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In this paper we present a microscopic model description of spreading kinetics of a monomolecularly thin
wetting film climbing from a bath of liquid along a vertical solid wall. We find analytically that both the linear
extension and the mass~number of particles! of the film grow in proportion toAt, in accord with experimental
observations. We also analyze the details of the fine structure of the wetting film and determine explicitly the
concentration profile along the film and concentration gradients at the tip of the film and in the vicinity of the
liquid bath. We show that the essential physical mechanism responsible for film’s growth is associated with the
diffusive transport of vacancies from the tip of the film to the liquid bath, where they are filled with fluid
particles.@S1063-651X~96!04309-7#

PACS number~s!: 68.15.1e, 05.40.1j, 68.45.Gd

I. INTRODUCTION

Spreading of liquid droplets on surfaces and fibers plays a
crucial role in numerous technologies including lubrication,
painting, coating, emulsion, dyeing, gluing, and oil recovery
from porous rocks@1–5#. In all cases, efficient practical ap-
plications require precise knowledge of the conditions and
laws of spreading. For macroscopically large drops the
spreading kinetics are well described by continuum hydrody-
namic theories that ignore the molecular structure of liquids.
The evolution of such properties of macroscopic drops as the
size of the macroscopic liquid edge, the height, the profile,
and the contact angle is presently well understood and is
described by the universal Tanner law and its extensions
@1–12#. In contrast, the origin of universal laws that seem-
ingly govern spreading dynamics at the microscopic scale, as
evidenced by recent experimental works@13–15#, still re-
mains unclear@16#.

The salient features at the microscopic, molecular scale is
the appearance of a liquid film, the precursor@17#, which is
pulled out of the drop by unbalanced capillary forces. This
precursor, whose thickness may vary from several~molecu-
lar size! to a few hundreds of angstroms, precedes the mac-
roscopically observable liquid edge and the drop then actu-
ally spreads on top of this film. The linear extensionht of the
film at sufficiently large times may be macroscopically large.

Refined ellipsometric measurements@13–15,18–20# have
scrutinized the growth of the precursor film and reached a
rather surprising conclusion:ht obeys a universal lawht}
At, regardless of the nature of the species involved. This
growth law has been observed for various substrates and also
for various kinds of liquids: simple, polymeric, and surfac-
tant melts. For some substrates a remarkable effect of ‘‘ter-
raced spreading’’ takes place—several monolayers advance

together stacked on top of one another and each growing as
At @13–15#. For capillary rise geometries, in which a vertical
wall is put into a contact with a bath of liquid, a film of
microscopic thickness~or sometimes several monolayers
@21#! rises from the macroscopic meniscus and creeps up-
wards along the wall. In this case the length of the film
increases in proportion toAt within an extended time domain
@22,23#, until the film’s growth is truncated at very high al-
titudes due to gravity@8,9#. Finally, recent experimental
studies~see also Sec. V for more detailed description! of
spreading of metallic beads on a horizontal vibrating racklike
surface@24# found aAt law for growth of the area covered
by the beads, thus showing that such a behavior is not a
specific feature of spreading liquids, but is relevant to a
wider range of systems. Therefore, theAt law is independent
of the nature of the substrate and of the liquid, as well as of
the geometry, intermolecular interactions and also of the size
of molecules, which can be even macroscopically large as in
the case with beads. The prefactors in this law depend, of
course, on the particular situation under study.

Theoretical studies of this phenomenon have been largely
numerical. In particular, in@25# theht}At law for the growth
of the precursor was reproduced in the molecular dynamics
~MD! simulations involving Lennard-Jones molecules. The
MD simulations in @26,27#, which differ from @25# in the
model of the substrate, displayed the spreading in the form of
different monolayers stacked on top of one another, but
showed, however, theht}Alog(t) growth of monolayers
@28#. In @29,30#, which was concerned with MD simulations
of systems with Lennard-Jones chainlike molecules, ‘‘ter-
raced’’ spreading in the form of distinct layers with their
radii growing asAt was found. Finally, in@31# an Ising-type
lattice-gas model was employed instead of the molecular dy-
namics, which has also demonstrated theAt law for growth
of the precursor length. Following the trajectories of tracer
particles, it was deduced@31# that this behavior occurs due to
migration of second layer particles to the holes in the perim-
eter of the precursor. Details of this and earlier numerical
works were recently summarized in@16#.
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‡Unité de Recherche Associe´e au CNRS~URA 792!.

PHYSICAL REVIEW E OCTOBER 1996VOLUME 54, NUMBER 4

541063-651X/96/54~4!/3832~14!/$10.00 3832 © 1996 The American Physical Society



Meanwhile, several theoretical developments aimed at the
explanation of the origin of theAt law have occurred. In@8#
a continuum hydrodynamic theory was developed, which de-
rived theAt law from the diffusive motion with inhomoge-
neous diffusion coefficient dependent on the local disjoining
pressure@1#. This theory presumes, however, that the film
thickness remains at least in the mesoscopic range, where the
continuum hydrodynamics description is still appropriate@8#.
Thus this approach does not explain the growth of monolay-
ers; thin films cannot be viewed as a true liquid phase and
actually they often show solidlike or glassy behaviors@32–
36#. In @6,22,23# the hydrodynamic description in@8# was
extended down to the microscopic scale, adopting basic
equations of@8#, but assuming a different origin of frictional
forces.

A qualitatively different approach has been proposed in
@37#, which viewed the liquid drop as a completely layered
structure, each layer being a thin incompressible two-
dimensional fluid of small molecules. Permeation of the mol-
ecules perpendicular to the layers is allowed and takes place
only in a ‘‘permeation ribbon’’ near the edges of successive
layers.~Recent numerical simulations@38# show that this is
actually so for strongly corrugated substrates.! Consequently,
the layers may grow by the accretion of molecules at their
edges from the layers above and below. The fluid particles
do interact with the substrate in a manner that makes the
lowest layers energetically more favorable and causes their
growth. This picture yields the correct growth law of the
advancing monolayers at long times, when one expects the
difference between the radii of neighboring layers to be
large. However, an assumption of incompressibility leads to
serious problems in the analysis of the short time regimes.
Additionally, the macroscopic hydrodynamic description of
dissipative forces employed in@37# requires more detailed
microscopic justification@1#.

Lastly, in @39–41# an interesting nonequilibrium statisti-
cal physics approach has been devised, which made use of
the solid-on-solid-model~SOSM! approximation @42#. In
@39,40# the analysis focused on the Langevin dynamics of
the drop’s interface~which is spatially coarse grained in the
spirit of the SOSM! due to the surface tension and to the
driving ~capillary! force in the vicinity of the substrate. In
this approach an extraction of precursor film has been estab-
lished and also the dynamical profiles have been determined
explicitly. This approximation, however, gives a precursor
advancing at a constant speed, i.e.,ht}t, which contradicts
the experimentally observed behavior. To avoid this incon-
sistency a different, ‘‘columnar’’ version of the SOSM has
been employed@41#, which takes into account entropic re-
pulsion effects, but, nonetheless, a film extending linearly in
time was found.

