
diffusion @30,9#! and also in the literature on mathematical
finance@31#.

The average logarithm of the functionalt2(0,R) can be
obtained from the probability distribution of this functional
@28,29,19#

^ ln@t2~0,R!#&5
2

pE0
`dk

k2
@12exp~22sRk2!pk coth~pk!#

2G8~1!2 ln~2s! ~33a!

'S 8sR

p D 1/22G8~1!2 ln~2s!1OS 1

sRD ,
~33b!

where the notationO(1/R) means that the neglected terms
multiplied by R will give a constant asR→`. Equation
~33b! has been recently rederived in@32# which tested pre-
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dictions of the replica variational approximation@33# for a
particular physical system—a classical particle in a one-
dimensional box subjected to a random potential which con-
stitutes a Wiener process on the coordinate axis@30,9#. A
detailed discussion of the average logarithm of the functional
t2(0,R) can be found in@34#.

Accordingly, for the DAGS energy we obtain

E0~R!>expX24S 2sR

p D 1/2C, ~34!

which thus shows thatE0(R) vanishes with an increase of
the sample-sizeR not faster than a stretched-exponential
function exp(2Rz) with z51/2. However, this lower bound,
which is supported by the typical realizations of the disorder
may be improved as we will see in the next section.

IV. LOWER AND UPPER BOUNDS ON E0„R…

In this section we set out to show that, in the limit
R→`, the dependence of the disorder-averaged ground-state
energyE0(R) on R is quite different from that in Eq.~34!.
Here we will derive more accurate bounds which show that
in the large-R limit, the actual dependence of the disorder-
averaged ground-state energyE0(R) on R is described by a
stretched-exponential function exp(2Rz) but with a smaller
exponent,z51/3. This means that the large-R behavior of
E0(R) is supported by the atypical realizations off(x).
These realizations will also be specified below.

A. A lower bound

Let us begin with the derivation of a lower bound on
E0(R). We first note that sincef(x) enters the expression
for E0(R,$f%) only in the form*dxf(x), averaging with
respect to realization off(x) amounts actually to the aver-
aging over different trajectoriesW(x) of a symmetric ran-
dom walk. Therefore we can formally write down the aver-
age as a product of two path-integrals

E0~R!5^E0~R,$f%!&5E
V
D$W~x!%E

V8
D$W8~x!%

3P@W~x!#P@W8~x!#E0~R,$f%!, ~35!

where the notations used have the following meaning: The
symbol V denotes the set ofall possible ~unrestricted!
trajectoriesW(x) of a symmetric random walk, which
‘‘starts’’ at x50 at the originW(0)50, and ‘‘time’’ variable
x is defined on the interval@0,R#. We describe schematically
the setV in Fig. 2, where for notational convenience we use
the discrete-x picture and depict it using the axisW(x) and
x, i.e., using ‘‘directed polymers’’—like representation. The
trajectories (1) and (2) are two examples of possible trajec-
tories which belong to the setV. The symbolV8 denotes,
correspondingly, the set of all possible trajectoriesW8(x)
with the ‘‘time’’ variable x defined on the interval@0,2R#.
The trajectories inV andV8 are statistically uncorrelated.
Finally, the symbolsD$W(x)% and D$W8(x)% denote that
the integration is performed along the trajectoriesW(x) and

W8(x); P@W(x)# ~or P@W8(x)#) is the corresponding mea-
sure of a given trajectoryW(x) @or W8(x)#, which is the
standard Wiener measure.

The next essential step is as follows. Suppose that from
the entire setV ~andV8) we select some amount of trajec-
tories having certain prescribed properties and denote this
subset ofV (V8) asv (v8). Then, for any positive definite
functionalE0(R,$f%) the following inequality holds:

E
V
D$W~x!%E

V8
D$W8~x!%P@W~x!#P@W8~x!#E0~R,$f%!

>E
v
D$W~x!%E

v8
D$W~x!%

3P@W~x!#P@W8~x!#E0~R,$f%!, ~36!

where the integrations on the rhs of Eq.~36! extend only
over the trajectories which belong to the subsetsv andv8 of
the entire setsV andV8. Employing the inequality in Eq.
~36!, we get the following bound:

E0~R!>E
v
D$W~x!%

3E
v8
D$W8~x!%P@W~x!#P@W8~x!#E0~R,$f%!.

~37!

