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Spreading of a thin wetting film: Microscopic approach
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In this paper we present a microscopic model description of spreading kinetics of a monomolecularly thin
wetting film climbing from a bath of liquid along a vertical solid wall. We find analytically that both the linear
extension and the magsumber of particlesof the film grow in proportion to/t, in accord with experimental
observations. We also analyze the details of the fine structure of the wetting film and determine explicitly the
concentration profile along the film and concentration gradients at the tip of the film and in the vicinity of the
liquid bath. We show that the essential physical mechanism responsible for film’'s growth is associated with the
diffusive transport of vacancies from the tip of the film to the liquid bath, where they are filled with fluid
particles.[S1063-651X96)04309-1

PACS numbegps): 68.15+¢€, 05.40+j, 68.45.Gd

[. INTRODUCTION together stacked on top of one another and each growing as
Jt [13-15. For capillary rise geometries, in which a vertical
Spreading of liquid droplets on surfaces and fibers plays avall is put into a contact with a bath of liquid, a film of
crucial role in numerous technologies including lubrication,microscopic thicknesgor sometimes several monolayers
painting, coating, emulsion, dyeing, gluing, and oil recovery[21]) rises from the macroscopic meniscus and creeps up-
from porous rockg1-5]. In all cases, efficient practical ap- wards along the wall. In this case the length of the film
plications require precise knowledge of the conditions angncreases in proportion tgt within an extended time domain

laws O.f spreat;iing. For macrogcopically Ia}rge drops th?ZZ,Zﬂ, until the film’s growth is truncated at very high al-
spreading kinetics are well described by continuum hydrodysiy  qes due to gravitf8,9]. Finally, recent experimental

namic theories that ignore the molecular structure of I'qu'dsstudies(see also Sec. V for more detailed descriptiof

T.he evolution of such PVOPefF'eS of macroscopic drops as.thgpreading of metallic beads on a horizontal vibrating racklike
size of the macroscopic liquid edge, the height, the profile,

and the contact angle is presently well understood and iEurface[24] found at law for growth of the area covered
described by the universal Tanner law and its extension8Y the beads, thus showing that such a behavior is not a
[1-17. In contrast, the origin of universal laws that seem-SPeC'f'C feature of spreading liquids, but. |§ relevant to a
ingly govern spreading dynamics at the microscopic scale, a&ider range of systems. Therefore, tiielaw is independent
evidenced by recent experimental workk3—15, still re-  of the nature of the substrate and of the liquid, as well as of
mains uncleaf16]. the geometry, intermolecular interactions and also of the size
The salient features at the microscopic, molecular scale igf molecules, which can be even macroscopically large as in
the appearance of a liquid film, the precur§b¥], which is  the case with beads. The prefactors in this law depend, of
pulled out of the drop by unbalanced capillary forces. Thiscourse, on the particular situation under study.
precursor, whose thickness may vary from sevéralecu- Theoretical studies of this phenomenon have been largely
lar size to a few hundreds of angstroms, precedes the madiumerical. In particular, if25] theh,o 't law for the growth
roscopically observable liquid edge and the drop then actuef the precursor was reproduced in the molecular dynamics
ally spreads on top of this film. The linear extensigrof the ~ (MD) simulations involving Lennard-Jones molecules. The
film at sufficiently large times may be macroscopically large.MD simulations in[26,27, which differ from [25] in the
Refined ellipsometric measuremept8-15,18—-2phave  model of the substrate, displayed the spreading in the form of
scrutinized the growth of the precursor film and reached dlifferent monolayers stacked on top of one another, but
rather surprising conclusiorh; obeys a universal lavin, o showed, however, thé«log(t) growth of monolayers
Vt, regardless of the nature of the species involved. Thi§28]. In [29,30, which was concerned with MD simulations
growth law has been observed for various substrates and al§$ systems with Lennard-Jones chainlike molecules, “ter-
for various kinds of liquids: simple, polymeric, and surfac- raced” spreading in the form of distinct layers with their
tant melts. For some substrates a remarkable effect of “terradii growing asyt was found. Finally, if31] an Ising-type
raced spreading” takes place—several monolayers advandattice-gas model was employed instead of the molecular dy-
namics, which has also demonstrated tfidaw for growth
of the precursor length. Following the trajectories of tracer
*Present address: LPTL, UniversRéerre et Marie Curie, 4 Place particles, it was deducd@1] that this behavior occurs due to

Jussieu, 75252 Paris Cedex 05, France. migration of second layer particles to the holes in the perim-
TUnité de Recherche Assogieau CNRSURA 765). eter of the precursor. Details of this and earlier numerical
*Unite de Recherche Assogieau CNRSURA 792). works were recently summarized [ith6].
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Meanwhile, several theoretical developments aimed at the
explanation of the origin of the't law have occurred. 1f8]

a continuum hydrodynamic theory was developed, which de- p Solid wall

rived the |/t law from the diffusive motion with inhomoge- S~ .
neous diffusion coefficient dependent on the local disjoining f/4 Boundary particle
pressurg1]. This theory presumes, however, that the film

thickness remains at least in the mesoscopic range, where the 1/4

continuum hydrodynamics description is still approprid&k

Thus this approach does not explain the growth of monolay- Edge of the

ers; thin films cannot be viewed as a true liquid phase and
actually they often show solidlike or glassy behavif88—