In this paper we present a microscopic model description
of spreading and of the fine structure of monomolecularly
thin films. We focus here on systems with the so-called pla-
nar geometry@6,22,23#, i.e., on systems in which the film’s
thickness~or concentration of particles in the film in case of
monolayers! varies effectively only along one spatial coordi-
nate. This typical experimental situation occurs when a solid,
which may be a plane~Fig. 1! or a cylindrical fiber~Fig. 2!,
is immersed in a liquid bath. Here the particle concentration
in the liquid film, which extracts from the macroscopic me-

niscus and climbs along the solid, varies only with the alti-
tude above the edge of the macroscopic meniscus and is
independent of the perpendicular, horizontal coordinate.

Our model consists of three basic points: We suppose that
the concentration of fluid particles at the edge of the static
macroscopic meniscus is constant. Second, we view the mo-
tion of particles in the film on the solid surface as an acti-
vated random hopping, constrained by hard-core interac-
tions, in spatially modulated potential. Third, here we ignore
effects of gravity and also assume that all particles, except
the ones at the tip of the film~Figs. 1 and 2!—the boundary
particles ~BP!—have symmetric transition rates. The hop-
ping rates of the BP are asymmetric with the preferential
direction towards the edge of the macroscopic meniscus. The
origin of such asymmetry will be made clear below. Similar
microscopic approaches were succinctly presented in
@43,44#, which concerned the dynamics of creep motion of
an ultrathin film and lattice gas spreading, respectively.
Mathematical aspects of the model presented here are akin to

FIG. 1. A schematic picture of the standard capillary rise geom-
etry. A vertical solid plane is immersed into the bath of liquid.

FIG. 2. Thin wetting film climbing on a cylindrical fiber from
the bath of liquid.
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the description of charged particle motion in a one-
dimensional hard-core lattice gas in the presence of an exter-
nal electric field@45,46#. Here the mean displacement of the
charged particle grows in proportion toAt in the case of both
infinitely large @45# and finite fields, and also for different
types of boundary conditions@46#.

In our microscopic approach we establish analytically the
At law for the growth of the film length and the mass~num-
ber of particles in the film! and determine explicitly the pref-
actors in this law. We also calculate the behavior of several
characteristic properties, including the concentration profile
along the film, the particle concentration and concentration
gradient at the tip of the film. Additionally, we analyze the
spreading kinetics in the case of strongly volatile liquids,
when the surface tension of the liquid-vapor interface is neg-
ligibly small. In this case, which is also appropriate to ex-
periments with spreading of metallic beads on a vibrating
corrugated plane@24# we find that the length of the film~or
the area covered by the beads! grows in time asAt log(t).
The mass of the film~or the total number of particles! is
found to obey, however, theAt law without logarithmic cor-
rections.

The paper is structured as follows: In Sec. II we describe
the microscopic model of spreading kinetics. In Sec. III we
formulate the corresponding one-dimensional stochastic pro-
cess and derive basic equations. In Sec. IV we analyze solu-
tions of these equations in situations appropriate to spreading
of liquids with well-developed liquid-vapor interface and
compare our analytical results against the results of numeri-
cal simulations. In Sec. V we analyze the growth of a mono-
layer in the case of strongly volatile liquids. Finally, in Sec.
VI we conclude with a summary and discussion.

II. THE MODEL

Our model, which will be presented in the Secs. II A–
II C, is relevant to the following experimental situation. Sup-
pose that a vertical solid wall is immersed in a bath of liquid.
The liquid interface, which is initially horizontal, changes its
shape in the vicinity of the solid wall and a macroscopic
meniscus builds up~see Figs. 1 and 2!. The size of the mac-
roscopic meniscus~both horizontally and vertically! is com-
parable to the capillary length. After a suitable transient pe-
riod a thin liquid film exudes from the static macroscopic
meniscus and climbs up the solid wall. The growth of films
whose thickness is in the mesoscopic range has been de-
scribed in terms of a continuum hydrodynamic theory in@8#.
In the present paper we are concerned with the properties of
molecularly thin films.

A. Concentration at the edge of the macroscopic meniscus

We consider the liquid bath as a reservoir of particles~of
an infinite capacity!, which maintains a constant concentra-
tion C0 of fluid particles at the edge of the macroscopic
meniscus~EMM!. We estimateC0 as follows: Suppose that
one has a vacancy directly at the EMM~see Figs. 1 and 2!
and a fluid particle~particle with an arrow in Figs. 1 and 2!
in the volume of the macroscopic meniscus, which can jump
onto this vacancy within one step. Let us denote now asE↓
the energy gained by moving this particle onto the vacancy.

Then, employing essentially the same reasonings as those
used in the derivation of Langmuir adsorption isotherm@47#,
we calculateC0, which in the limitbE↓@1, b51/kT, takes
the simple form

C0'12exp~2bE↓!. ~1!

The value ofE↓ is dominated by two factors. The positive
contribution toE↓ comes from the presence of attractive in-
teractions between the fluid particles and the solid wall and
can be readily defined through the parameters of these inter-
actions. The second, negative factor is a loss of energy due to
the breaking of bonds with several fluid molecules, since for
the particles in the volume of the meniscus the number of
neighbors is greater than that for particles directly on the
solid. We note, however, that this factor is not independent
of particle-substrate interactions; the concentration profile
and thus the number of neighboring molecules depend sig-
nificantly on the strength of interactions with the substrate.

We also stress that whenC0 is not too small~of order of
unity!, equilibration of the concentration at the EMM is a
very rapid process; the approach of concentration to its equi-
librium value, Eq.~1!, is exponentially fast. As we set out to
show, relaxation processes in the film proceed on an essen-
tially slower time scale and are described by power laws. We
thus neglect the variation ofC0 in time and assume in what
follows that the concentration at the EMM is constant and
given by Eq.~1!.

B. Dynamics of particles on the solid wall

Consider next particle dynamics on the solid surface. We
make use of the conventional picture of such dynamics and
view the motion of particles as an activated random hopping
transport, constrained by hard-core interactions, between the
local minima of a waferlike array of potential wells. Such
wells occur because of the mutual interactions of particles in
the film ~as for the motion in bulk liquids! and also because
the film’s particles experience short-range forces exerted by
the atoms of the solid. Consequently, the interwell distancea
may be related either to the radius of the repulsive part of the
particle-particle interactions or to the spacing between the
atoms of the substrate. Without going into details of particle-
particle and particle-substrate interactions, we suppose that
for the transition to one of the neighboring potential wells a
particle has to overcome a potential barrier. This barrier does
not create a preferential hopping direction, but results in a
finite time intervalt between the consecutive hops, defined
through the Arrhenius formula. We note also that such a
picture of particle motion presumes a certain assumption
about the nature of the dissipative forces@1#; the stick-and-
slip motion model adopted here means that a particle loses
velocity completely after one jump.