Now we define the subsetv (v8) as follows~Fig. 2!: v
(v8) is the set of all trajectoriesW(x) @W8(x)#, which, for
any x from the interval@0,R# (@0,2R# for v8), remain in-
side the strip@2A,A#, i.e., such trajectoriesW(x) @and
W8(x)# which obey2A<W(x),W8(x)<A for any x from
the interval @0,R# (@0,2R# for v8). In Fig. 2 trajectories
which form the subsetsv andv8 are exemplified by (2) and
(28).

Next, we diminish the rhs of Eq.~37!, i.e., enhance the
inequality in Eq.~37!, by substituting instead ofE0(R,$f%)

FIG. 2. Schematic representation of the setsV, V8, and the
subsetsv, v8. The setV ~dashed triangle on the half-plane
x.0) comprises all possible realizations of anR-step random walk
trajectoriesW(x) with xe@0,R#. The setV8 ~dashed triangle on the
half-planex,0) comprises, respectively, all possible trajectories of
anR-step random walk withxe@0,2R#. The subsetsv andv8 are
the areas cut from the setsV andV8 by the linesW(x)5A and
W(x)52A.
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its minimal value on the subsetsv andv8. By the definition
of v and v8, which implies that uW(x)u<A and
uW8(x)u<A we have

E
2R

R

dxexp@2W~x!#<2Rexp~2A!, ~38!

E
2R

0

dxexp@22W~x!#<Rexp~2A!, ~39a!

and

E
0

R

dxexp@22W~x!#<Rexp~2A!. ~39b!

Consequently, for any realization ofW(x) or W8(x) which
belongs to the subsetsv andv8, the following inequality
holds:

E0~R,$f%!>minv,v8$E0~R,$f%!%5
exp~24A!

2R2 . ~40!

Substituting Eq.~40! into Eq. ~37! we find the following
bound:

E0~R!>
exp~24A!

2R2 E
v
D$W~x!%

3E
v8
D$W8~x!%P@W~x!#P@W8~x!#. ~41!

We now notice that the product of the integrals along the two
‘‘restricted’’ ~statistically independent! paths W(x) and
W8(x) on the rhs of Eq.~41! is equal to the probability that
the two independent random walkers during ‘‘time’’R will
remain within the strip@2A,A#, which means that

E
v
D$W~x!%E

v8
D$W8~x!%P@W~x!#P@W8~x!#5P2~A,R!,

~42!

whereP(A,R) is the corresponding probability for a single
random walker@35#

P~A,R!5
4

p(
k50

`
~21!k

2k11
expS 2

~2k11!2p2sR

8A2 D . ~43!

Combining Eq.~41! and ~43! we thus obtain

E0~R!>
8exp~24A!

p2R2 F (
k50

`
~21!k

2k11

3expS 2
~2k11!2p2sR

8A2 D G2. ~44!

The function on the rhs of Eq.~44! contains a free trial
parameterA. The inequality in Eq.~44! holds for any value
of this parameter and thus represents a family of lower
bounds. Therefore, we will choose such a value ofA, which
maximizes the rhs of Eq.~44! and thus defines the maximal

lower bound. ForR sufficiently large the maximal contribu-
tion to the probability distribution in Eq.~43! comes from the
term with k50, i.e.,

P~A,R!'
4

p
expS 2

p2sR

8A2 D , ~45!

and consequently,

E0~R!>
8

p2R2 expS 24A2
p2sR

4A2 D . ~46!

Taking the derivative of the rhs of Eq.~46! with respect to
the parameterA, we find that

A5A*5
1

2
~p2sR!1/3 ~47!

provides its maximal value. Substituting Eq.~47! into Eq.
~46! we thus arrive at the following ‘‘maximal’’ lower
bound:

E0~R!>
8

p2R2 exp@23~p2sR!1/3#, ~48!

which shows that in the large-R limit the DAGS energy van-
ishes not faster than the exp(2R1/3), i.e. at a slower rate than
‘‘typical behavior’’ in Eq. ~34!. This improved lower bound
in Eq. ~48! is supported by the atypical realizations of
W(x), such thatW(x)}x1/3, i.e., by trajectories ofW(x)
which are spatially more confined than the ‘‘typical’’ real-
izations of the random walk trajectories for whichW(x)
}x1/2.