36]. In [6,22,23 the hydrodynamic description i8] was
extended down to the microscopic scale, adopting basic
equations of8], but assuming a different origin of frictional
forces. R o0
A qualitatively different approach has been proposed in R [ 1 )
[37], which viewed the liquid drop as a completely layered
structure, each layer being a thin incompressible two-
dimensional fluid of small molecules. Permeation of the mol- FIG. 1. A schematic picture of the standard capillary rise geom-
ecules perpendicular to the layers is allowed and takes plac#ry. A vertical solid plane is immersed into the bath of liquid.
only in a “permeation ribbon” near the edges of successive

layers.(Recent numerical simulatioi88] show that this is  niscus and climbs along the solid, varies only with the alti-
actually so for strongly corrugated substrat€onsequently, tude above the edge of the macroscopic meniscus and is
the layers may grow by the accretion of molecules at theiindependent of the perpendicular, horizontal coordinate.
edges from the layers above and below. The fluid particles Our model consists of three basic points: We suppose that
do interact with the substrate in a manner that makes thghe concentration of fluid particles at the edge of the static
lowest layers energetically more favorable and causes thefhacroscopic meniscus is constant. Second, we view the mo-
growth. This picture yields the correct growth law of the tion of particles in the film on the solid surface as an acti-
advancing monolayers at long times, when one expects th@gated random hopping, constrained by hard-core interac-
difference between the radii of neighboring layers to betions, in spatially modulated potential. Third, here we ignore
large. However, an assumption of incompressibility leads teffects of gravity and also assume that all particles, except
serious problems in the analysis of the short time regimeshe ones at the tip of the filtFigs. 1 and 2—the boundary
Additionally, the macroscopic hydrodynamic description of particles (BP)—have symmetric transition rates. The hop-
dissipative forces employed if87] requires more detailed ping rates of the BP are asymmetric with the preferential
microscopic justification1]. direction towards the edge of the macroscopic meniscus. The
Lastly, in[39-41 an interesting nonequilibrium statisti- origin of such asymmetry will be made clear below. Similar
cal physics approach has been devised, which made use @ficroscopic approaches were succinctly presented in
the solid-on-solid-mode(SOSM approximation[42]. In 43,44, which concerned the dynamics of creep motion of
[39,40 the analysis focused on the Langevin dynamics ofan ultrathin film and lattice gas spreading, respectively.

the drop’s interfacéwhich is spatially coarse grained in the \Mmathematical aspects of the model presented here are akin to
spirit of the SOSM due to the surface tension and to the

driving (capillary) force in the vicinity of the substrate. In
this approach an extraction of precursor film has been estab-
lished and also the dynamical profiles have been determined
explicitly. This approximation, however, gives a precursor
advancing at a constant speed, itget, which contradicts

the experimentally observed behavior. To avoid this incon-
sistency a different, “columnar” version of the SOSM has
been employed41], which takes into account entropic re-
pulsion effects, but, nonetheless, a film extending linearly in
time was found.

In this paper we present a microscopic model description
of spreading and of the fine structure of monomolecularly
thin films. We focus here on systems with the so-called pla-
nar geometnf6,22,23, i.e., on systems in which the film’s
thickness(or concentration of particles in the film in case of
monolayerg varies effectively only along one spatial coordi- ®
nate. This typical experimental situation occurs when a solid,
which may be a planéFig. 1) or a cylindrical fiber(Fig. 2),
is immersed in a liquid bath. Here the particle concentration FIG. 2. Thin wetting film climbing on a cylindrical fiber from
in the liquid film, which extracts from the macroscopic me- the bath of liquid.
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the description of charged particle motion in a one-Then, employing essentially the same reasonings as those
dimensional hard-core lattice gas in the presence of an exteused in the derivation of Langmuir adsorption isoth¢A],
nal electric field45,46. Here the mean displacement of the we calculateC,, which in the limit BE >1, B=1/KT, takes
charged particle grows in proportion t@ in the case of both  the simple form
infinitely large [45] and finite fields, and also for different
types of boundary conditiorg6]. Co~1—exp—BE)). (€]
In our microscopic approach we establish analytically the . . .
Jt law for the grovxF/)th ofpt%e film length and the mz(tsmm}-/ Th_e value ofE | is dominated by two factors. The positive
contribution toE, comes from the presence of attractive in-

ber of particles in the fillhand determine explicitly the pref- . . i .
actorsFi)n this law. We also calculate the bghavi}:)r of geveratl‘:‘\ractlons b‘?tweef‘ the fluid particles and the solid wall_and
characteristic properties, including the concentration profileCan be readily defined through the parameters of these inter-

along the film, the particle concentration and concentratio ctions. The second, negative factor is a loss of energy due to

> . . " he breaking of bonds with several fluid molecules, since for
gradient at the tip of the film. Additionally, we analyze the the particles in the volume of the meniscus the number of

spreading kinetics in the case of strongly volatile liquids, " : . .
when the surface tension of the liquid-vapor interface is negpelghbors is greater than that for particles directly on the

ligibly small. In this case, which is also appropriate to eX_solid. We note, however, that this factor is not independent
periments With spreadingi of metallic beads on a vibratingOf particle-substrate interactions; the concentration profile
corrugated plang24] we find that the length of the filrfor and thus the number of neighboring molecules depend sig-
the area covered by the beadgows in time asyt 10g() nificantly on the strength of interactions with the substrate.
The mass of the film(or the total number of particlgss We also stress that whel is not too smallof order of

found bev. h het | thout | thmi unity), equilibration of the concentration at the EMM is a
rgtcjgor:so obey, however, thet law without logarithmic cor- ey ranid process; the approach of concentration to its equi-

