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Sample-size dependence of the ground-state energy in a one-dimensional localization problem
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We study the sample-size dependence of the ground-state energy in a one-dimensional localization problem,
based on a supersymmetric quantum mechanical Hamiltonian with a random Gaussian potential. We deter-
mine, in the form of bounds, the precise form of this dependence and show that the disorder-averaged ground-
state energy decreases with an increase of the Riz# the sample as a stretched-exponential function
exp(—R® where the characteristic exponenidepends merely on the nature of correlations in the random
potential. In the particular case where the potential is distributed as a Gaussian white noise we prove that
z=1/3. We also predict the value afin the general case of Gaussian random potentials with correlations.
[S1063-651%96)01607-9

PACS numbsgs): 02.50~-r, 05.40+j, 72.15.Rn

|. INTRODUCTION cally interesting situation wherd is defined on a finite in-
terval [ —R,R] and analyze the sample-size dependence of

The one-dimensional Schdimger Hamiltonian the ground-state enerd@sp(R,{#}), which may be expressed
) in terms of nonlocal exponential functionals of the random
H=— d_ +2(X) + de(x) (1) potentialé(x). We consider mostly throughout the paper the

dx? dx case wherep(x) is Gaussiang-correlated white noise with

o ) ) the moments
arises in such diverse areas of quantum mechanics as studies

of solitons in conjugated polymefpolyacetyleng[1,2], in {(p(x))=0 2)
which ¢(x) describes the dimerization pattern of the carbon-

hydrogen sequence, or of electrons dynamics in two—and

dimensional systems subjected to random magnetic fields (d(X)p(X"))=08(x—x"), ©)

[3]. It also represents a celebrated toy model of supersym- _

metric quantum mechanics introduced by Witfd where the brackets denote the average with respect to real-

In case of nonrandom potentials(x) the properties of izations of ¢(x). The relevance of the short-range correla-
the Hamiltonian in Eq(]_) have been thorough|y studied tions in the distribution Ofgb(X) and their influence on the
within the last two decades and several interesting result§d@mple-size dependence are also succinctly addressed and
have been obtained. In particular, exact solutions of théeveral predictions are made. We find that for such potentials
Schralinger equation have been derived for a class of théhe disorder-averaged ground-staBAGS) energy

so-called shape invariant potentiglg. Besides, such a form _
of the Hamiltonian inspired a different method of semiclas- Eo(R)=(Eo(R.{$}))
sical quantization6,7]. decreases as the si# grows as a stretched-exponential

More recent studies ofi have focused on situations in function, Eq(R) xexp(—R?), where the characteristic expo-
which ¢(x) is random[3,8—11. Here Eq.(1) describes a nentz depends only on the correlation properties of the ran-
localization problem in which, remarkably, the average dendom potential. In the particular case where fluctuations in
sity of states, the localization length and the Lyapunov ex-)(x) are § correlated, as in Eq3), we prove thaz=1/3.
ponent can be computed exadi~10]. In fact, this problem The value of the exponemnt is also predicted, on heuristic
represents an addition to the two knoWi2—-14 examples grounds, for the general case of the random Gaussian poten-
of localization problems which can be solved exactly in thetials with correlations. We show that such a stretched-
continuum. exponential dependence éhstems from the atypical real-

In the present paper we study a different aspect of thézations of¢(x), which are reminiscent of the representative
one-dimensional localization problem associated with therajectories supporting long-time anomalous decay laws of
Hamiltonian in Eqg.(1) in which the potentiakp(x) is a ran-  the survival probability for diffusion in the presence of ran-
dom function of the space variabte We focus on the physi- domly placed trap$15,16 or of the Lifschitz singularities

[17] in the low-energy spectrum of an electron in the pres-
ence of randomly dispersed scatterers. Our results are pre-
“Present address: Laboratoire de Physiqueotihae des Liquides sented in the form of lower and upper bounds B(R),
(CNRS URA No. 765, UniversitePierre et Marie Curie, 4 Place which show the same dependenceRmand thus define this
Jussieu, 75252 Paris Cedex 05, France. dependence exactly. The method of the derivation of bounds,
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which we invoke here, has been previously discussed iThereforee( is a zero-energy wave function of the Hamil-

[18,19 and is based on the statistics of the extremes of thgynianH defined on the whole axis.

random potentiatp(x). Consider now how the situation will be changed if one
The paper is structured as follows: In Sec. Il we present &ssumes that the Sciiager equation with the Hamiltonian

simple derivation of the ground-state enefgy(R,{¢}) in  in Eq. (1) is defined not on the whole axis, but only on a

the case of the deterministic potentigi¢x). We recover in finite interval[ — R,R]. The new ground-state wave function

a straightforward way an explicit formula f&o(R.{#}), < (x) on this finite interval satisfies the Sckinger equa-
which coincides when the appropriate notations are introgjon

duced with the one found if20], where the influence of the
finite-size effects on the ground-state energy in conventiona:_{ d? de(x)
t—

quantum mechanics has been examined. We then prese W+¢2(X)+ dx o(x)=Eo(R{dNTo(x), (7)
some arguments showing that this formula is still valid in the

case of a random potentigl(x). In Sec. Il we estimate the_ with an a priori unknown energyEq(R,{¢}) that will de-
.sample—5|ze.depend'enc.e of the ground-state energy consM%nd on the explicit form of the potentiai(x). Equation(7)
ing only typical realizations of the random potentid(x).  has to be supplemented by the following Dirichlet boundary