B. An upper bound

Let us now discuss the derivation of an upper bound on
the DAGS energy. We first note that the rhs of Eq.~16! for
any given realization ofW(x) can be bounded from above

1

*2R
0 @w0

~1!~x!#22dx*2R
R @w0

~1!~x8!#2dx8

1
1

*0
R@w0

~1!~x!#22dx*2R
R @w0

~1!~x8!#2dx8

<
1

*2R
0 @w0

~1!~x!#22dx*2R
0 @w0

~1!~x8!#2dx8

1
1

*0
R@w0

~1!~x!#22dx*0
R@w0

~1!~x8!#2dx8

5
1

*2R
0 *2R

0 dxdx8exp@2W8~x8!22W8~x!#

1
1

*0
R*0

Rdxdx8exp@2W~x8!22W~x!#
. ~49!

As one may readily notice, the inequality in Eq.~49! is ob-
tained by simply diminishing the limits of integration; in the
first term we change the limits of integration over the vari-
able x8 from @2R,R# to @2R,0#, while in the second one
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the limits are changed from@2R,R# to @0,R#. Since
w0
(1)(x) is positive definite, the diminishing of limits de-

creases the value of the integral and consequently, increases
the terms on the rhs of Eq.~49!.

Now we will try to find an appropriate functional of the
extremes of the random functionW(x) which will bound the
integrals in Eq.~49! from below, and thus in such a way will
enhance the bound in Eq.~49!.

We note here parenthetically that this problem turns out to
be rather nontrivial. In particular, standard integral inequali-
ties ~such as, for instance, the Schwarz inequality! are obvi-
ously insufficient since they predict an algebraic growth of
the integral

E
0

6RE
0

6R

dxdx8exp@2W~x8!22W~x!#, ~50!

while the simple analysis of the ‘‘typical’’ behavior shows
that Eq.~50! grows at least as a stretched-exponential func-
tion of R. In addition, the integrands in Eq.~50! do not
possess well-defined derivatives and thus one can not expand
the integrands in the vicinity of the extremes of function
W(x) and make use of the standard saddle-point-like esti-
mates.

To illustrate the derivation of such a bound we first turn to
the more lucid discrete-space picture, assuming thatx and
y are discrete variablesx,y50,1, . . . ,R, and then approxi-
mate the integrals in Eq.~50! as products of two sums

E
0

6R

dxE
0

6R

dx8exp@2W~x8!22W~x!#'(
x50

R

(
y50

R

axy ,

~51a!

with

axy5exp@2W~x!22W~y!#. ~51b!

The derivation of the corresponding upper bound in the con-
tinuous space, which is substantially more lengthy, will be
merely outlined in the Appendix.

We notice that the rhs of Eqs.~51! is the sequence of
(R11)2 positive terms, each of which is an exponential of
the distance between the positions of a given trajectory
W(x) taken at two different moments of ‘‘time’’x ~summed
over all possiblex from the interval@0,R#). From this se-
quence of positive terms$axy% we choose the maximal term,
maxx,ye@0,R#$axy%, which is evidently the exponential of the
difference of the maximal positive displacementM1 ,
(M1.0), of the trajectoryW(x) ~which is achieved at some
moment x5x* ) and the maximal negative displacement
M2 , (M2,0), of the same trajectory~achieved at the mo-
ment y5y* , both x* and y* belonging to the interval
@0,R#),

M15maxxe@0,R#$W~x!%5W~x* !, ~52!

M25minxe@0,R#$W~x!%5W~y* !. ~53!

Since allaxy>0, the sum on the rhs of Eq.~51! is evidently
larger than the maximal term of this sequence, i.e.,

(
x50

R

(
y50

R

axy>maxx,ye@0,R#$axy%5exp@2~M12M2!#.

~54!

Equation~54! represents the~discrete-space! formulation of
the desired bound on the integrals in Eq.~50!.

Let us now see how this bound can be employed for the
derivation of the upper bound on the DAGS. Making use of
Eqs. ~49! and ~54! we have that, at a given realization of
W(x), the ground-state energy can be bounded from above
as

E0~R,$f%!<exp~22S8!1exp~22S!, ~55!

where we denote by

S85maxxe@0,2R#$W8~x!%2minxe@0,2R#$W8~x!%5M18 2M28

and

S5maxxe@0,R#$W~x!%2minxe@0,R#$W~x!%5M12M2 .