To specify the positions of the wells, we introduce a pair
of perpendicular coordinate axes (X,Y), whereX is a vertical
coordinate, which measures the altitude of a given well
above the EMM~Fig. 1!, while Y defines the horizontal po-
sition of this well.

We assume that all particles~except the boundary par-
ticles, which among all the particles at a given moment of
time and fixedY have the maximal altitudeX5ht! have
symmetric transition rates: for these a probability of hop in
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any of four directions is 1/4. Then, the diffusion coefficient
of particles on the solid is defined through the parametersa
andt asD5a2/4t. In physical terms we may rewrite this as
D5kT/g, wherek andT are the Boltzmann constant and the
temperature, respectively, whileg is the effective friction
coefficient for motion in a liquid monolayer on the solid
wall. Hard-core interactions constrain the particle hopping
motion; no two particles can simultaneously occupy the
same well. Thus a hop into an occupied well is forbidden.

C. Dynamics of the boundary particles

Now we define dynamics of the BP, which will be differ-
ent from that of particles in the film. First, for the BP the
hops down to the EMM and hops along the horizontal axis
are constrained by hard-core interactions, while upward hops
are unconstrained since wells aboveX5ht are always va-
cant. Second, motion of the BP along theX axis is
asymmetric—we stipulate that upward hops occur with
smaller probability (p) than downward hops (q), p,q.

Such an asymmetry may be roughly illustrated in terms of
the SOSM approximation@39–41#. In this model the cost of
interfacial energyF for having a film of lengthht ~Figs. 1
and 2! is F5Jht , where the prefactorJ is related to the
surface tension of the liquid-vapor interface. This means that
the interface exerts aconstant, independent of the film’s
length, pressure on the film directed towards the EMM, or in
other words, the BP experience an action of a constant force
f , f52]F/]ht52J, which favors its hops downwards to
the EMM. Let us stress that in this picture only the boundary
particle is subject to a surface-induced force; all other par-
ticles in the film do not ‘‘feel’’ the presence of the interface
and thus have symmetric transition rates.

The microscopic origin of the asymmetric hopping rates
stems from the mutual interactions between the particles in
the film. Typical interactions in real systems are character-
ized by a harsh repulsion of a hard-core type at short scales
and attraction at longer distances. Now, upward and down-
ward hops of the BP do not change the number of particles at
a givenY but result in stretching or shrinking of the film.
Thus the change in the length of the film comprising a fixed
number of particles results in the change of energy. Stretch-
ing of the film ~an upward hop of the BP! will lead to an
increase of energy. Conversely, shrinking of the film de-
creases the interparticle distances and thus results in a de-
crease of energy. In other words, the presence of particle-
particle attraction results in correlations between the local
transition rates and spatial distribution of particles—these
tend to move towards the spatial regions in which the par-
ticle concentration is high. Since the concentration is maxi-
mal at the EMM and decreases with an increase of altitude
the particles in the film experience, on average, an action of
a force that is directed to the EMM. In our model this cir-
cumstance will be taken into account by introducing an inte-
gral ~over all particles of the film! force that acts on the BP
only and that is equivalent to the presence of a SOSM-type
interface with some effective surface energyW← . In view of
previous discussion we will defineW← , which is the differ-
ence of the energies lost and gained due to the upward and
downward hops of the BP, as the work required to transport
a vacancy from the tip of the film to the EMM. Using de-

tailed balance arguments we get the following relation be-
tweenp, q, andW← :

p

q
5exp~2bW←!. ~2!

We note, finally, that by definitionW← equals the difference
of the potential energy of vacancy placed at the EMM and
the potential energy of vacancy at the tip of the film, and
hence is independent of the length and the mass of the film,
provided thatht@a.

III. BASIC EQUATIONS

Now we turn to the mathematical description of the film
growth defined by Secs. II A–II C. We introduce the variable
h(X,Y,t), the time-dependent occupation variable of the
well with coordinatesX andY, which equals 1 if the well is
occupied and 0 if the well is empty. We note next that the
dependences ofh(X,Y,t) on theX and theY coordinates
have quite different origins. There is a reservoir of particles,
which maintains fixed occupation of all wells atX52a, and
a well-defined constant force acting on the BP’s along theX
axis. Consequently, we may expect a regularX dependence
of h(X,Y,t). In contrast, theY dependence may be only
noise; the uniform boundary at the EMM ensures that there
is no regular dependence on theY coordinate and only the
particle dynamics may cause fluctuations inh(X,Y,t) along
theY axis. In the present paper we will disregard these fluc-
tuations and suppose that the occupation variable varies
along the X axis only, i.e., h(X,Y,t)5h(X,t). Conse-
quently, we will have an effectively one-dimensional prob-
lem in which the presence of theY direction will be ac-
counted for only through the particles’ dynamics. We note
finally that the assumption of such a type is, in fact, quite
consistent with experimental observations@13–15#, which
show that in the case of sufficiently smooth substrates and
liquids with low volatility the width of the film’s front is
very narrow.

Then, in neglect of the fluctuations along theY axis the
variable h(X,t) can be viewed as a local time-dependent
variable describing occupation of the siteX in a stochastic
processin which hard-core particles perform hopping motion
~with the time intervalt between the consecutive hops! on a
one-dimensional lattice of spacinga ~see Fig. 3!. All par-
ticles, except the BP, have probabilities 1/4 for hops fromX
to X6a, and probability 1/2 to stay atX ~arising from the
motion along theY axis!. The BP, being atX, may jump to
X1a with probability p and toX2a with probability q,

FIG. 3. Illustration of a stochastic process describing motion of
particles on the solid wall.
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provided that this site is vacant, and may remain atX with
probability 1/2. Further on, a source atX52a maintains a
fixed occupation of this site. This process is a generalization
of a ‘‘directed walk in a lattice gas’’ model, studied analyti-
cally and numerically in@45,46#, and here we will extend the
previously elaborated continuous-space and time mean-field-
type description to the more complicated process under
study. In this description we will focus on the evolution of
the BP mean displacement, which we denote asht , and mean
occupation~or concentration! of the siteX at time t, C(X,t)
5^h(X,t)&, where brackets denote averages with respect to
different realizations of the stochastic process. The analytical
results will be afterwards~in Sec. IV C! compared to the
results of Monte Carlo simulation of the discrete space and
time stochastic process.

We start with the dynamics of the BP. Its mean displace-
ment obeys the following exact equation:

t
dht
dt

5ap2aq~12C1!, ~3!

whereC15C(X5ht2a,t), i.e., the mean occupation of the
site adjacent to the position of the BP. Equation~3! shows
that hops away from the EMM occur at rateap/t and are
unconstrained, while hops in the direction to the EMM have
a rateaq/t and are constrained by a factor 12C1, i.e., the
probability that the siteX5ht2a is vacant at timet.