Employing the standard Jensen inequality we show then thalygitions at the ends of the interval, i.e., at poits— R
such an estimate constitutes a lower bound on the averagg,qx=R

ground-state energy. Additionally, we illustrate that such an

estimate allows us to recover the correct low-energy behav- \iro(x: _R):ﬁlo(xz R)=0. (8)

ior of the integrated density of states of the Hamiltonjan

Further on, in Sec. IV, we devise a more accurate approacQur goal will be to estimate the energy shig(R,{¢}) of

and derive a lower boun@ubsection Aand an upper bound the ground state caused by the introduction of the boundary
(subsection Bon Eo(R), which exactly determine its behav- conditions imposed on a finite interval.

ior in the largeR limit. In subsection C we address the ques-  Multiplying both sides of Eq(7) by (pgl)(x) and integrat-
tion of the DAGS behavior in situations, in which the fluc- jng from —R to R, we get the following identity

tuations of the random potentiab(x) are correlated, and

also discuss some similar features between the realizations of R 1)) o

the disorder supporting the large-behavior of the DAGS Eo(Ry{fﬁ})JiRdX(Po (X)Wo(X)

and the realizations of random walks which support anoma-

lous long-time tails of the survival probability for the diffu- R D
sion in the presence of traps. Finally, in Sec. V we conclude = JleX@o (x)
with a summary of our results.

d? dop(x)]

— g2 00+ =5 o).

C)

II. CALCULATION OF THE ENERGY SHIFT Integrating by parts the kinetic term on the right-hand side
IN A FINITE SAMPLE (th9 of Eq. (9) yields
The structure of the Hamiltonian in E¢l) is such that, 5
for an a.r.b|.trary funcﬂqm&(x), two independent solutions of Eo(Ry{d’})f dxcpf)l)(x)‘l’o(x)
the Schrdinger equation -R

Hei2(x)=0, (4) _ gy 9FoX) (1) gy I ¥0(X)
o ( R) dx Xx=—-R ° (R) dx Xx=R
may be explicitly expressed as functionalsd(fx) (10)
X . . .
@Bl)(x):exl{J dx’ ¢(x') (5) To procee_d further on, we assume tlma_ms _sufflmen_tly
0 large and estimate the behavior of the derivativalgfx) in

this limit. SinceEy(R,{¢}) vanishes wherR—x, one ex-

and pects that the ground-state wave function on the fithitege
interval may be well approximated by a suitable linear com-
2 1 x dx bination of the two independent zero-energy solutions,
@ (X)=¢@g " (X) fo [eD0" ®  oW(x) and (). In the vicinity of x=R one has
Wo(x)~ oG (x)| 1+ fx dx (11)
I . ~¢ | ——— |,
A. Deterministic potentials ¢(x) 0 0 0 [<p§)1)(x)]2

In this subsection we consider the case of the determinis-
tic potentials¢(x), which decay fast enough whem— =+«  where « is determined through the boundary condition at
to makee$" normalizable on the whole axis, i.e., x=R, which gives

® R d -1
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and consequently, we find that the derivativeiq,f(x) obeys ¢(x)

dWo(x) Y _ | ROdx T
dx |, e’(R) [‘P" (R)fo[soé”(xnz '

13
Similarly, for the derivative of the ground-state wave W H ’_‘ I— 1 H HH ( ”_‘
function in the vicinity ofx=—R one finds HU H.R H H H \R_‘ H |j{
d\ifo(x) dx

el
dx |,__g ° o [e5"(x)]?
(14

Now, combining Eqs(10) to (14) we have

R A
Eo(R{4}) f ~Oxe 00 Wo(x)

0 dx -1 R dx -1 4_
:UR[¢51><x>]2] +Uo[<p6“(x>]2] o | WHH(

and, finally, replacing in the integral on the left hand side of -R J H H R x
Eq. (15) the functionWy(x) by ¢fM(x) (which results in : :
exponentially small witlR errors[20]) we find the following
explicit expression for the ground-state energy on a finite

interval: ®)
EO(R,{¢})~ 5 ) — 1R AT FIG. 1. Schematic picture ofjt two-level random potential
JZRles ()] “dx[Trl g (x")]dx (x). (b) An auxiliary configurationg(x).
+ L and then define an auxiliary configurati&h(x) [see Figs.
JelesY ()1 2dx Rl g (x")12dx" 1(a) and ib)] such that,

(16) d(X)=p(x) for —R<x<R, (18)

Equation (16) reproduces the result dR0], derived in ~
terms of a different approach, when the notation p(x)=¢p(—R) for x<-—R, (19)
V(x) = ¢?(x) + dp(x)/dx is introduced. We note also paren-
thetically that expressions of quite identical structure were
recently obtained for the diffusion constant for the random q~b(x)= #(R) for x>R. (20)
motion in an external periodic potentig21—24. Therefore
the results which will be obtained in the fOIIOWing also apply The Corresponding WaVG-fUnCtiOﬁ;o(X) = exn:fég(x’)dx’]

to this problem, provided that the potential is defined as ins therefore an exact zero mode of the Hamiltonian
Egs.(2) and (3).