Random variables asS8 ~or S) are known in the statistics of
random walks as a span of the random walk~see Fig. 3!,
which can be visualized~in the d-dimensional space! as the
dimensions of the smallest box with sides parallel to the
coordinate axes that entirely contain the trajectory of a ran-
dom walk@35#. The exact probability distributionP(S,R) of
the random variableS is well known @35#; in the case of
largeR, a convenient representation reads

P~S,R!5
8sR

S3 (
k50

` Fp2~2k11!2sR

S2
21G

3expS 2
p2~2k11!2sR

2S2 D . ~56!

Therefore the calculation of the upper bound on the
DAGS energy reduces to the calculation of the integral

E0~R!<2E
0

`

dSexp~22S!P~S,R!, ~57!

FIG. 3. Maximal positive, maximal negative displacements, and
the span of the trajectoryW(x) with x defined on the interval
@0,R#.
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in which, noticing thatS andS8 have identical distribution
functions @although for given realizations ofW(x) and
W8(x) they may have different values# the contribution of
S8 may be simply accounted for by introducing a multiplier
2.

Let us now consider the behavior of the integral in Eq.
~57! in the limit of largeR. We first note that in this limit in
Eq. ~56! only the term withk50 is relevant. Second, notic-
ing that the integrand is a bell-shaped function, we perform
the integral using the saddle point approximation. Maximiz-
ing the terms in the exponent we get that the saddle-point
depends onR as

S5S*5S p2sR

2 D 1/3 ~58!

and consequently, the bound in Eq.~57! attains the form

E0~R!<32S 2sR

3p D 1/2expF2
3

21/3
~p2sR!1/3G . ~59!

Therefore the upper bound on the DAGS energy shows a
stretched-exponential dependence onR with the characteris-
tic exponentz51/3, i.e., aside from the numerical factor
221/3 in the exponent and pre-exponential multipliers~which
are not reliable in view of the approximation involved!, es-
sentially the same behavior as the lower bound in Eq.~48!.
Since both lower and upper bounds have the same depen-
dence onR and also, on physical grounds,E0(R) is a mono-
tonically decreasing function ofR, we may infer that the
stretched-exponential dependence withz51/3 is the asymp-
totically exact result forE0(R). It is also important to note
that both the lower and the upper bounds turn out to be
supported by the same ‘‘class’’ of trajectoriesW(x), such
thatW(x)}x1/3.

To close this subsection we remark that the coincidence in
theR dependence of the lower and the upper bounds is, in
essence, due to the fact that the measure of the restricted
trajectories, used in the derivation of the lower bound, and
the probability distribution of the maximal displacement~or
of the spanS) are intrinsically related to each other@35#.
Actually, the probabilityP(A,R) that a random walker, start-
ing at the momentR50 at the origin, remains within an
interval@2A,A# in anR-step walk is just the probability that
the maximal displacement of this random walker is less than
A. It is clear that the probability of having the maximal
displacement exactly equal toA is given by@35#

V~A,R!'
]P~A,R!

]A
, ~60!

and consequently, the probability of having the span of an
R-step walk equal toS will follow:

P~S,R!'
]P~A,R!

]A U
A5S/2

. ~61!

Further on, evaluating the lower bound we have
searched for such anA which maximizes the product

exp(24A)P(A,R). On the other hand, the upper bound was
eventually reduced to the integral in Eq.~57!, which, using
Eq. ~61! can be rewritten as

E
0

`

dSexp~22S!P~S,R!

'E
0

`

dSexp~22S!
]P~A,R!

]A U
A5S/2

. ~62!

Integrating Eq.~62! by parts we arrive at performing an in-
tegral with the integrand exp(24A)P(A,R). Since the inte-
grand is a bell-shaped function ofA and thus the saddle-
point approximation can be used, calculation of this integral
also reduces to maximizing the integrand.

C. Random Gaussian potentialsf„x… with correlations

In this subsection we will briefly discuss the behavior of
the DAGS in the case where fluctuations off(x) are corre-
lated. Now, as we have already mentioned the relevant prop-
erty is the integralW(x)5*0

xdx8f(x8), rather thanf(x)
itself. It is therefore convenient to define the correlations in
the random potentialf(x) in terms of the integralW(x). We
consider here the case whereW(x) is zero on average, as in
Eq. ~2!, and define the second moment as follows:

^W~x!W~x8!&;ux2x8u11l, 21<l<1. ~63!