, . librium value, Eq.(1), is exponentially fast. As we set out to
The paper is structured as follows: In Sec. Il we describ A P y

Eq.(2).
of liquids with well-developed liquid-vapor interface andr@\/en by Eq.(D

compare our analytical results against the results of numeri-
cal simulations. In Sec. V we analyze the growth of a mono-
layer in the case of strongly volatile liquids. Finally, in Sec.  Consider next particle dynamics on the solid surface. We
VI we conclude with a summary and discussion. make use of the conventional picture of such dynamics and
view the motion of particles as an activated random hopping
transport, constrained by hard-core interactions, between the
local minima of a waferlike array of potential wells. Such

Our model, which will be presented in the Secs. Il A— wells occur because of the mutual interactions of particles in
Il C, is relevant to the following experimental situation. Sup-the film (as for the motion in bulk liquigsand also because
pose that a vertical solid wall is immersed in a bath of liquid.the film’s particles experience short-range forces exerted by
The liquid interface, which is initially horizontal, changes its the atoms of the solid. Consequently, the interwell distance
shape in the vicinity of the solid wall and a macroscopicmay be related either to the radius of the repulsive part of the
meniscus builds ugsee Figs. 1 and)2The size of the mac- particle-particle interactions or to the spacing between the
roscopic meniscugboth horizontally and verticallyis com-  atoms of the substrate. Without going into details of particle-
parable to the capillary length. After a suitable transient peparticle and particle-substrate interactions, we suppose that
riod a thin liquid film exudes from the static macroscopic for the transition to one of the neighboring potential wells a
meniscus and climbs up the solid wall. The growth of filmsparticle has to overcome a potential barrier. This barrier does
whose thickness is in the mesoscopic range has been deet create a preferential hopping direction, but results in a
scribed in terms of a continuum hydrodynamic theorydh finite time interval r between the consecutive hops, defined
In the present paper we are concerned with the properties dfirough the Arrhenius formula. We note also that such a
molecularly thin films. picture of particle motion presumes a certain assumption
about the nature of the dissipative forddg; the stick-and-
slip motion model adopted here means that a particle loses
velocity completely after one jump.

We consider the liquid bath as a reservoir of parti¢lefs To specify the positions of the wells, we introduce a pair
an infinite capacity, which maintains a constant concentra- of perpendicular coordinate axeX,{), whereX is a vertical
tion C, of fluid particles at the edge of the macroscopiccoordinate, which measures the altitude of a given well
meniscus EMM). We estimateC, as follows: Suppose that above the EMM(Fig. 1), while Y defines the horizontal po-
one has a vacancy directly at the EMgee Figs. 1 and)2 sition of this well.
and a fluid particl€particle with an arrow in Figs. 1 and 2 We assume that all particlggxcept the boundary par-
in the volume of the macroscopic meniscus, which can jumgicles, which among all the particles at a given moment of
onto this vacancy within one step. Let us denote noiEas time and fixedY have the maximal altitud&=h,) have
the energy gained by moving this particle onto the vacancysymmetric transition rates: for these a probability of hop in

B. Dynamics of particles on the solid wall

Il. THE MODEL

A. Concentration at the edge of the macroscopic meniscus



54 SPREADING OF A THIN WETTING FILM: ... 3835

any of four directions is 1/4. Then, the diffusion coefficient

. 2 ] Source
of particles on the solid is defined through the parameders
and r asD =a?/4r. In physical terms we may rewrite this as 12  2g ¢
D=kT/y, wherek andT are the Boltzmann constant and the ® 0.0 o o0

a 0 a ht-‘aht X

temperature, respectively, whilg is the effective friction
coefficient for motion in a liquid monolayer on the solid
wall. Hard-core interactions constrain the particle hopping
motion; no two particles can simultaneously occupy the
same well. Thus a hop into an occupied well is forbidden.

FIG. 3. lllustration of a stochastic process describing motion of
C. Dynamics of the boundary particles particles on the solid wall.

Now we define dynamics of the BP, which will be differ- (yjjleq palance arguments we get the following relation be-
ent from that of particles in the film. First, for the BP the yyeenp, g, andw._:

hops down to the EMM and hops along the horizontal axis

are constrained by hard-core interactions, while upward hops

are unconstrained since wells aboXe=h, are always va- azexp(—BWH). &)
cant. Second, motion of the BP along thé axis is