Consider now the evolution ofC(X,t) on sitesX of the
interval @0,ht22a#. Particles that may be present at this in-
terval all have equal probabilities of hops up and down and
all are indistinguishable: the BP with its asymmetric transi-
tion rates is by definition at the siteX5ht . As a conse-
quence, a forbidden attempt of any particle to hop onto the
well already occupied by another particle is quite equivalent
to the event when both simply interchange their positions,
which means that hard-core exclusion is not very important
~see also@48#! for the evolution ofC(X,t) on @0,ht22a#.
Thus, as a reasonably good approximation we suppose that
on this interval the concentrationC(X,t) obeys a standard
diffusion equation:

]C~X,t !

]t
5D

]2C~X,t !

]X2 , D5
a2

4t
. ~4!

Rigorous analysis of the influence of hard-core effects on
particle dynamics in some similar problems, which supports
the approximation in Eq.~4!, may be found in@49#.

Finally, dynamics ofC(X,t) at X5ht2a, for which ef-
fects of the hard-core exclusion do matter because of the
asymmetry induced by the BP, are governed by

a
dC1

dt
52D

]C~X,t !

]X U
~X5ht2a!

2C1

dht
dt

. ~5!

In Eq. ~5! the first, gradient term accounts for exchanges of
identical fluid particles between the sitesht22a andht2a.
The second term describes the change in the mean occupa-
tion of the siteX5ht2a due to the motion of the BP and is
proportional to the negative of the product of the BP veloc-
ity, dht/dt, and ofC1. Here, the multiplierdht/dt deter-
mines the rate at which the site adjacent to the BP becomes

vacant due to the motion of the BP. In turn, the factorC1,
which is the mean occupation of the site adjacent to the
boundary particle, accounts in a mean-field manner for the
following circumstance: Suppose that at timet the BP is atht
and the siteX5ht2a is vacant, i.e.,h(X5ht2a,t)50.
Then, if at the time momentt1t the BP makes a hop away
from the EMM, it ‘‘creates’’ a vacancy at the previously
occupied site and thush(X5ht2a,t1t)50 still equals
zero. Therefore, the occupation of this site is not effectively
changed in the case when prior to the BP hop the left-hand
side ~lhs! adjacent site was vacant. Conversely, if at timet
the lhs adjacent to the BP site is occupied, i.e.,
h(X5ht2a,t)51, and the BP hops away from the EMM,
one has thath(X5ht2a,t1t)50, i.e., is changed from one
to zero.

Thus we have a complete, coupled system of dynamical
Eqs. ~3! to ~5! describing the time evolution of the particle
concentrationC(X,t) and the mean displacementht of the
boundary particle~extension of the film!. Below we will ana-
lyze its solutions in two situations: whenq is strictly greater
thanp ~Sec. IV!, which means that there is a nonzero effec-
tive surface force acting on the BP, and whenp5q5p0
~Sec. V!, which corresponds to zero surface force. The latter
case is appropriate to spreading of strongly volatile liquids or
to the experimental situation described in@24#.

IV. SOLUTIONS OF DYNAMICAL EQUATIONS
IN THE PRESENCE OF AN EFFECTIVE

SURFACE FORCE

In this section we consider first~subsection A! the ana-
lytical solutions of the dynamical equations~3! to ~5! in the
case when an effective surface force (q.p) favors motion
of the BP towards the EMM. Here we will determine explic-
itly the growth law of the film’s length and mass. In subsec-
tion B we will analyze the details of the fine structure of the
growing film, such as the concentration profile along the film
and also the time evolution of the particle concentration and
concentration gradient at the extremities of the film. In sub-
section C we will present the results of numerical simula-
tions of the stochastic process, described in Sec. III and com-
pare our analytical predictions against these numerical
results. Finally, at the end of subsection C we will discuss
some similar features between our analytical findings and
observations made in numerical simulations of liquid drop
spreading.

A. Mean displacement of the boundary particle
and mass of particles in the film

In order to find the solution of coupled Eqs.~3!–~5! we
first recall that Eq.~4!, unconstrained by the boundary con-
ditions, has a solution that is stationary in the scaled variable
Xt21/2. Accordingly, we will base our approach to the solu-
tion of Eqs. ~3! to ~5! on the a priori assumption thatht
actually grows in time asAt and that the concentration pro-
file C(X,t) attains a stationary form in terms of a scaled
variablev, v5(X1a)/ht . We note that, of course, the so-
lution so obtained must be tested for consistency with the
initial assumption. Consequently, such an approach will be
self-consistent if we succeed to show that there exists a fi-
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nite, constant prefactor in the dependenceht;At, for which
Eqs. (3)–(5)are compatible. A more accurate approach and
time-dependent corrections to the stationary solution will be
discussed in Sec. V and the Appendix.

Rewriting Eq. ~4! in terms of the above-defined scaled
variablev we have

d2C~v!

dv2 1Amv
dC~v!

dv
50, ~6!

where the parameterAm is given by

Am5
1

2D

dht
2

dt
~7!

and is expected, in view of our assumption, to be a time-
independent constant. To findAm explicitly we will proceed
as follows: We notice first that sincedht/dt→0 whent→`,
Eq. ~3! ensures thatC1 rapidly, at rateudC1/dtu!dht/dt,
approaches a constant valueC̃1, C̃1512p/q. Then, solving
the differential Eq.~6! subject to the boundary conditions
C(v50)5C0 andC(v51)5C̄1 we find that the appropri-
ate stationary solution reads

C~v!5C01~C̃12C0!
erf~vAAm/2!

erf~AAm/2!
, ~8!

where erf(x) denotes the error function. Next, rewriting Eq.
~5! in terms of the scaled variablev and neglecting transient
terms, we have

D

ht

dC~v!

dv U
v51

52C̃1

dht
dt

. ~9!

Now, the derivative ofC~v! with respect tov, which enters
Eq. ~9!, can be readily expressed from Eq.~8! through the
parametersAm , C0, andC̃1, which gives

dC~v!

dv
U

v51

5A2Am

p

~C̃12C0!exp~2Am/2!

erf~AAm/2!
. ~10!

Plugging then Eq.~10! into Eq.~9! we arrive at the following
equation:

A2Am

p

~C̃12C0!exp~2Am/2!

erf~AAm/2!
52

C̃1

2D

dht
2

dt
, ~11!

which, making use of the definition of parametersAm and
C̃1, can be cast into the form

ApAm

2
expSAm

2 D erfSAAm

2 D 5
p2q1qC0

q2p

5
12exp@2b~E↓2W←!#

exp~bW←!21
,

~12!

i.e., into the form of a closed with respect toAm equation,
which defines its dependence on the given parametersp, q,
andC0 ~or E↓ andWaj!.

Equation~12! shows thus that for any values of the pa-
rametersW← and E↓ ~except for the casep5q, when
W←50, which will be studied in Sec. V! the parameterAm is
actually a well-defined positive constant. Consequently, we
may claim that the mean displacement of the boundary par-
ticle, or, in other words, the mean extension of the wetting
film, obeys

ht5A2AmDt. ~13!