~ A de(x)
B. Random potentials ¢(x) H=- d_x2+ ¢°00+ dx @D

We Pt%w havde to exf'a'tf‘ why %316? |stst|II \;'a“dtlr? tthtﬁ on the whole line. WhemR is sufficiently large, it follows
case of thé random poten |ai't{x)._ e lirstmention that th€ .53y gy previous discussion that there exists a ground-state
analysis of the previous subsection is based on the assump- ~

tion that the wave functions are normalizable on the whole[ E\I/?eRﬁunvsﬂgge ofrOLhr]e d-g:trgllngmisonivézeb mlt;tg/)al
line. In case of random potentiais(x), as defined in Egs. e ) gy IS 9 y '

(2) and(3), the integralfffdx¢>(x) may show an unbounded Since this state has its support pr R,R] the functions

growth whenR—o« and thus the wave functions are not ¥o(x) and go(x) coincide, and thus it is also a quasizero

normalizable. Therefore, it is not possible to use directly the"0de ofH with the ground-state energy defined by Etf).
results of the preceding subsection. One may, however, no-

tice that due to the presence of disorder the zero-energy so- Il TYPICAL REALIZATIONS OF DISORDER

lutions are localized. This observation allows us to get rid of AND THE JENSEN INEQUALITY

the problem at infinity. For a given realization of the random

potential ¢(x) one chooseR in such a way that We start our analysis of the behavior of the disorder-

average ground-state energy in E46) first considering the
$(—R)>0 and ¢(R)<0 (17)  typical realizations of the random potentia{x). To do this,
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we rewrite the ground-state energy for a given sample with densen inequality between the average of the exponential of
particular realization of the random potentia{x) Eq. (16) = some functionF and the exponent of the averaged value of
in terms of the following exponential functionals of the po- F,

tential $(x):
(exd —F)=exd —(F)]. (28
ri(z,y):J'ydx[cpgl)(x)]ﬂ: Jydxex;{tzjxqb(x’)dx’ . Now, choosing
z z 0
(22 F=—InEy(R,{¢}) (29
which gives we find, taking into account E@23), thatEy(R) is bounded
L L from below by
BoRiSH="T""RR) ( (—RrO T_(o,R))' Eo(R)=exp{(In[7_(—R,R) )= (In[ 7, (~R,R)])
@3 —(In[r_(~ROD—(n[=_(ORD}.  (30)
We notice now that the functionV(x)= [gdx¢(x), One may readily notice that for any random function

which appears in the definition of (OR) Eq. (22 for the  4(x) of zero mean, not all terms in the exponent on the

potentials as in Eqg2) and (3) is simply a trajectory of a yight-hand side of Eq(30) are to be calculated indepen-
symmetric random walk. Consequently, for the typical real-gently; obviously,

izations of the random potentiab(x) the value of W(R)

should be of the orderoR)% hencer_(0,R) should grow (In[7_(-R,R)Y=(In[7.(—R,R)]) (31)
typically as exp2(cR)*?] and then Eq(23) entails Eo(R)

«exg —4(eR)Y2]. Therefore for most realizations af(x)  and

one may expect th&y(R,{¢}) vanishes with an increase of _ _
R as (In[7_(=R,0)H=(In[7_(OR)]). (32
Consequently, the first two terms on the rhs of E3f)) can-
1211/
Eo(R{d}typ~exp—o R ?). (24 cel each other and we have only to perform the averaging of

. . . In[7_(0,R)].
This typical behavior may be used to evaluate correctly [Th((ase )f]unctionalsn(O,R) appear in different physical

the low-energy asymptotic behavior of the density of State%ackgrounds{zs 26|, Their discretex counterpart, which is

of the Harr_nltoman in Eq(1). Eq_uat|on(24) means that a the sum of the products of the independent random variables
wave function of low-energ¥ typically has a spatial exten- of the form

sion 2R such that
’T_(N): 1+Zl+ lez+ 212223+ s +212223 o IN

In?(E)
e @9 with
Therefore the number of such states per unit length behaves z,=exp(¢n),

typicall . . .
ypicaly as is known as the Kesten varialf]27] and plays an important

1 o role in the theory of the renewal processes. The distribution

N(E)xﬁmm. (26)  function of the continuousg- functional 7_(0,R) has been
recently examined if18,28,29,19within the context of dif-

fusion in the presence of a random quenched féitoe Sinai

It is now interesting to compare E(26) with the exact result diffusion [30,9]) and also in the literature on mathematical

[9] finance[31].
20 1 The average logarithm of the functional (O,R) can be
N(E)=— , (27 obtained from the probability distribution of this functional
7 J5(2) +No(2) [28,29,19

wherez= \E/o andJ,,N, are Bessel functions. In the limit 2 (=dk
E—0 one has from Eq(27) that N(E)~20oln"?(E/4c?), (Inf7_(OR) )= ;fo F[l_exﬁ —20RK) k coth( k)]
i.e., the behavior which is quite consistent with our estimate

in Eq. (26). Therefore Eq(26) shows that anomalous singu- -T''(1)—In(20) (333
lar behavior of the integrated density of states is supported

by the typical realizations of the disorder and thus is quite 8oR\1? ) 1
distinct from the Lifschitz singularityf17], which is most ”(T) -T (l)_|”(20)+o(ﬁ)7
often encountered in the disordered quantum mechanical sys- (33b
tems.

We now show that the estimate based on typical realizawhere the notatioD(1/R) means that the neglected terms
tions of the disorder represents actually a lower bound on theultiplied by R will give a constant aR—o. Equation
DAGS energy. To show it explicitly we invoke the standard (33b) has been recently rederived [i82] which tested pre-
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dictions of the replica variational approximati¢&3] for a
particular physical system—a classical particle in a one-
dimensional box subjected to a random potential which con-
stitutes a Wiener process on the coordinate §2&9]. A
detailed discussion of the average logarithm of the functional
7_(0,R) can be found i 34].