asymmetric—we stipulate that upward hops occur withwe note, finally, that by definitiokV_ equals the difference
smaller probability p) than downward hopsg), p<q. of the potential energy of vacancy placed at the EMM and
Such an asymmetry may be roughly illustrated in terms othe potential energy of vacancy at the tip of the film, and
the SOSM approximatiof39—-41]. In this model the cost of hence is independent of the length and the mass of the film,
interfacial energyF for having a film of lengthh, (Figs. 1  provided thath,>a.
and 2 is F=Jh,, where the prefactod is related to the
surfa_lce tension of the quuid-vapor interface. This means that lll. BASIC EQUATIONS
the interface exerts aonstant independent of the film's
length, pressure on the film directed towards the EMM, orin Now we turn to the mathematical description of the film
other words, the BP experience an action of a constant forcgrowth defined by Secs. Il A—II C. We introduce the variable
f, f=—0F/oh,=—J, which favors its hops downwards to 7(X,Y,t), the time-dependent occupation variable of the
the EMM. Let us stress that in this picture only the boundarywell with coordinates< andY, which equals 1 if the well is
particle is subject to a surface-induced force; all other paroccupied and 0 if the well is empty. We note next that the
ticles in the film do not “feel” the presence of the interface dependences of(X,Y,t) on theX and theY coordinates
and thus have symmetric transition rates. have quite different origins. There is a reservoir of particles,
The microscopic origin of the asymmetric hopping rateswhich maintains fixed occupation of all wellsét —a, and
stems from the mutual interactions between the particles i well-defined constant force acting on the BP’s alongXhe
the film. Typical interactions in real systems are characteraxis. Consequently, we may expect a reg{atiependence
ized by a harsh repulsion of a hard-core type at short scalesf 7(X,Y,t). In contrast, theY dependence may be only
and attraction at longer distances. Now, upward and downroise; the uniform boundary at the EMM ensures that there
ward hops of the BP do not change the number of particles as no regular dependence on thecoordinate and only the
a givenY but result in stretching or shrinking of the film. particle dynamics may cause fluctuationszfX,Y,t) along
Thus the change in the length of the film comprising a fixedthe Y axis. In the present paper we will disregard these fluc-
number of particles results in the change of energy. Stretchuations and suppose that the occupation variable varies
ing of the film (an upward hop of the BPwill lead to an  along the X axis only, i.e., n(X,Y,t)=7n(X,t). Conse-
increase of energy. Conversely, shrinking of the film de-quently, we will have an effectively one-dimensional prob-
creases the interparticle distances and thus results in a dem in which the presence of thé direction will be ac-
crease of energy. In other words, the presence of particlesounted for only through the particles’ dynamics. We note
particle attraction results in correlations between the locafinally that the assumption of such a type is, in fact, quite
transition rates and spatial distribution of particles—theseconsistent with experimental observatiofs3—15, which
tend to move towards the spatial regions in which the parshow that in the case of sufficiently smooth substrates and
ticle concentration is high. Since the concentration is maxidiquids with low volatility the width of the film’s front is
mal at the EMM and decreases with an increase of altitude@ery narrow.
the particles in the film experience, on average, an action of Then, in neglect of the fluctuations along tieaxis the
a force that is directed to the EMM. In our model this cir- variable 5(X,t) can be viewed as a local time-dependent
cumstance will be taken into account by introducing an intevariable describing occupation of the siXein a stochastic
gral (over all particles of the fillnforce that acts on the BP processn which hard-core particles perform hopping motion
only and that is equivalent to the presence of a SOSM-typéwith the time intervalr between the consecutive hom a
interface with some effective surface eneklyy . In view of  one-dimensional lattice of spacirg (see Fig. 3. All par-
previous discussion we will defing/_, which is the differ- ticles, except the BP, have probabilities 1/4 for hops fodém
ence of the energies lost and gained due to the upward arid X*a, and probability 1/2 to stay & (arising from the
downward hops of the BP, as the work required to transponnotion along theY axis). The BP, being akK, may jump to
a vacancy from the tip of the film to the EMM. Using de- X+a with probability p and to X—a with probability q,
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provided that this site is vacant, and may remairXawith ~ vacant due to the motion of the BP. In turn, the fadir,
probability 1/2. Further on, a source ¥t —a maintains a which is the mean occupation of the site adjacent to the
fixed occupation of this site. This process is a generalizatioloundary particle, accounts in a mean-field manner for the
of a “directed walk in a lattice gas” model, studied analyti- following circumstance: Suppose that at tiinthe BP is ah,
cally and numerically i145,46], and here we will extend the and the siteX=h,—a is vacant, i.e.,p(X=h;—a,t)=0.
previously elaborated continuous-space and time mean-fieldFhen, if at the time momertt+ 7 the BP makes a hop away
type description to the more complicated process undefrom the EMM, it “creates” a vacancy at the previously
study. In this description we will focus on the evolution of occupied site and thus)(X=h,—a,t+7)=0 still equals

the BP mean displacement, which we denoth,asnd mean zero. Therefore, the occupation of this site is not effectively
occupation(or concentrationof the siteX at timet, C(X,t) changed in the case when prior to the BP hop the left-hand
=(7n(X,t)), where brackets denote averages with respect tside (lhs) adjacent site was vacant. Conversely, if at time
different realizations of the stochastic process. The analyticahe |hs adjacent to the BP site is occupied, i.e.,
results will be afterwardgin Sec. IV Q compared to the #n(X=h,—a,t)=1, and the BP hops away from the EMM,
results of Monte Carlo simulation of the discrete space andne has thapy(X=h;—a,t+ 7)=0, i.e., is changed from one

time stochastic process. to zero.
We start with the dynamics of the BP. Its mean displace- Thus we have a complete, coupled system of dynamical
ment obeys the following exact equation: Egs. (3) to (5) describing the time evolution of the particle
concentrationC(X,t) and the mean displacemehn of the
dh boundary particléextension of the film Below we will ana-
T4t 2P~ ag(1-Cy), ) lyze its solutions in two situations: whenpis strictly greater

thanp (Sec. IV), which means that there is a nonzero effec-
whereC,=C(X=h;—a,t), i.e., the mean occupation of the tive surface force acting on the BP, and wherq=p,
site adjacent to the position of the BP. Equati@ shows (Sec. V), which corresponds to zero surface force. The latter
that hops away from the EMM occur at radgp/7 and are  case is appropriate to spreading of strongly volatile liquids or
unconstrained, while hops in the direction to the EMM haveto the experimental situation described24].
a rateag/r and are constrained by a factorC,, i.e., the
probability that the siteX=h,—a is vacant at time.