Equation~13! constitutes the primary result of our analy-
sis and agrees with the experimentally observed behavior
@6,13–15,22,23#. We note also that it may be somewhat mis-
leading to call the behavior in Eq.~13! ‘‘diffusive’’; here it
describes the growth of themeandisplacement, which is
exactly equal to zero for diffusive-type processes. Accord-
ingly, the phenomenon of spreading of thin liquid films
stems from essentially different processes than, say, growth
of the area visited by an unconstrained random walk. Spread-
ing of thin films is controlled merely by the transport of
vacancies along the solid wall from the tip of the film to the
macroscopic liquid edge, where these vacancies are filled by
fluid particles, a behavior that is reminiscent, in view of un-
derlying physical processes, of the phenomena of the direc-
tional solidification, melting or freezing, in which the spread-
ing of the front of a ‘‘new’’ phase is controlled by the rate at
which the particles of the ‘‘old’’ phase diffuse away of the
front @50#.

Now, in Fig. 4 we depict the numerical solution of Eq.
~12!, which representsAm as a function of the transition
probabilityq at four different values of the concentrationC0.
This figure shows that forq sufficiently close to 1/2~we took
p1q51! Am is large ~it diverges whenq is exactly equal

FIG. 4. The parameterAm as a function of the transition prob-
ability q ~p1q51! at different values of the concentration at the
edge of the macroscopic meniscus,C0. The upper curve~solid line!
corresponds toC051, the dotted line toC050.9, the dashed line to
C050.8, and the dot-dashed line toC050.7.
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1/2! and its magnitude is not very sensitive to the actual
value of the concentration at the EMM,C0. At greaterq the
parameterAm tends to zero and becomes equal to zero at
finite values ofq, which depend on the concentrationC0.
This critical value can be readily estimated from Eq.~12!.
Namely, it may be obtained by equating the right-hand side
~rhs! of Eq. ~12! to zero, which yieldspc/qc512C0 . The
latter equation means thatAm50 ~no spreading! when the
probability of hops away from the EMM is equal to the
probability of hops towards the EMM times the mean occu-
pation of the left-hand adjacent site.

Now, we estimate analytically the dependence ofAm on
the pertinent parameters in the asymptotic limit whenAm is
small or large. It follows from Eq.~12! thatAm is small when
the rhs of Eq.~12! is small. It happens, namely, when
p'q(12C0). In terms of the energetic parametersE↓ and
W← it means thatAm is small when either the inequality
bE↓.bW←@1 holds~what may be thought of as the case
of liquids with high cohesion energy and strong attraction to
the substrate!, or when the difference

s5E↓2W← ~14!

is sufficiently small, such thatbs!exp~bW←!21. When ei-
ther of these inequalities is fulfilledAm is given explicitly by

Am'
p2q1qC0

q2p
, ~15!

which, using the energetic parameters, can be rewritten as

Am'
12exp~2bs!

exp~bW←!21
. ~16!

We note now that the growth of the film occurs as long as
the parameters, Eq. ~14!, is positive. Therefore, it seems
natural to defines as themicroscopicanalog of the spreading
parameterS—the property that is the key parameter deter-
mining spreading of liquids at the macroscopic scales@1–5#.
Explicitly, S is the free energy difference between a bare
solid, directly in contact with the vapor and a solid covered
by a flat, thick liquid layer and thus compares the surface
tensions of three different interfaces involved when a liquid
drop is deposited on a solid substrate. ForS.0 the drop
spontaneously spreads and tends to shield the substrate. In
the case whenS is negative the liquid remains in the form of
a droplet. In our situation with spreading of a molecularly
thin film, the parameters, which equals the difference of the
energy gained by filling by a fluid particle a vacancy at the
EMM and the work required to transport a vacancy from the
tip of film to the EMM, is the key parameter that distin-
guishes whether the monolayer will grow or not. Conse-
quently, we will call it themicroscopicspreading parameter.

Now, Am may be large when the rhs of Eq.~12! is large,
which happens in the situations whenp is very close to~but
less than! q. In terms of the energetic parameters this corre-
sponds to the case whenbW←!1, provided thats is suffi-
ciently large. In this caseAm reads

Am'2 lnF&~p2q1qC0!

Ap~q2p!
G , ~17!

or, in terms ofE↓ andW← ,

Am'2 lnF &@12exp~2bs!#

Ap@exp~bW←!21#
G . ~18!

Behavior as in Eqs.~17! and ~18! may be realized experi-
mentally in the case of liquids with low cohesion energy,
which are volatile in two dimensions, but not volatile in three
dimensions. An example of such a liquid is squalane~see
@14# for details!.

Finally, we examine the evolution of the massMt of the
film, which is defined by

Mt5E
2a

ht2a

dX C~X,t !. ~19!

Changing the variable of integration and making use of Eq.
~8! we get

Mt5htE
0

1

dvC~v!5ht exp~Am/2!@12exp~2bW←!#,

~20!

which shows thatMt also grows in proportion toAt, in ac-
cord with experimental observations@13,51#.

A remarkable feature of the result in Eq.~20! is that the
mean particle concentrationr, r5Mt/ht5exp~Am/2!@1
2exp~2bW←!#, turns out to be time independent. In the
case of smallAm the mean particle concentration is close to
unity, while for progressively largeAm it tends to zero. This
behavior is illustrated in Fig. 8, where we plot the functions
Mt/At, ht/At, andr versus the transition probabilityq.

B. Fine structure of the film

Consider the concentration profiles defined by Eq.~8!. In
Fig. 5 we plot the particle concentration for several different
values of the parameterAm ; in Fig. 5~a! it is plotted versus
the scaled variablev and in Fig. 5~b! versus the variableX
~for a fixed moment of timet5103t!. Figure 5 shows that the
shape of the curve describing the stationary concentration
profile is rather sensitive to the value ofAm ~and, in turn, to
the values of the parametersW← andE↓!. WhenAm is small
enough~the dotted and the solid lines in Fig. 5 correspond to
Am'0.565 andAm'1.067, respectively! the profilesC~v!
andC(X) are almost linear. In this limit the error function in
Eq. ~8! can be expanded in powers ofAAm and already the
first term in this expansion provides a fairly nice estimate for
the entire interval on whichv or X are defined. WhenAm
exceeds unity this is no longer so and the shape of the profile
becomes quite different. In Fig. 5 the dash-dotted line corre-
sponds toAm'3.089 and the dashed line toAm'6.843.
From the viewpoint of the relevance to experimental situa-
tions, the first two curves~with low values ofAm! corre-
spond to nonvolatile liquids, i.e., such thatbW← is large and
evaporation of particles out of the liquid phase into the vapor
is suppressed. Two other profiles, in contrast, are appropriate
to situations with volatile liquids, for which the cohesion
energy is low and particles easily evaporate into the vapor
phase.
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Next, we consider time evolution ofC1 and of the con-
centration gradients at the extremities of the growing film.
Eqs.~3! and ~13! give

C1512
p

q
1

t

aq

dht
dt

'@12exp~2bW←!#F11coth~bW←/2!AAmt

2t G .
~21!