Accordingly, for the DAGS energy we obtain

20R

=)

Eqo(R) >ex;{— 4 (39

which thus shows thaEy(R) vanishes with an increase of

the sample-sizeR not faster than a stretched-exponential  FiG, 2. Schematic representation of the s@tsQ’, and the
function exp-R?) with z=1/2. However, this lower bound, subsetsw, w’. The setQ (dashed triangle on the half-plane
which is supported by the typical realizations of the disorderx>0) comprises all possible realizations of @rstep random walk
may be improved as we will see in the next section. trajectoriesW(x) with xe[O,R]. The set)’ (dashed triangle on the
half-planex<<0) comprises, respectively, all possible trajectories of
an R-step random walk wittxe[ 0,— R]. The subset® andw’ are
the areas cut from the se€s and ()’ by the linesW(x)=A and

In this section we set out to show that, in the limit W(X)=—A.

R— o, the dependence of the disorder-averaged ground-state =~ , ) .
energyE,o(R) on R is quite different from that in Eq34). W' (X); PIW(x)] (or PIW'(x)]) is the corresponding mea-

Here we will derive more accurate bounds which show thafure of a given trajectoryV(x) [or W’(x)], which is the
in the largeR limit, the actual dependence of the disorder-Standard Wiener measure.

IV. LOWER AND UPPER BOUNDS ON Ey(R)

averaged ground-state energy(R) on R is described by a
stretched-exponential function expR®) but with a smaller
exponent,z=1/3. This means that the lardge-behavior of
Eo(R) is supported by the atypical realizations ¢{x).
These realizations will also be specified below.

A. A lower bound

Let us begin with the derivation of a lower bound on
Eo(R). We first note that sinceb(x) enters the expression
for Eg(R,{¢}) only in the form fdx¢(x), averaging with
respect to realization of(x) amounts actually to the aver-
aging over different trajectorie®/(x) of a symmetric ran-
dom walk. Therefore we can formally write down the aver-
age as a product of two path-integrals

Eo(R)=(Ex(R6)) = | DIWoo} | piw 00

XPIW(X)IP[W' (X)]Eo(R{&}), (39

where the notations used have the following meaning: The

symbol () denotes the set all possible (unrestricted
trajectories W(x) of a symmetric random walk, which
“starts” at x=0 at the originW(0)=0, and “time” variable
x is defined on the interv@D,R]. We describe schematically

the set() in Fig. 2, where for notational convenience we use

the discretex picture and depict it using the axi%(x) and
X, i.e., using “directed polymers”—Iike representation. The

The next essential step is as follows. Suppose that from
the entire sef) (and()’) we select some amount of trajec-
tories having certain prescribed properties and denote this
subset of) (') asw (w'). Then, for any positive definite
functional E4(R,{ #}) the following inequality holds:

L}D{W(X)}fﬂ,D{W’(X)}P[W(X)]P[W’(X)]Eo(R,{db})

= LD{W(X)}L,D{W(X)}

XP[W(X)JP[W'(X)]Eo(R.{¢}), (36)

where the integrations on the rhs of E&6) extend only
over the trajectories which belong to the subse@ndw’ of
the entire set€) and()’. Employing the inequality in Eq.
(36), we get the following bound:

£4(R)= [ D{wWoo)

><L,D{W’(X)}P[W(X)]P[W’(X)]Eo(R,{fﬁ})-
37

Now we define the subsei (w') as follows(Fig. 2): w
(w') is the set of all trajectorie®V(x) [W’(x)], which, for
any x from the interval[O,R] ([0,—R] for '), remain in-

trajectories (1) and (2) are two examples of possible trajecside the strip[ —A,A], i.e., such trajectorie®V(x) [and

tories which belong to the s€2. The symbolQ)’ denotes,
correspondingly, the set of all possible trajectori&$(x)
with the “time” variable x defined on the intervdl0,— R].
The trajectories i) and ()’ are statistically uncorrelated.
Finally, the symbolsD{W(x)} and D{W’(x)} denote that
the integration is performed along the trajectoNgéx) and

W' (x)] which obey —A<W(x),W’(x)<A for any x from
the interval[O,R] ([0,—R] for w'). In Fig. 2 trajectories
which form the subsets andw’ are exemplified by (2) and
(2").

Next, we diminish the rhs of Eq37), i.e., enhance the
inequality in Eq.(37), by substituting instead d&y(R,{¢})
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its minimal value on the subseisandw’. By the definition
of o and ', which implies that |[W(x)|<A and
|W'(x)|<A we have

fR dxex 2W(x)]<2Rexp(2A), (39)
-R
fo dxexd —2W(x)]<Rexp(2A), (399
-R
and
dexexp{ —2W(X)]<Rexp2A). (39b

Consequently, for any realization ¥¥(x) or W’ (x) which
belongs to the subsets and ', the following inequality
holds:

. exp(—4A)
Eo(R{g})=min, . {Eo(R{$})} =~z — (40
Substituting Eqg.(40) into Eq. (37) we find the following

bound:

exp—4

EO( R) = 2 R2

2 [ ooy

x| prw eorprwoo 1w 1. @
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lower bound. FoR sufficiently large the maximal contribu-
tion to the probability distribution in Eq43) comes from the
term withk=0, i.e.,

P(AR)~ - TR 45
(AR)~—exp — 572 |, (45
and consequently,
8 2
Eo( R)= WGX[{ —4A— W) . (46)