The parameterl in Eq. ~63! determines the nature of the
correlations in the random potentialf(x). The borderline
casel50 corresponds to thed correlated fluctuations of
f(x), whenW(x) is a trajectory of the conventional Brown-
ian motion. This case has been examined in detail in previ-
ous sections. The case of positivel, (l.0), describes the
situations in which fluctuations off(x) in two neighboring
pointsx andx8 tend to be of the same sign. Here the trajec-
toriesW(x) have strong persistency; thinking in terms of the
random walk one may say that here the random walker most
likely continues the motion in the direction of the previous
step than changes the direction of motion. Consequently, its
trajectories are more ‘‘swollen’’ and spatially more extended
compared to the casel50. Finally, the casel,0 describes
disorder with negative correlations when the values of the
potentialf(x) in two neighboring pointsx and x8 tend to
have different signs. Here the random walker has a tendency
of changing the direction of its motion at each step and its
trajectoriesW(x) are essentially more compact, compared to
the case of the conventional random walk.

Using Eq.~63! one can readily estimate the typical behav-
ior of the DAGS. Since for the typical realizations ofW(x)
one expects that W(x);x(11l)/2, we will have
^ lnt1(0,R)&;R(11l)/2, and consequently,

E0~R! typ;exp~2R~11l!/2! ~64!

Consider now the behavior of the DAGS stemming from
the atypical realizations and generalize the formalism em-
ployed for the derivation of the lower bound. Anticipating
the reasonings which underly the inequality in Eq.~36! and
Eqs.~41!, we have that the DAGS can be estimated as

238 54C. MONTHUS, G. OSHANIN, A. COMTET, AND S. F. BURLATSKY



E0~R!>exp~24A!Pl
2~A,R!, ~65!

where Pl(A,R) denotes the probability that a random
walker, which is at the origin atR50 and whose trajectories
obey Eq.~74! will remain inside the strip@2A,A# during the
time interval@0,R#. Such a probability can be estimated as
@35,36#

Pl~A,R!;exp~2R/Adv!, ~66!

wheredv52/(11l) is the ‘‘fractal’’ dimension@36# of the
random walk defined by Eq.~63!. Plugging Eq.~66! into the
Eq. ~65! and maximizing the product with respect toA we
obtain the following estimate:

E0~R!;exp~2R1/~11dv!!, R@1 ~67!

or, in terms of the parameterl,

E0~R!;exp~2R~11l!/~31l!!, R@1. ~68!

Behavior as in Eqs.~67! and ~68! is thus supported by
such atypical trajectoriesW(x) which grow with x as
x(11l)/(31l). It is important to note that again the estimate in
Eqs.~67! and~68! shows a slower dependence onR as com-
pared to the typical behavior in Eq.~64!.

To close this section we will explain what we have in
mind when saying that realizations of disorder which support
the anomalous stretched-exponential behavior of the DAGS
share common features with the realizations of trajectories
which support the anomalous long-time decay of the survival
probability of a particle diffusing in the presence of ran-
domly placed traps or Lifschitz tails in the low-energy den-
sity of states of an electron in the presence of randomly
dispersed scatterers@15,38#.

Let us remember, on the example of the trapping problem,
some basic formulations and results. Suppose a one-
dimensional, infinite in both directions, line with immobile
trapsB which are placed completely at random at a mean
concentrationnB . At t50 we introduce on the line some
concentration of particles of another type, sayA, and let
them diffuse independently of each other. As soon as anA
particle approaches aB trap, theA particle gets annihilated,
while the trap is unaffected. The question of interest is to
define the time evolution of the concentration ofA particles
~or the survival probability!, averaged with respect to the
spatial arrangement of traps.

LetC(x,t) denote the local concentration ofA particles at
the pointx at time t. It obeys the diffusion equation

Ċ~x,t !5D
]2

]x2
C~x,t !, ~69!

whereD is the diffusion coefficient ofA particles. Equation
~69! is to be solved subject to the adsorbing boundary con-
ditions imposed at the points occupied by traps; that is,

C~x5Xi ,t !50, ~70!

for any Xi from $Xi%, whereXi defines the position of the
i th trap,2`< i<`, and$Xi% denotes the set of traps’ posi-
tions.