The behavior of the derivatives of the stationary concentra-
tion profile at pointsv50 andv51 can be readily found
from Eq. ~8! and read

dC~v!

dv U
v51

52C̃1Am ~22!

and

dC~v!

dv U
v50

52C̃1Amexp~Am/2!, ~23!

which shows that the current of particles away from~or the
current of vacancies to! the EMM is a factor of exp~Am/2!
greater than the current of particles at the tip of the film.
Rewriting the results in Eqs.~22! and ~23! in terms of vari-
ablesX and t we have, respectively,

]C~X,t !

]X U
X5ht2a

52C̃1A Am

2Dt
, ~24!

]C~X,t !

]X U
X52a

52C̃1AAmexp~Am!

2Dt
, ~25!

i.e., the concentration gradients at both extremities of the
film decrease in time in proportion to 1/At.

From Eqs.~21! to ~25! we infer that relaxation processes
in the film proceed fundamentally more slowly than these in
the macroscopic liquid; relaxation of concentrations to their
equilibrium values is described by a power-law.

C. Numerical simulations

In this subsection we check the results of our mean-field
continuous-space and time description of the discrete space
and time stochastic process defined in Sec. III against the
results of numerical Monte Carlo simulation of this process.
The simulation algorithm and the results will be presented in
the beginning of this section. At the end of this section we
will also present the qualitative comparison of our analytical
results and the results of numerical simulations of liquid drop
spreading, performed in@31#.

The simulation algorithm follows the definition of the sto-
chastic process closely, except that to shorten the simulation
time we stipulate that neither particle can choose to remain at
its position, i.e.,p1q51 for the boundary particle and all
other particles select the direction of jump with probability
1/2. Additionally, we set the ‘‘stick’’ timet51 and also
a51, which means that the diffusion constantD51/2. More
precisely, we consider a segment~Fig. 3! of a one-
dimensional regular lattice of unit spacing with sitesX5
21,0,...,L, whereL is taken to be sufficiently large to avoid
finite-size effects. At the Monte Carlo~MC! time moment
D050 we land two particles at the sitesX521 andX50. At
D151 one of these particles is chosen at random and is al-
lowed to perform a hop. If the chosen particle is the one at
X521, it attempts to hop to the right with probability 1/2,
or, with the probability 1/2 remains at its position. In this
initial configuration, however, the hop to the right cannot be
fulfilled because at this moment of the MC time the particle
at X521 is blocked by the particle atX50. Now, if the
chosen particle is the one atX50 ~the boundary particle!, it
first selects the direction of hop with the probabilityq for
hops to the left and the probabilityp for hops to the right. As

FIG. 5. The particle concentration profiles in the growing film.
We plot in ~a! the functionC~v!, Eq. ~8!, vs the variablev for
different values of the parameterbW← and fixedbs55. In ~b! we
depict the profilesC(X,t) vs the variableX at a fixed moment of
time 2Dt5103 and different values of the energetic parameters. In
both ~a! and ~b! the upper curve~dotted line! corresponds to
bW←50.9 ~Am50.565!, the solid line tobW←50.5 ~Am51.067!,
the dash-dotted line tobW←50.1 ~Am53.089!, and the dashed line
gives the variation of the profile forbW←50.01 ~Am56.843!.
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we have already noted, we took herep1q51, which means
that the choice should be made strictly between the right and
left—the probability to remain at its position is zero. If the
selected direction is to the right, the hop is fulfilled and the
particle jumps onto the siteX51 and creates a ‘‘vacancy’’ at
X50. Otherwise, it remains atX50 and at the next moment
of the MC time the procedure is repeated. Eventually, the
particle atX521 performs a hop onto the siteX50 and
makes the siteX521 vacant. When this happens a new par-
ticle lands on the siteX521, which means that at the site
X521 we introduce a source, which keeps the occupation of
this site fixed. For simplicity, we stipulate that the source
lands a particle onto this site as soon as it becomes vacant,
which means thatC051 ~bE↓@1! at any moment of time.
Now, the rules are essentially the same when three or more
particles are present on the lattice. At each moment of the
MC time one particle among all is chosen at random. If the
chosen particle is not the particle atX521 and is not the
boundary, the rightmost particle, then it selects the direction
of hop with equal probabilities~1/2! for hops to the right and
to the left. The jump is instantaneously fulfilled if the neigh-
boring site in the selected direction is vacant. If the chosen
particle is the boundary one, the probability of hopping to the
right is p, while that for the hopping to the left isq. For the
BP the jump to the left is constrained by hard-core interac-
tions with the adjacent particle, while hops to the right are
instantaneously fulfilled provided that this direction is se-
lected. Finally, for the particle atX521 the probability of
hopping to the right is 1/2 and it may remain, with probabil-
ity 1/2, atX521.

In simulations the time evolution of several different
properties was measured. We have recorded the mean dis-
placement of the boundary particle, the number of particles
~mass! on the lattice at timet, concentration profiles and the
concentration at the site adjacent to the position of the
boundary particle. Each realization of the process started at
the initial configuration with two particles and was termi-
nated when there were 400 particles on the lattice. Care has
been taken that for neither realization does the boundary par-
ticle reach the system’s boundaryL.

Results of our simulations are presented in Figs. 6–8 and
the time evolution of the properties under study is plotted
versus the real physical time. This time is defined in a stan-
dard fashion for the MC simulations of systems with a vari-
able number of particles; while the MC time varies continu-
ously, the real time is increased by a fixed unit value only
when a number of particles on the line gets increased. In
other words, the step of physical timeDt is related toDn as
Dt5Dn/Mn , whereMn is the number of particles on the
lattice at the MC momentDn .

In Fig. 6 we plot our analytical, Eq.~13! with D51/2, and
numerical results for the length of the film at four different
values of the transition probabilityq ~q50.6, 0.7, 0.8, and
0.9! versusAt. For such values of parameters numerical
simulations give, respectively, the following values of the
parameterAm : Am51.277, 0.613, 0.298, and 0.121. From
Eq. ~12! we have the corresponding analytical results forAm ,
which areAm51.282, 0.609, 0.301, and 0.120. The maximal
discrepancy between our analytical and numerical results oc-
curs forq50.7, but amounts, however, to less than 1%.

In Fig. 7 we plot our analytical, Eq.~20!, and numerical
results for the growth of the mass of the film versusAt.
Agreement between the theoretical predictions for this prop-
erty and numerical data is here even better and the error is
considerably less than 1%; in fact, the analytical and numeri-
cal curves are almost indistinguishable. Finally, Fig. 8 shows
the analytical curvesht/At,Mt/At, and mean concentrationr
as functions of the transition probabilityq. Diamonds and
crosses in this figure show the corresponding values of the
prefactors in the time dependences ofht andMt deduced
from the numerical data. Again, the agreement between our
analytical predictions and numerical data is quite good.

FIG. 6. Length of the film vsAt at different values ofq and
fixedC051. The upper curve~solid line! gives the analytical result
for q50.6. The noisy line represents the data of numerical simula-
tions. Other curves are the corresponding analytical and numerical
results forq50.7, 0.8, and 0.9, respectively.