Taking the derivative of the rhs of E¢46) with respect to
the parameteA, we find that

1
A=A* =§(WZUR)1’3 (47)
provides its maximal value. Substituting E@7) into Eq.
(46) we thus arrive at the following “maximal” lower
bound:
Eo(R)= —mo exd —3(m?oR)?], (48)

which shows that in the large-limit the DAGS energy van-
ishes not faster than the expR'), i.e. at a slower rate than
“typical behavior” in Eq. (34). This improved lower bound
in Eq. (48) is supported by the atypical realizations of
W(x), such thatW(x)=x3 i.e., by trajectories ofV/(x)
which are spatially more confined than the “typical” real-
izations of the random walk trajectories for whidhi(x)

We now notice that the product of the integrals along the twox x1/2,

“restricted” (statistically independentpaths W(x) and
W’ (x) on the rhs of Eq(41) is equal to the probability that
the two independent random walkers during “tim&’ will
remain within the strig —A,A], which means that

fD{W(X)}f DWW’ ()} PIWO) IPLW' (x)]=P*(A,R),
(42

where P(A,R) is the corresponding probability for a single
random walkef35]

(—1)% (2k+1)?7%0R
P(A,R)= WZO ST exp( - —8A2—>. (43)

Combining Eq.(41) and(43) we thus obtain

(1)
2k+1

8exp —4A)
m°R?

X exp(

The function on the rhs of Eq44) contains a free trial
parameteA. The inequality in Eq(44) holds for any value

Eo(R)= { 2
(2k+1)?7?

oR
- —8A2—> (44)

B. An upper bound

Let us now discuss the derivation of an upper bound on
the DAGS energy. We first note that the rhs of Etf) for
any given realization oW(x) can be bounded from above

1
JORLeGP 001 2dx R L @5 (x)1%d X’
1
T TR o0 ] 2dx R o o (x') X’
1
= T 0] 2%/ oD (X
1
T e 0T 2 o (x) PdX
_ 1
T IO % pdxdX exd 2W' (x') —2W' (x)]

1
 TRTRAxdX exd 2W(x') —

,)]ZdX,

WO (49)

As one may readily notice, the inequality in E49) is ob-

of this parameter and thus represents a family of lowetained by simply diminishing the limits of integration; in the

bounds. Therefore, we will choose such a valué\pfvhich
maximizes the rhs of Eq44) and thus defines the maximal

first term we change the limits of integration over the vari-
ablex’ from [ -R,R] to [ —R,0], while in the second one
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the limits are changed fromj —R,R] to [O,R]. Since W(x)

o{(x) is positive definite, the diminishing of limits de-
creases the value of the integral and consequently, increases M,
the terms on the rhs of E@49).

Now we will try to find an appropriate functional of the
extremes of the random functidii(x) which will bound the
integrals in Eq(49) from below, and thus in such a way will
enhance the bound in E19).

We note here parenthetically that this problem turns out to
be rather nontrivial. In particular, standard integral inequali-
ties (such as, for instance, the Schwarz inequalitse obvi-
ously insufficient since they predict an algebraic growth of
the integral

*R (=R
f f dxdxX exg 2W(x")—2W(x)], (50

0 0 FIG. 3. Maximal positive, maximal negative displacements, and
the span of the trajectorW(x) with x defined on the interval
while the simple analysis of the “typical” behavior shows [0R].
that Eq.(50) grows at least as a stretched-exponential func-
tion of R. In addition, the integrands in Eq50) do not R R
possess well-defined derivatives and thus one can not expand >, >, ayy=Max v forfaxyf =Xg2(M  —M_)].
the integrands in the vicinity of the extremes of function  *=0y=0
W(x) and make use of the standard saddle-point-like esti- (54)
mates.

To illustrate the derivation of such a bound we first turn to

the more lucid discrete-space picture, assuming xhahd
y are discrete variables,y=0,1,...,R, and then approxi-
mate the integrals in Eq50) as products of two sums

Equation(54) represents thédiscrete-spageformulation of
the desired bound on the integrals in E§0).

Let us now see how this bound can be employed for the
derivation of the upper bound on the DAGS. Making use of
Egs. (49) and (54) we have that, at a given realization of
W(x), the ground-state energy can be bounded from above

+R +R R R
J;) dxf0 dx'exd 2W(x') —2W(x)]~ ZO ZO Ayy s as
7 19 Eo(R{g})=exp—25)+exp—29), (59

with where we denote by

1= X 2W(X) — 2W(y)]. (51b) S’ =maX o rgW' (X)} —ming o g{W'(X)} =M} —ML
and

The derivation of the corresponding upper bound in the con-
tinuous space, which is substantially more lengthy, will be  S=maxor;{ W(X)} —min, or{W(X)}=M,—M_.
merely outlined in the Appendix.