A nice feature of the one-dimensional geometry is that
this problem can be solved exactly@15,37#, by simply notic-
ing that the evolution of C(x,t) on some interval
@Xi ,Xi11# is independent of other intervals. Consequently,
one has to find the solution of the diffusion equation on a
finite interval of fixed lengthW, subjected to the adsorbing
boundary conditions at the ends of the interval, and then
perform averaging with respect to the distribution of the in-
terval’s length. Such a solution is given by Eq.~43!, which in
the limit of sufficiently large times reads

P~W,t !'expS 2p2
Dt

W2D . ~71!

Now, the disorder-average concentration ofA particles at
time t will be defined as

^C~x,t !&'E
0

`

dWP~W,t !P~W!, ~72!

whereP(W) is the probability of having a trap free interval
of lengthW. For Poisson distribution of trapsP(W) behaves
as

P~W!}exp~2nBW!. ~73!

Substituting Eqs.~73!, ~71! into the Eq.~72! we thus arrive
at an integral of essentially the same structure as that in Eq.
~57!, which yields@15,16,35–37#

^C~x,t !&'expF23S p2

4
nB
2Dt D 1/3G . ~74!

The behavior as in Eq.~74! shows that the long-time de-
cay of the disorder-average concentration is supported by
such bounded realizationsW(t) of A particles’ random
walks which obeyuW(t)u<A}t1/3, i.e., the same class of
trajectories which support the large-R behavior of the DAGS
in the problem studied in the present paper.

V. CONCLUSIONS

To conclude, we have studied a new aspect of a one-
dimensional localization problem associated with the super-
symmetric Hamiltonian in Eq.~1! in which the potential
f(x) is a Gaussian random function of the spatial variable
x. We have derived an explicit expression for the ground-
state energy of the Hamiltonian~1! defined on a finite inter-
val of thex axis for a given realization of disorder and ana-
lyzed the dependence of the disorder-average ground-state
energy on the lengthR of the interval. We have shown that it
is described by a stretched-exponential function of the form
exp(2Rz), in which the characteristic exponentz is depen-
dent merely on the nature of correlations in a random poten-
tial. In the case when fluctuations in random potential ared
correlated we foundz51/3. In the case when fluctuations are
defined by Eq.~74! we have deduced thatz5(11l)/
(31l). We have shown that such a behavior is quite differ-
ent from the one expected when only the typical realization
of the disorder are considered and thus is supported by atypi-
cal realizations of the random potential, which behave as
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Ex

dx8f~x8!}x~11l!/~31l!. ~75!

We have also shown that such realizations belong to the
class of trajectories which support an anomalous long-time
behavior of the survival probability of a random walk in the
presence of randomly placed traps.
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APPENDIX

In this appendix, we outline the derivation of the upper
bound for the DAGS in the continuous-space limit. Consider
the integral in Eq.~50! ~for simplicity we suppose that limits
of the integration are from 0 to1R) and, as was done be-
fore, assume that a given trajectoryW(x) reaches its maxi-
mal value at the pointx5x* and its minimal value at the
point x5y* . Let us choose some positive constant«, such
that 0,«!R andx*1«,y*1«<R. Since the integrand in
Eq. ~50! is positive definite, the following inequality holds:

E
0

R

dxE
0

R

dyexp@2W~x!22W~y!#.

>E
x*

x*1«
dxE

y*

y*1«
dyexp@2W~x!22W~y!#. ~A1!

Now, taking advantage of the inequality in Eq.~49! we have
for the DAGS

E0~R!<K 1

*0
Rdx*0

Rdyexp@2W~x!22W~y!#L
1K 1

*2R
0 dx*2R

0 dyexp@2W~x!22W~y!#L
52K 1

*0
Rdx*0

Rdyexp@2W~x!22W~y!#L
52E

0

`

dSP~S,R!E E dM1dM2d~S2M11M2!

3K 1

*0
Rdx*0

Rdyexp@2W~x!22W~y!#L
3u@M15W~x* !;M25W~y* !#, ~A2!

where the brackets with the subscript@M15W(x* );
M25W(y* )] mean that the average is taken with respect to
the trajectoriesW(x) whose maximal positive displacement
is equal toM1 and the maximal negative displacement is
equal toM2 .

Further on, the inequality in Eq.~60! enables us to en-
hance the bound in Eq.~61! and write

E0~R!<2E
0

`

dSP~S,R!E E dM1dM2d~S2M11M2!

3K 1

*x*
x*1«dx*y*

y*1«dyexp@2W~x!22W~y!#L
3u@M15W~x* !;M25W~y* !#. ~A3!