FIG. 7. Mass of the film vsAt. The upper solid line corresponds
to q50.6. The curves in order from up to down are the results for
q50.7, 0.8, and 0.9, respectively.
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To close this section we present a succinct qualitative
comparison of our analytical results with the results of nu-
merical simulations performed in@31#, which also employed
a very similar lattice-gas picture of the spreading phenom-
ena. In this model the hard-core particles, initially placed in
a volume with a ridgelike shape, perform random motion
prescribed by the Kawasaki spin-exchange dynamics~see for
more details@31#!. The interactions involved are hard core at
the molecular size, interactions with nearest neighbors via
the coupling constantJ, which describes cohesion between
fluid particles, and also attractive van der Waals interactions,
V(z)52A/z2, with the substrate;z is the distance from the
substrate andA is the Hamaker constant. In@31# behavior of
ht was analyzed as a function of parametersbJ and A/J.
One of the most interesting observations made was that, at a
fixed bJ, the substantial change in the substrate potential
strength does not affect the behavior ofht very dramatically.
For instance, forbJ51/2 the increase inA/J from 5 to 100
caused the precursor length to differ only less than 10% after
150 000 time steps. Now, noticing that parametersJ andA in
@31# are qualitatively the same as ourW← andE↓ let us see
how the change of their magnitude affects the growth of the
film, Eq. ~13!. In Fig. 9 we plot the parameterAm as a func-
tion of themicroscopicspreading parameter for several dif-
ferent values ofbW← : bW←50.1, 0.5, and 0.9. We show
that also in our model the value ofAm , at a fixedbW← , does
not vary significantly with a strong variation of the spreading
parameters. For instance, takingbW←51/2 andbs55 we
find from Eq.~12! thatAm'1.062 while increasingbs up to
100 we haveAm'1.067, i.e., the value that is only 0.5% off.
Consequently, our analytical results show that the change in
the value ofbs from 5 to 100 will make the film’s length
larger in only less than 7%. Finally, let us remark that the
situation is reminiscent of that with the macroscopic spread-
ing parameterS; although spreading of a droplet at the mac-
roscopic scales occurs only asS is positive, the rate of
growth of the macroscopic liquid edge is weakly, logarith-
mically dependent on the actual value ofS @1–12#.

V. SOLUTIONS OF DYNAMICAL EQUATIONS
IN THE ABSENCE OF AN EFFECTIVE

SURFACE FORCE

To complete our presentation we consider the spreading
kinetics and the fine structure details of growing films in the
special casep5q when an effective surface force is absent.
This case is relevant to liquids with very low cohesion en-
ergy, i.e., strongly volatile liquids. We hasten to remark that
our present model does not include the possibility of particle
evaporation in the direction normal to the solid wall, which
may take place in experiments with volatile liquids. How-
ever, the possibility of the evaporation along the wall, i.e.,
two-dimensional evaporation, is well captured by our model.
Therefore, in the following we will assume thatbE↓ is suf-
ficiently large and the evaporation normal to the solid wall is
suppressed; i.e., we will constrain ourselves to experimental
situations for which our model makes sense.

We notice also that the situation with zero surface force is
appropriate to the experimental situation discussed in@24#,
which was concerned with spreading of metallic beads and
the setup of which we depict in Fig. 10. Here a horizontal

FIG. 10. Experimental setup of Ref.@24#. Spreading of metallic
beads on a vibrating racklike corrugated plane.

FIG. 8. Plot of the functionsht/At ~solid line!, Mt/At ~dashed
line!, and mean concentrationr ~dot-dashed line! vs the transition
probabilityq. Open diamonds and crosses give the numerical data. FIG. 9. The parameterAm as the function of the microscopic

spreading parameterbs. The upper curve~the dash-dotted line!
corresponds tobW←50.1, the solid line tobW←50.5, and the
dashed line tobW←50.9.
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rack, confined inside of a rectangular tube, is fixed on a
plane. A vertical stack is placed at the left end of the rack.
The plane is vibrated by two motors, whose flywheels are
eccentric and produce irregular~chaotic! vibrations. Now, a
column of metallic beads is introduced into the stack and, as
soon as the vibration is switched on, the beads start to move
along the rack away from the stack. The size of the beads is
chosen in such a way that only a single bead can occupy a
given slot of the rack. In addition, the distance between the
top of the slot and the top of the tube only slightly exceeds
the radius of bead. Consequently, the beads cannot pass
through each other. In this experiment both the mean~over
several realizations! displacement of the rightmost bead and
the mean number~or mass! of beads on the rack are found to
grow in proportion toAt @24#.

We turn now to the behavior of Eqs.~3! to ~5! in the case
when all particles including the BP have equal probabilities
for jumps to the right and to the left,p5q5p0 . Diffusion
coefficient in this case will beD5a2p0/t.

We recall first that as we have seen in Sec. IV this case is
somewhat peculiar since the rhs of Eq.~12! diverges, which
means thatAm is no longer a well-defined constant but rather
is some increasing function of time. Equation~17! shows
that whenq tends top the divergence inAm is logarithmic,
i.e., Am}2lnuq2pu. Therefore, one may expect~and this
will be shown to be the case! that in the caseq5p the
parameterAm should grow in time as a logarithm oft. Con-
sequently, the approach devised in the previous section can-
not be directly applied here since one cannota priori claim
the existence of the stationary solution in Eq.~8!. However,
as we proceed to show, even in this case Eq.~8! represents a
fair approximation ofC(X,t) when time t is sufficiently
large.

We start our analytical analysis by noticing that the solu-
tion of diffusion Eq. ~4! with the boundary conditions
C(X52a,t)5C0 andC(X5ht2a,t)5C1(t) can be writ-
ten in the following general form:

C~X,t !5C̄~v,t,C1!. ~26!

Consequently, the derivatives ofC(X,t) with respect to the
time and space variables will read

]C~X,t !

]t
52

v

ht

dht
dt

]C̄

]v
1

]C̄

]t
1

]C̄

]C1

dC1

dt
, ~27!

]2C~X,t !

]X2 5
1

ht
2

]2C̄

]v2 , ~28!

and Eq.~4! will take the form

]2C̄

]v2 1Amv
]C̄

]v
5
ht
2

D F ]C̄

]t
1

]C̄

]C1

dC1

dt G , ~29!

which is to be solved subject to the boundary conditions

C̄~v50,t,C1!5C0 , C̄~v51,t,C1!5C1 . ~30!

Now, we will seek the solution of Eqs.~29! and~30! as an
expansion in the powers of inverse diffusion coefficient, i.e.,

C̄~v,t,C1!5 (
n50

`

D2nCn~v,t,C1!, ~31!

in which C0(v,t,C1) obeys Eq.~6! with the boundary con-
ditions C0(v50,t,C1)5C0 and C0(v51,t,C1)5C1 and
thus is given explicitly by Eq.~8!. The higher-order terms,
i.e., Cn.0(v,t,C1), may be calculated recursively from
equations

]2Cn

]v2 1Amv
]Cn

]v
5ht

2F]Cn21

]t
1

]Cn21

]C1

dC1

dt G ~32!

and

Cn~v50,t,C1!50, Cn~v51,t,C1!50. ~33!