Consider now the evolution dE(X,t) on sitesX of the IV. SOLUTIONS OF DYNAMICAL EQUATIONS
interval [0,h,— 2a]. Particles that may be present at this in- IN THE PRESENCE OF AN EFFECTIVE
terval all have equal probabilities of hops up and down and SURFACE FORCE

all are indistinguishable: the BP with its asymmetric transi- |, this section we consider firgsubsection A the ana-

tion rates is by definition at the sité=h;. As a conse- |yiica| solutions of the dynamical equatiof® to (5) in the
quence, a forbidden attempt of any particle to hop onto th€ ;se when an effective surface forag=(p) favors motion
well already occupied by another particle is quite equivalenty ihe BP towards the EMM. Here we will determine explic-
to the event when both simply interchange their positionsiyy the growth law of the film’s length and mass. In subsec-
which means that hard-core exclusion is not very importanion g we will analyze the details of the fine structure of the

(see alsd48]) for the evolution ofC(X,t) on [Oh—2a].  growing film, such as the concentration profile along the film

Thus,. as a reasonably good a_pproximation we suppose thghq also the time evolution of the particle concentration and
on this interval the concentratiofi(X,t) obeys a standard .qncentration gradient at the extremities of the film. In sub-

diffusion equation: section C we will present the results of numerical simula-

IC(X.1) P2C(X,1) 22 tions of the stochgstic process, describ.ed in Sec. lll and com-
=D >, D=—. (4) pare our analytical predictions against these numerical
ot IxX ar results. Finally, at the end of subsection C we will discuss

: vsis of the infl f hard & some similar features between our analytical findings and
Rigorous analysis of the influence of hard-core effects ony,senations made in numerical simulations of liquid drop

particle dynamics in some similar problems, which supportsg di
LS ; preading.
the approximation in Eq4), may be found irf49].
Finally, dynamics ofC(X,t) at X=h,—a, for which ef-
fects of the hard-core exclusion do matter because of the A. Mean displacement of the boundary particle
asymmetry induced by the BP, are governed by and mass of particles in the film

In order to find the solution of coupled Eq®)—(5) we
—Cy —. (5)  first recall that Eq(4), unconstrained by the boundary con-
dt X (X=h,—a) dt ditions, has a solution that is stationary in the scaled variable
Xt™Y2. Accordingly, we will base our approach to the solu-
In Eq. (5) the first, gradient term accounts for exchanges oftion of Egs.(3) to (5) on thea priori assumption thah,
identical fluid particles between the sites-2a andh,—a.  actually grows in time as/t and that the concentration pro-
The second term describes the change in the mean occupde C(X,t) attains a stationary form in terms of a scaled
tion of the siteX=h,—a due to the motion of the BP and is variable w, o=(X+a)/h,. We note that, of course, the so-
proportional to the negative of the product of the BP veloc-lution so obtained must be tested for consistency with the
ity, dh/dt, and of C,. Here, the multiplierdh,/dt deter- initial assumption. Consequently, such an approach will be
mines the rate at which the site adjacent to the BP becomeself-consistent if we succeed to show that there exists a fi-

dCl_ ﬁC(X,t) dht
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nite, constant prefactor in the dependehge Jt, for which
Egs (3)—(5)are compatible A more accurate approach and

time-dependent corrections to the stationary solution will be

discussed in Se& and the Appendix

Rewriting Eq. (4) in terms of the above-defined scaled

variablew we have

d’C(w) dC(w) o 6

“do? TAme —5.—=0. (6)
where the parameteX,, is given by
1 dh?

An=2D dt @)

and is expected, in view of our assumption, to be a time-

independent constant. To fir,, explicitly we will proceed
as follows: We notice first that sinah,/dt—0 whent—oo,
Eqg. (3) ensures thaC, rapidly, at rate|dC,/dt|<dh,/dt,
approaches a constant valGg, C,=1—p/g. Then, solving
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FIG. 4. The parameteh,, as a function of the transition prob-

the differential Eq.(6) subject to the boundary conditions ability d (p+q=1) at different values of the concentration at the

C(w=0)=C, andC(w=1)=C; we find that the appropri-
ate stationary solution reads

erflwvAL2)
erf(VAL2)

C(w):Co+(61_Co) (8)

where erfk) denotes the error function. Next, rewriting Eq.

(5) in terms of the scaled variable and neglecting transient
terms, we have

D dC(w)
h do

= dh
=-Ci 5, ©)

w=1

Now, the derivative ofC(w) with respect tow, which enters
Eq. (9), can be readily expressed from E®) through the
parameter®\,,, C,, andC,, which gives

dC(w) [2A,,(C1—Co)exp —A/2)
= (10
do |,_, m erf(VA,/2)

Plugging then Eq(10) into Eq.(9) we arrive at the following
equation:

2A,(C,—Colexp(—A/2)  C, dh?
\ - ——, @
W erf(VAL/2) 2D dt

which, making use of the definition of parametéss and
C,, can be cast into the form

ol 5

_l-exg—-B(E,-W_)]
B expBW_)—1
(12)

P—a+9GCo
q—p

edge of the macroscopic menisc@s, The upper curvésolid line)
corresponds t€,=1, the dotted line t&C(=0.9, the dashed line to
Cy=0.8, and the dot-dashed line @&,=0.7.

e., into the form of a closed with respect Aq, equation,
which defines its dependence on the given parametegs
andC, (or E; andW,).

Equation(12) shows thus that for any values of the pa-
rametersW_ and E| (except for the casep=q, when
W_=0, which will be studied in Sec. Mhe parameteA, is
actually a well-defined positive constant. Consequently, we
may claim that the mean displacement of the boundary par-
ticle, or, in other words, the mean extension of the wetting
film, obeys

h,= \2A,Dt.