We notice that the rhs of Eq$51) is the sequence of Random variables &’ (or S) are known in the statistics of
(R+1)? positive terms, each of which is an exponential ofrandom walks as a span of the random wédke Fig. 3,
the distance between the positions of a given trajectoryvhich can be visualize¢in the d-dimensional sparas the
W(x) taken at two different moments of “time% (summed dimensions of the smallest box with sides parallel to the
over all possiblex from the interval[O,R]). From this se- coordinate axes that entirely contain the trajectory of a ran-
guence of positive term@Xy} we choose the maximal term, dom walk[35]. The exact probability distributioR(S,R) of
maX, yor{axy}, Which is evidently the exponential of the the random variableS is well known [35]; in the case of
difference of the maximal positive displacemeM ., largeR, a convenient representation reads
(M, >0), of the trajectoryW(x) (which is achieved at some

moment x=x*) and the maximal negative displacement m?(2k+1)%oR
M_, (M_<0), of the same trajectorfachieved at the mo- P(SR)= S3 IZO S? -1
ment y=y*, both x* and y* belonging to the interval
[OR]), m2(2k+1)%20R
Xexp — T . (56)
M =max,or{ W(X)} =W(X*), (52
Therefore the calculation of the upper bound on the

M _ = min, o ri{W(X)} = W(y*). (53) DAGS energy reduces to the calculation of the integral
Since alla,,=0, the sum on the rhs of E¢51) is evidently EO(R)sZdeSexp(—ZS)P(S, R), (57)
larger than the maximal term of this sequence, i.e., 0
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in which, noticing thatS and S’ have identical distribution exp(—4A)P(A,R). On the other hand, the upper bound was
functions [although for given realizations oW(x) and  eventually reduced to the integral in E&7), which, using
W’(x) they may have different valugshe contribution of Eq. (61) can be rewritten as

S’ may be simply accounted for by introducing a multiplier
2.

Let us now consider the behavior of the integral in Eq.
(57) in the limit of largeR. We first note that in this limit in
Eq. (56) only the term withk=0 is relevant. Second, notic- ® JP(AR)
ing that the integrand is a bell-shaped function, we perform =~ fo dSexq—ZS)a—A . (82
the integral using the saddle point approximation. Maximiz- A=SP2
ing the terms in the exponent we get that the saddle-poi
depends orR as

FdSexp(—zs)P(s,R)
0

nI'ﬁtegrating Eq.(62) by parts we arrive at performing an in-
tegral with the integrand exp(4A)P(AR). Since the inte-
grand is a bell-shaped function & and thus the saddle-
(59) point approximation can be used, calculation of this integral
also reduces to maximizing the integrand.

7T20'R 1/3
(5

and consequently, the bound in E§) attains the form C. Random Gaussian potentials¢p(x) with correlations

In this subsection we will briefly discuss the behavior of
. (59  the DAGS in the case where fluctuations¢fx) are corre-
lated. Now, as we have already mentioned the relevant prop-
erty is the integralW(x) = [5dx’ ¢(x’), rather thang(x)
flself. It is therefore convenient to define the correlations in
the random potentiap(x) in terms of the integralV(x). We
consider here the case whai{x) is zero on average, as in
Eq. (2), and define the second moment as follows:

1/2
EX[{ — zﬂg( ’7720'R)1/3

Eo( R)=< 32( ?

Therefore the upper bound on the DAGS energy shows
stretched-exponential dependencePowith the characteris-
tic exponentz=1/3, i.e., aside from the numerical factor
27 13in the exponent and pre-exponential multipliésgich
are not reliable in view of the approximation involyees-
sentially the same behavior as the lower bound in (&8§). (W(X)W(x’)>~|x—x’|1+", —1=\=<1. (63)
Since both lower and upper bounds have the same depen-
dence orR and also, on physical groundSy(R) is a mono-  The parametei in Eq. (63) determines the nature of the
tonically decreasing function oR, we may infer that the correlations in the random potentiai(x). The borderline
stretched-exponential dependence with1/3 is the asymp- case\A=0 corresponds to thé correlated fluctuations of
totically exact result folEq(R). It is also important to note  ¢(x), whenW(x) is a trajectory of the conventional Brown-
that both the lower and the upper bounds turn out to bgan motion. This case has been examined in detail in previ-
supported by the same “class” of trajectori®é(x), such  ous sections. The case of positive (\>0), describes the
that W(x) x>, situations in which fluctuations ap(x) in two neighboring

To close this subsection we remark that the coincidence ipointsx andx’ tend to be of the same sign. Here the trajec-
the R dependence of the lower and the upper bounds is, iforiesW(x) have strong persistency; thinking in terms of the
essence, due to the fact that the measure of the restrictgghdom walk one may say that here the random walker most
trajectories, used in the derivation of the lower bound, andikely continues the motion in the direction of the previous
the probability distribution of the maximal displaceméot  step than changes the direction of motion. Consequently, its
of the spanS) are intrinsically related to each othg85].  trajectories are more “swollen” and spatially more extended
Actually, the probabilityP (A, R) that a random walker, start- compared to the case=0. Finally, the casa <0 describes
ing at the momenR=0 at the origin, remains within an disorder with negative correlations when the values of the
interval[ —A,A] in anR-step walk is just the probability that potential ¢(x) in two neighboring points< and x’ tend to
the maximal displacement of this random walker is less thamave different signs. Here the random walker has a tendency
A. It is clear that the probability of having the maximal of changing the direction of its motion at each step and its

displacement exactly equal ®ois given by[35] trajectoriesW(x) are essentially more compact, compared to
the case of the conventional random walk.
IP(A,R) Using Eq.(63) one can readily estimate the typical behav-
V(AR)~ A (60) ior of the DAGS. Since for the typical realizations 8f(x)

one expects that W(x)~x®™M2  we will have

and consequently, the probability of having the span of afIn7+(0R))~R**M% and consequently,
R-step walk equal t& will follow:

Eo( R)typN exp(— R(:H)\)/Z) (64)
P(S,R)~ w . (62) Consider now the behavior of the DAGS stemming from
IA I a-se the atypical realizations and generalize the formalism em-

ployed for the derivation of the lower bound. Anticipating
Further on, evaluating the lower bound we havethe reasonings which underly the inequality in E86) and
searched for such am which maximizes the product Eqgs.(41), we have that the DAGS can be estimated as
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Eo(R)=exp —4A)P3(AR), (65) A nice feature of the one-dimensional geometry is that

this problem can be solved exacfli5,37], by simply notic-

where P,(A,R) denotes the probability that a random ing that the evolution of C(x,t) on some interval
walker, which is at the origin &= 0 and whose trajectories [X;,X;.1] is independent of other intervals. Consequently,
obey Eq.(74) will remain inside the strip—A,A] during the  one has to find the solution of the diffusion equation on a

time interval[O,R]. Such a probability can be estimated asfinite interval of fixed lengthw, subjected to the adsorbing

(35,36 boundary conditions at the ends of the interval, and then
perform averaging with respect to the distribution of the in-

P, (A,R)~exp — R/A%), (66)  terval's length. Such a solution is given by E43), which in

. . . the limit of sufficiently large times reads
whered,,=2/(1+\) is the “fractal” dimension[36] of the

random walk defined by Eq63). Plugging Eq(66) into the , Dt
Eq. (65 and maximizing the product with respect Aoowe P(W,t)~exp — AR
obtain the following estimate:

(71)

Now, the disorder-average concentration Afparticles at

Eo(R)~exp —RY1Hd))  R>1 67 timet will be defined as

or, in terms of the parametaxr,

C,twmdw W,t)P(W), 72
Eo(R)~exp(—RENIET) -+ Re1, (68) (Cxn) fo RW,HP(W) (72)

Behavior as in Eqs(67) and (68) is thus supported by whereP(W) is the probability of having a trap free interval
such atypical trajectoriedV(x) which grow with x as  of lengthW. For Poisson distribution of trag3(W) behaves
x(TN/E+N it s important to note that again the estimate inas
Egs.(67) and(68) shows a slower dependence Rras com-
pared to the typical behavior in E¢4). P(W)xexp(—ngW). (73

To close this section we will explain what we have in o . ]
mind when saying that realizations of disorder which supporfSubstituting Eqs(73), (71) into the Eq.(72) we thus arrive
the anomalous stretched-exponential behavior of the DAG@! an integral of essentially the same structure as that in Eq.
share common features with the realizations of trajectorie$d?), Which yields[15,16,35-37
which support the anomalous long-time decay of the survival ’
probability of a particle diffusing in the presence of ran- ~ AT 2
domly placed traps or Lifschitz tails in the low-energy den- (C(x0) exp{ 3( 4 nDt
sity of states of an electron in the presence of randomly
dispersed scatteref45,38|. The behavior as in Eq74) shows that the long-time de-

Let us remember, on the example of the trapping problemgay of the disorder-average concentration is supported by
some basic formulations and results. Suppose a oneuch bounded realizationg/(t) of A particles’ random
dimensional, infinite in both directions, line with immobile walks which obey|W(t)|<Axt!3, i.e., the same class of
traps B which are placed completely at random at a meartrajectories which support the largebehavior of the DAGS
concentrationng. At t=0 we introduce on the line some in the problem studied in the present paper.
concentration of particles of another type, sy and let
them diffuse independently of each other. As soon ag\an V. CONCLUSIONS
particle approaches B trap, theA particle gets annihilated,
while the trap is unaffected. The question of interest is to T0 conclude, we have studied a new aspect of a one-
define the time evolution of the concentrationfdparticles ~ dimensional localization problem associated with the super-
(or the survival probability averaged with respect to the Symmetric Hamiltonian in Eq(1) in which the potential

1/3
} . (74)

spatial arrangement of traps. ¢(x) is a Gaussian random function of the spatial variable
Let C(x,t) denote the local concentration Afparticles at  X- We have derived an explicit expression for the ground-
the pointx at timet. It obeys the diffusion equation state energy of the Hamiltonigd) defined on a finite inter-
val of thex axis for a given realization of disorder and ana-
. 92 lyzed the dependence of the disorder-average ground-state
Cx,1)=D—>C(x.0), (69 energy on the lengtR of the interval. We have shown that it

is described by a stretched-exponential function of the form

whereD is the diffusion coefficient o\ particles. Equation €XP(~RY), in which the characteristic exponentis depen-

(69) is to be solved subject to the adsorbing boundary condent merely on the nature of correlations in a random poten-
ditions imposed at the points occupied by traps; that is, tial. In the case when fluctuations in random potential &re
correlated we found=1/3. In the case when fluctuations are

C(x=X;,t)=0, (70) defined by Eq.(74) we have deduced that=(1+X\)/
(3+\). We have shown that such a behavior is quite differ-
for any X; from {X;}, whereX; defines the position of the ent from the one expected when only the typical realization
ith trap, —o<i=<o, and{X;} denotes the set of traps’ posi- of the disorder are considered and thus is supported by atypi-
tions. cal realizations of the random potential, which behave as
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X ©
f dx’ ¢(x’)oexTTN/EHN) (75) EO(R)szf dSP(S,R)J f dM,dM_8(S—M, +M_)
0
We have also shown that such realizations belong to the v 1
class of trajectories which support an anomalous long-time fx ”dxfy *edy exd 2W(x) — 2W(y)]
behavior of the survival probability of a random walk in the
presence of randomly placed traps. X|[My=W(x*);M_=W(y*)]. (A3)
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[ odxry e dy exd 2W(x) — 2W(y) ]