Let us now estimate the value of the following functional:

E5E
0

`

dSP~S,R!E E dM1dM2d~S2M11M2!

3K 1

*x*
x*1«dx*y*

y*1«dyexp@2W~x!22W~y!#L
3u@M15W~x* !;M25W~y* !#. ~A4!

To do this we enclose the pointsW(x* ) andW(y* ) by
circles of the radiusd ~see Fig. 3!, where d5d(R) is a
slowly growing function. The choice of the dependence
d(R) will be made later. Further on, we divide the set of all
possible trajectoriesV into two different subsets. The first
subset$A% comprises all such trajectoriesW(x) of random
walk ~with its maxima atM1 and minima atM2) which, on
the intervalxe@x* ,x*1«# do not cross the circle around the
pointW(x* ) and on the intervalxe@y* ,y*1«# do not cross
the circle aroundW(y* ) ~e.g. the trajectory 1 in Fig. 3!. The
subset$B% comprises the rest of the trajectories~for instance,
the trajectory 2 in Fig. 3!. We write now

E5A1B, ~A5!

whereA stands for the average of the integrand in Eq.~62!
with the trajectories forming the subset$A%, whileB denotes
the contribution toE coming from the average of the inte-
grand over of the trajectories forming the subsetB.

Consider first the contribution coming from the trajecto-
ries in the subset$A%. By definition of$A%, we have that on
the interval@x* ,x*1«# the trajectoryW(x) obeys the in-
equality M12d,W(x)<M1 ; and on the interval
@y* ,y*1«# the trajectory W(y) obeys
M2<W(y),M21d. Consequently, the integrands in Eq.
~A4! are bounded from below by

exp@2W~x!#>exp~2M122d!, ~A6!

exp@22W~y!#>exp~22M222d!, ~A7!

and thusA is majorized by

A<
exp~4d!

«2 E
0

`

dSP~S,R!exp~22S!. ~A8!

Next we estimate the contribution from the trajectories of the
subset$B%. Here, forxe@x* ,x*1«# andye@y* ,y*1«# the
function exp@W(x)2W(y)# is always greater than 1 and con-
sequently
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E
x*

x*1«
dxE

y*

y*1«
dyexp@2W~x!22W~y!#>«2. ~A9!

Accordingly, the contribution coming from the trajectories of
the subset$B% can be majorized by

B<
1

«2
P~$B%!, ~A10!

whereP($B%) denotes the measure of trajectories forming
the subsetB. When d is chosen such thatd2@2s«, this
measure vanishes as

lnP~$B%!;2
d2

2s«
. ~A11!

Now, gathering Eqs.~A8! and ~A10! we have thatE is
bounded from above by

E<
exp~4d!

«2 E
0

`

dSP~S,R!exp~22S!1
1

«2
expS 2

d2

2s« D .
~A12!

Our previous analysis shows that the integral over the span
variableS in the first term on the rhs of Eq.~A12! vanishes
with R as a stretched-exponential function of the form
exp(2R1/3). Thus the rhs of Eq.~A12! behaves as

'
exp~4d!

«2
exp~2R1/3!1

1

«2
expS 2

d2

2s« D . ~A13!

Now we have to make the choice of« andd(R). One readily
notices what the proper choice will be if we suppose that
«5const andd(R);Rg, where g is an arbitrary number
from the interval ]1/6,1/3@ . If g.1/6 the second term on the
rhs of Eq.~A13! vanishes withR faster than the first term
and thus the leading large-R behavior will be given by the
first term on the rhs of Eq.~A13!. On the other hand the
requirementg,1/3 insures that the leading large-R behavior
follows the exp(2R1/3) dependence, sinceR21/3d(R)→0
whenR→`.

Therefore we have shown that also in the continuous-
space limit the upper bound on the DAGS vanishes withR as
a stretched-exponential function with the characteristic expo-
nentz51/3. The bound derived here@although it suffices to
prove the asymptotically exact dependence exp(2R1/3)# turns
out, however, to be worse than the one found in the discrete-
space case; it differs from the bound in Eq.~59! by an addi-
tional multiplier which grows withR as exp(Rg). Besides,
this bound is not optimal; there are no well-defined values of
« and d which minimize the upper bound. Apparently, an
optimal upper bound in the continuous space can also be
devised, but this is beyond the aims of the present paper.
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