Equation(13) constitutes the primary result of our analy-
sis and agrees with the experimentally observed behavior
[6,13-15,22,2B We note also that it may be somewhat mis-
leading to call the behavior in Eq13) “diffusive”; here it
describes the growth of thmeandisplacement, which is
exactly equal to zero for diffusive-type processes. Accord-
ingly, the phenomenon of spreading of thin liquid films
stems from essentially different processes than, say, growth
of the area visited by an unconstrained random walk. Spread-
ing of thin films is controlled merely by the transport of
vacancies along the solid wall from the tip of the film to the
macroscopic liquid edge, where these vacancies are filled by
fluid particles, a behavior that is reminiscent, in view of un-
derlying physical processes, of the phenomena of the direc-
tional solidification, melting or freezing, in which the spread-
ing of the front of a “new” phase is controlled by the rate at
which the particles of the “old” phase diffuse away of the
front [50].

Now, in Fig. 4 we depict the numerical solution of Eqg.
(12), which represent®\,, as a function of the transition
probabilityq at four different values of the concentratiGyg.

This figure shows that fay sufficiently close to 1/2we took
p+qg=1) A, is large (it diverges wheng is exactly equal

(13
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1/2) and its magnitude is not very sensitive to the actualor, in terms ofE; andW_,
value of the concentration at the EMIZ,. At greaterqg the
parameterA,, tends to zero and becomes equal to zero at
finite values ofq, which depend on the concentrati@. An=21In
This critical value can be readily estimated from E#j2).
Namely, it may be obtained by equating the right-hand side . , , .
(rh9 of Eq. (12) to zero, which yieldgp/q.=1—C,. The Behavior as in Eqs(17) ahd _(18) may be reahzgd experi-
latter equation means th#,,=0 (no spreadingwhen the me_ntally in the_ case of I_|qU|ds_W|th low cohespn energy,
probability of hops away from the EMM is equal to the WhICh are volatile in two dimensions, b_ut not_volatlle in three
probability of hops towards the EMM times the mean occu-dimensions. An example of such a liquid is squaldsee
pation of the left-hand adjacent site. [14] for detalils. _ _

Now, we estimate analytically the dependencedgfon  Finally, we examine the evolution of the mask of the
the pertinent parameters in the asymptotic limit wiepis  film, which is defined by
small or large. It follows from Eq(12) thatA,, is small when .
the rhs of Eq.(12) is small. It happens, namely, when :f t
p~q(1—Cy). In terms of the energetic parametdts and M dX CX.0). (19
W_ it means thatA,, is small when either the inequality
BE,;>pW_>1 holds(what may be thought of as the case Changing the variable of integration and making use of Eq.
of liquids with high cohesion energy and strong attraction to(8) we get
the substrate or when the difference

(18

VZ[1—exp—Bs)] 1
Jalexp(BW_)—1]]

—a

1
s=E —-W_ (14 Mt=htj0 dwC(w)=h; exp(A/2)[1—exp— BW_)],

is sufficiently small, such thgBs<exp(BW_)—1. When ei- (20

ther of these inequalities is fulfille#l,, is given explicitly b
a m!Sd PICEY by which shows thaM, also grows in proportion ta/t, in ac-

p—q+qCy cord with experimental observatioh%3,51.
Ap~———"", (19 A remarkable feature of the result in EQO) is that the
a=p mean particle concentratiorp, p=M/h,=expA,/2)[1

—exp(—BW_)], turns out to be time independent. In the
case of smallA,, the mean particle concentration is close to

1—exp(— Bs) unity, while for progressively largé,, it tends to zero. This
= xpBW_)—1' (16)  behavior is illustrated in Fig. 8, where we plot the functions

- M/, h/\t, andp versus the transition probability.

We note now that the growth of the film occurs as long as
the parametes, Eq. (14), is positive. Therefore, it seems B. Fine structure of the film

natural to define as themicroscqpicanalog of the spreading Consider the concentration profiles defined by &, In
parameterS—the property that is the key parameter deter'Fig. 5 we plot the particle concentration for several different

mining spreading of liquids at the macroscopic scaless)|. R, o
Explicitly, S is the free energy difference between a barevalues of the parameteky,; in Fig. 5@ it is plotted versus

) ; ' ) i the scaled variable and in Fig. §b) versus the variablX
solid, directly in contact with the vapor and a solid covered(for a fixed moment of time=10°7). Figure 5 shows that the

t)y a flat, :ch;ﬁk l'q(l;.'f? Iay?r_ a;ndf thus_con;pa(;esr;[he SL:.rfa(.:;shape of the curve describing the stationary concentration
ensions ot three dirierent interiaces nvolved when a fiquil profile is rather sensitive to the value Af, (and, in turn, to

drop is deposited on a solid substrate. R3¢0 the drop the values of the parametevs_ andE ). WhenA,, is small

spontaneously ;preads_ and te!"ds. to Sh“.‘-"d Fhe substrate. Hough(the dotted and the solid lines in Fig. 5 correspond to
the case wheS is negative the liquid remains in the form of A,~0.565 andA,~1.067, respectivelythe profilesC(«)

a .dro_plet. In our situation With spreading qf a molecularlyandc(x) are almost linear. In this limit the error function in
thin film, the parametes, which equals the difference of the Eq. (8) can be expanded in powers ¢A and already the
" m

energy gained by filling by a fluid particle a vacancy at the_ o . : ! : )
EMM and the work required to transport a vacancy from the{'rzzt (E:enrtri?elnirf'[]elfvz)l(%inixllzincgo(;/rl%?Sa?ef?jlgﬁnrzge \?\/Sr?g: te for
tip of film to the EMM, is the key parameter that distin- ' m

guishes whether the monolayer will grow or not. Ccmse_exceeds unity this is no longer so and the shape of the profile

quently, we will call it themicroscopicspreading parameter becomes quite different. In Fig. 5 the dash-dotted line corre-
Now. A, may be large when the rhs of EQ.2) is large, sponds toA,,~3.089 and the dashed line t#,~6.843.