APPENDIX
. . . o X|[My=W(X*);M_=W(y*)]. (A4)
In this appendix, we outline the derivation of the upper

bound for the DAGS in the continuous-space limit. ConsiderTo do this we enclose the point&/(x*) and W(y*) by

the integral in Eq(50) (for simplicity we suppose that limits circles of the radiuss (see Fig. 3 where 5=4(R) is a

of the integration are from 0 te-R) and, as was done be- slowly growing function. The choice of the dependence

fore, assume that a given trajectdy(x) reaches its maxi-  §(R) will be made later. Further on, we divide the set of all

mal value at the poink=x* and its minimal value at the possible trajectorie$) into two different subsets. The first

point x=y*. Let us choose some positive constantsuch  subset{A} comprises all such trajectoria¥(x) of random

that 0<e<R andx* +e,y* +e<R. Since the integrand in walk (with its maxima atM . and minima aM _) which, on

Eq. (50) is positive definite, the following inequality holds: the intervalxe[x* ,x* +&] do not cross the circle around the
point W(x*) and on the intervake[ y*,y* +&] do not cross

R R the circle aroundV(y*) (e.g. the trajectory 1 in Fig.)3The
fo dxfo dy exg 2W(x) = 2W(y)]. subsef B} comprises the rest of the trajectorigar instance,
the trajectory 2 in Fig. B We write now
x* +¢ y* +e
ZL* dxfy* dyexgd 2W(x) —2W(y)]. (A1) E=A+B, (A5)
Now, taking advantage of the inequality in E49) we have WhereA stands for the average of the integrand in )
for the DAGS with the trajectories forming the subdet}, while B denotes
the contribution toE coming from the average of the inte-
1 grand over of the trajectories forming the subBet
EO(R)s< — > Consider first the contribution coming from the trajecto-
Jodx[odyexd 2W(x) —2W(y)] ries in the subseftA}. By definition of{A}, we have that on

1 the interval[ x* ,x* +¢] the trajectoryW(x) obeys the in-

+< 5 5 > equality M, —6<W(x)<M,; and on the interval
JZrAX[Zrdy exd 2W(x) —2W(y)] [y*,y* +¢] the trajectory  W(y) obeys
< 1 > M_=<W(y)<M_+ 4. Consequently, the integrands in Eg.

(A4) are bounded from below by
dxf dyexd 2W(x) —2W(y)]

° exfd 2W(x)]=exp(2M . —25), (AB)
=2f dSP(S,R)f f dM,.dM_8(S—M,+M_)
0
< 1 > exg —2W(y)]=exp —2M_—-26), (A7)
Ryv R _
Jodx[ody exf 2W(x) —2W(y)] and thusA is majorized by
X|IM L =W(x*);M _=W(y*)], (A2)
where the brackets with the supscri[ﬁM+fW(x*); A< exp(4 f dSHS,R)exp(—29). (A8)
M _=W(y*)] mean that the average is taken with respect to

the trajectoriedV(x) whose maximal positive displacement

is equal toM, and the maximal negative displacement isNext we estimate the contribution from the trajectories of the

equal toM _ . subsef{B}. Here, forxe[x* ,x* +e] andye[y*,y* +¢] the
Further on, the inequality in Eq60) enables us to en- function expW(x)—W(y)] is always greater than 1 and con-

hance the bound in E¢61) and write sequently
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X* e y* e ) exp(48) va 1 52
dx dyexg 2W(x)—2W(y)]=¢e“. (A9) ~———exp—R™)+ —sexpg ——|. (Al3)
x* y* & & 20’8
Accordingly, the contribution coming from the trajectories of

the subse{B} can be majorized by Now we have to make the choice ofand§(R). One readily

1 notices what the proper choice will be if we suppose that
Bs?P({B}), (A10)  e=const anddé(R)~R?, where y is an arbitrary number
from the interval 11/6,1/B8. If y>1/6 the second term on the
where P({B}) denotes the measure of trajectories formingrhs of Eq.(A13) vanishes withR faster than the first term
the subseB. When & is chosen such tha#’>2ce, this  and thus the leading largR-behavior will be given by the
measure vanishes as first term on the rhs of Eq(A13). On the other hand the
requirementy<<1/3 insures that the leading largebehavior
52 follows the expt-RY%) dependence, sinc® Y38(R)—0
INP({B})~ — =—. (A11)  WhenR—ce. _ _
20¢ Therefore we have shown that also in the continuous-
space limit the upper bound on the DAGS vanishes Witis
a stretched-exponential function with the characteristic expo-
nentz=1/3. The bound derived hefalthough it suffices to
exp(4d) (= 1 52 prove the asymptotically exact dependence ex®(®)] turns
Es< —2—J dSRASR)exp(—29) + —zexl< - —) : out, however, to be worse than the one found in the discrete-
€ 0 € 20¢ I . .
(A12) space case; |_t dlffer_s from the b_ound in £§9) by an a_lddl-
tional multiplier which grows withR as expR”). Besides,
Our previous analysis shows that the integral over the spathis bound is not optimal; there are no well-defined values of
variableS in the first term on the rhs of E4A12) vanishes & and § which minimize the upper bound. Apparently, an
with R as a stretched-exponential function of the formoptimal upper bound in the continuous space can also be
exp(—RY3). Thus the rhs of Eq(A12) behaves as devised, but this is beyond the aims of the present paper.

Now, gathering Egqs(A8) and (A10) we have thatE is
bounded from above by
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