Next, to define the time evolution ofAm andht we will
proceed as follows. Noticing that in the casep5q5p0 Eq.
~3! reduces to

C15
a

D

dht
dt

~34!

we may rewrite Eq.~5! as

aht
D2 S dhtdt D

2

52
]C̄

]v
U

v51

52 (
n50

`

D2n
]Cn

]v U
v51

. ~35!

Further on, assuming~the validity of this assumption will be
checked in the Appendix! that

Z]C0

]v U
v51

Z@ 1

Dn Z]Cn

]v U
v51

Z ~36!

we will neglect in the rhs of Eq.~35! all terms withn.0.
Then, combining Eqs.~35! and ~10! we will obtain

aht

D2 S dht
dt

D 25A2Am

p

C0exp~2Am/2!

erf~AAm/2!
, ~37!

which, employing the definition of the parameterAm , Eq.
~7!, can be cast in the following form:

Am
3/2exp~Am/2!erf~AAm/2!5A2

p

C0ht
a

. ~38!

We note now that the rhs of Eq.~38! diverges ast→`
sinceht evidently grows with time. This means, in turn, that
at sufficiently large times the dominant multiplier on the lhs
of Eq. ~38! is the exponent ofAm/2; the multiplier Am

3/2

grows essentially slower and erf(AAm/2) is bounded by
unity. Consequently, for the leading in time term inAm we
get

Am' lnS 4C0
2Dt

pa2 D , ~39!
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i.e., an expected logarithmic growth ofAm in time. Accord-
ingly, the growth of the film’s length in this case will obey

ht'A2Dt lnS 4C0
2Dt

pa2 D . ~40!

We hasten to remark that Eqs.~40! and ~39! are asymptotic
results and the time needed to ensure their utility may be
considerably large. In@24#, in which measurements were per-
formed within a rather short time interval, the additional
logarithmic factor has not been seen. We also doubt whether
the slowly varying logarithmic multiplier can be distin-
guished in laboratory experiments with spreading of volatile
liquids.

Consider now the time evolution of other characteristic
properties of the film, such as the mass of particles, the mean
concentration, and the concentration gradients. For the mass
of particles we have from Eq.~20! ~which is an exact equa-
tion for this property and holds also for the casep5q5p0!
that it grows as

Mt'C0A4Dt

p
; ~41!

i.e., the additional logarithmic multiplier does not appear and
the mass of particles grows in proportion toAt. Accordingly,
from Eqs.~40! and~41!, we find that the mean concentration
r slowly decreases with time:

r'C0A 2

p ln~4C0
2Dt/pa2!

. ~42!

The particle concentration on the left-hand side adjacent to
the BP site may be readily found from Eqs.~34! and~40! and
obeys

C1'S a2

2Dt D
1/2

ln 1/2S 4C0
2Dt

pa2 D . ~43!

Finally, for the concentration gradient at the pointv50
~andX52a! we have

]C~v!

]v U
v50

'2C0A2

p
lnS 4C0

2Dt

pa2 D ~44!

and

]C~X,t !

]X U
X52a

'2
C0

ApDt
, ~45!

while the gradient at the pointv51 ~andX5ht2a! obeys

]C~v!

]v U
v51

'2C1Am'2S a2

2Dt D
1/2

ln 3/2S 4C0
2Dt

pa2 D
~46!

and

]C~X,t !

]X U
X5ht2a

'2
a

2Dt
lnS 4C0

2Dt

pa2 D . ~47!

VI. CONCLUSIONS

To summarize, we have presented a microscopic, molecu-
lar model describing the growth of monomolecularly thin
liquid films in systems with planar~capillary rise! geometry.
We have found analytically that both the length and the mass
~number of particles! of the film grow in proportion toAt, in
accord with the experimentally observed behaviors. The
prefactors in this law are determined analytically and in two
limiting cases explicit expressions are derived. We have de-
termined a microscopic parameter that determines the physi-
cal conditions when the growth of films occurs and also ana-
lyzed the underlying physical mechanism of the film growth.
We show that the essential physical process responsible for
such a growth is associated with the diffusive transport of
vacancies from the tip of the film to the edge of the macro-
scopic meniscus, where they are filled with fluid particles. In
addition, we have examined the time evolution of several
characteristic properties, which define the fine structure of
the film. These are the mean concentration, concentration
profiles along the film length, the particle concentration at
the tip of the film, and also the concentration gradients. Nu-
merical simulations are in a very good agreement with our
analytical predictions for both the time evolution and the
values of the prefactors for different parameters of the
model.

ACKNOWLEDGMENTS

The authors thank M. Robbins and S. Granick for helpful
discussions. We are also very grateful to J. L. Lebowitz for
numerous discussions on the hard-core lattice gases dynam-
ics. S.F.B. acknowledges a partial support by the ONR Grant
No. 00014-94-1-0647 and from the University of Paris VI.
G.O. acknowledges financial support from the CNRS.

APPENDIX

In this Appendix we consider the behavior of]C1/]v and
check our assumption that corrections to the stationary solu-
tion in Eq. ~8! are insignificant at large times, provided that
the parameterAm is either a constant or a slowly varying in
time function. From Eqs.~32! and ~33! one may readily de-
rive the first correction term, which is given explicitly by

C15A2Am

p

ht
2

erf~AAm/2!
E
0

v

dv1E
0

1

dv2E
v2

v1
dv3expS 2

Am

2
~v1

21v2
22v3

2! D S ]

]t
1
dC1

dt

]

]C1
DC0 . ~A1!

Now, the analysis of the exact form as in Eq.~A1! seems rather cumbersome, and we will merely try to find an upper bound
on the absolute value of this function. To do this, we first note that
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US ]

]t
1
dC1

dt

]

]C1
DC0U< a

D Ud2htdt2 U. ~A2!

Employing the inequality in Eq.~A2! we may bounduC1u from above by

uC1u<A2Am

p

aht
2

D erf~AAm/2!
Ud2htdt2 U E0

v

dv1E
0

1

dv2E
0

v1
dv3expS 2

Am

2
~v1

21v2
22v3

2! D<
p1/2aht

2

DAm
Ud2htdt2 Uerf~vAAm/2!.

~A3!

Consequently, we will obtain from~A3! that

U]C1

]v U
v51

U< aht
2exp~2Am/2!

DAAm
Ud2htdt2 U. ~A4!

Now, in the caseq.p the derivative]C0/]v at point
v51 assumes constant values2(12p/q)Am , Eq. ~22!,

while ]C0/]v at point v51 is bounded from above, Eq.
~A4!, by a function that tends to zero as 1/At whent→`. In
the casep5q the derivativeC0/]v at pointv51 vanishes as
ln2(t)/At when t→`, while the derivative ofC1 is bounded
by a function that decreases as ln1/2(t)/t3/2. We thus may
infer that in both cases at sufficiently large timesC0 @and
thus the stationary solution in Eq.~8!# represents the leading
term in the expansion in Eq.~31!.
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