which happens in the situations whpris very close tabut From the viewpoint of the rfelevance to experimental situa-
' . tions, the first two curvegwith low values ofA,,) corre-
less thah g. In terms of the energetic parameters this corre-

B - > . spond to nonvolatile liquids, i.e., such thg#V_ is large and
sponds to the case WheBW_<1, provided thats is suffi evaporation of particles out of the liquid phase into the vapor
ciently large. In this cas@,, reads

is suppressed. Two other profiles, in contrast, are appropriate
to situations with volatile liquids, for which the cohesion

(17) energy is low and particles easily evaporate into the vapor
phase.

which, using the energetic parameters, can be rewritten as

v2(p—q+qCy)

Jm(a—p)

Ap~2In
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FIG. 5. The particle concentration profiles in the growing film.
We plot in (a) the functionC(w), Eq. (8), vs the variablew for
different values of the parametgiw_ and fixedBs=5. In (b) we
depict the profilesC(X,t) vs the variableX at a fixed moment of
time 2Dt=10° and different values of the energetic parameters. In
both (a) and (b) the upper curve(dotted ling corresponds to
BW_=0.9 (A,,=0.565, the solid line topW_=0.5 (A,,=1.067,
the dash-dotted line t8W_=0.1(A,,=3.089, and the dashed line

100

gives the variation of the profile fg8W_=0.01(A,=6.843.

Next, we consider time evolution &€, and of the con-
centration gradients at the extremities of the growing film.
Egs.(3) and(13) give

dh
L
g ag dt

Cl: 1

~[1-exp(—BW._)]

AnT
1+ coth(BW_/2) 7}

(21)

3839
dle)l __Za 22
do . —~1"\m ( )
and
dC(w) -
=—C A expAL/2), (23
dow o0

which shows that the current of particles away fréon the
current of vacancies jahe EMM is a factor of exfA,/2)
greater than the current of particles at the tip of the film.
Rewriting the results in Eq$22) and (23) in terms of vari-
ablesX andt we have, respectively,

IC(X,t) ~ [A,
— =—Ci\5pp (24)
Xy na 2Dt
dC(X,t) = [Amexp(Am)
X | —C 2Dt 25

i.e., the concentration gradients at both extremities of the
film decrease in time in proportion to .

From Egs.(21) to (25) we infer that relaxation processes
in the film proceed fundamentally more slowly than these in
the macroscopic liquid; relaxation of concentrations to their
equilibrium values is described by a power-law.

C. Numerical simulations

In this subsection we check the results of our mean-field
continuous-space and time description of the discrete space
and time stochastic process defined in Sec. Ill against the
results of numerical Monte Carlo simulation of this process.
The simulation algorithm and the results will be presented in
the beginning of this section. At the end of this section we
will also present the qualitative comparison of our analytical
results and the results of numerical simulations of liquid drop
spreading, performed if81].

The simulation algorithm follows the definition of the sto-
chastic process closely, except that to shorten the simulation
time we stipulate that neither particle can choose to remain at
its position, i.e.,p+q=1 for the boundary particle and all
other particles select the direction of jump with probability
1/2. Additionally, we set the “stick” timer=1 and also
a=1, which means that the diffusion constéht1/2. More
precisely, we consider a segmeffig. 3 of a one-
dimensional regular lattice of unit spacing with sités
—1,0,...L, wherelL is taken to be sufficiently large to avoid
finite-size effects. At the Monte CarlgMC) time moment
A,=0 we land two particles at the sités=—1 andX=0. At
A;=1 one of these particles is chosen at random and is al-
lowed to perform a hop. If the chosen particle is the one at
X=-1, it attempts to hop to the right with probability 1/2,
or, with the probability 1/2 remains at its position. In this
initial configuration, however, the hop to the right cannot be
fulfilled because at this moment of the MC time the particle
at X=—1 is blocked by the particle a&=0. Now, if the

The behavior of the derivatives of the stationary concentrachosen particle is the one At=0 (the boundary particle it
tion profile at pointsw=0 and w=1 can be readily found first selects the direction of hop with the probabildyfor
from Eq. (8) and read

hops to the left and the probabilityfor hops to the right. As
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we have already noted, we took hgre g=1, which means
that the choice should be made strictly between the right and

left—the probability to remain at its position is zero. If the hi/a
selected direction is to the right, the hop is fulfilled and the
particle jumps onto the sité=1 and creates a “vacancy” at 600 |

X=0. Otherwise, it remains &=0 and at the next moment
of the MC time the procedure is repeated. Eventually, the
particle atX=—1 performs a hop onto the si€=0 and 400 |
makes the sit&X=—1 vacant. When this happens a new par-
ticle lands on the sit&X=—1, which means that at the site
X=-—1 we introduce a source, which keeps the occupation of
this site fixed. For simplicity, we stipulate that the source
lands a particle onto this site as soon as it becomes vacant,
which means thaC,=1 (BE >1) at any moment of time.

200 |

Now, the rules are essentially the same when three or more ol -
. . 0 200 400 2 600
particles are present on the lattice. At each moment of the (/T
MC time one particle among all is chosen at random. If the
chosen particle is not the particle ¥t=—1 and is not the FIG. 6. Length of the film vsyt at different values of] and

boundary, the rightmost particle, then it selects the directiofixed Cy=1. The upper curvésolid line) gives the analytical result

of hop with equal probabilitiesl/2) for hops to the right and for g=0.6. The noisy line represents the data of numerical simula-

to the left. The jump is instantaneously fulfilled if the neigh- tions. Other curves are the corresponding analytical and numerical

boring site in the selected direction is vacant. If the choseriesults forq=0.7, 0.8, and 0.9, respectively.

particle is the boundary one, the probability of hopping to the

right is p, while that for the hopping to the left i§. For the

BP the jump to the left is constrained by hard-core interac-

tions with the adjacent particle, while hops to the right are In Fig. 7 we plot our analytical, Eq20), and numerical

instantaneously fulfilled provided that this direction is se-fesults for the growth of the mass of the film versiis

lected. Finally, for the particle & =—1 the probability of ~Agreement between the theoretical predictions for this prop-

hopping to the right is 1/2 and it may remain, with probabil- €1y gnd numerical data is .here even better. and the error is

ity 1/2, atX=—1. considerably less than' 1%; in fapt, the anglytmal e}nd numeri-
In simulations the time evolution of several different c@l curves are almost indistinguishable. Finally, Fig. 8 shows

properties was measured. We have recorded the mean di{ie analytical curveb/ Jt, My/+t, and mean concentratign

placement of the boundary particle, the number of particle@S functions of the transition probability. Diamonds and

(mas$ on the lattice at time, concentration profiles and the Cr0SSes in this figure show the corresponding values of the
concentration at the site adjacent to the position of théréfactors in the time dependencestpfand M, deduced

boundary particle. Each realization of the process started 4f°M the numerical data. Again, the agreement between our
the initial configuration with two particles and was termi- @nalytical predictions and numerical data is quite good.

nated when there were 400 particles on the lattice. Care has
been taken that for neither realization does the boundary par-
ticle reach the system’s boundary

Results of our simulations are presented in Figs. 6—8 and M,
the time evolution of the properties under study is plotted
versus the real physical time. This time is defined in a stan- 4 |
dard fashion for the MC simulations of systems with a vari-
able number of particles; while the MC time varies continu-
ously, the real time is increased by a fixed unit value only
when a number of particles on the line gets increased. In 400 | 1
other words, the step of physical tindé is related toA,, as o
At=A,/M,, where M, is the number of particles on the -
lattice at the MC momend,,. T

In Fig. 6 we plot our analytical, Eq13) with D=1/2, and 200
numerical results for the length of the film at four different // /////
values of the transition probability (q=0.6, 0.7, 0.8, and T
0.9 versust. For such values of parameters numerical
simulations give, respectively, the following values of the 0 200 200 , 600
parameterA,,: A,=1.277, 0.613, 0.298, and 0.121. From (/T)
Eqg. (12) we have the corresponding analytical results&gr,
which areA;,=1.282, 0.609, 0.301, and 0.120. The maximal FIG. 7. Mass of the film vs/t. The upper solid line corresponds
discrepancy between our analytical and numerical results o@e q=0.6. The curves in order from up to down are the results for
curs forg=0.7, but amounts, however, to less than 1%. g=0.7, 0.8, and 0.9, respectively.

800




54 SPREADING OF A THIN WETTING FILM: ... 3841

4.0
2.0
15 | 3o |/ T T T -
!
!
!
| |
1.0 Ap 20 :
i
|

05 |

o
—
\I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

0.0 . - : ‘
05 0.6 0.7 0.8 09 g 10 0.0 . . ‘ ‘
0.0 20.0 40.0 60.0 80.0 100.0

Ps

FIG. 8. Plot of the function$,/\t (solid line), M/t (dashed
line), and mean concentratign(dot-dashed linevs the transition

probability g. Open diamonds and crosses give the numerical data. FlG'_ 9. The parameteh, as the function of the microsc_opic
spreading parameteBs. The upper curvethe dash-dotted line

corresponds tgBW_=0.1, the solid line togW_=0.5, and the
To close this section we present a succinct qualitativeiashed line tg3W._ =0.9.
comparison of our analytical results with the results of nu-

merical simulations performed {181], which also employed V. SOLUTIONS OF DYNAMICAL EQUATIONS
a very similar lattice-gas picture of the spreading phenom- IN THE ABSENCE OF AN EFFECTIVE
ena. In this model the hard-core particles, initially placed in SURFACE FORCE

a volume with a ridgelike shape, perform random motion

prescribed by the Kawasaki spin-exchange dynaifsies for . , X S .
more detail§31]). The interactions involved are hard core at k'nEt!Cf and the f'nﬁ structu;fe d?tans O‘; grO\?vmg fl.Imsbm thte
the molecular size, interactions with nearest neighbors Vi%ﬁ?sm?ag:si?r_e?e://vanetntc?rlliqeuigg I\/\\I/ﬁhSl\J/re?;Tovsrggr:Zs?orfeenn.-

the coupling constanl, which describes cohesion between ergy, i.e., strongly volatile liquids. We hasten to remark that

fluid particles, and also attractive van der Waals interactions g L .
T . . our present model does not include the possibility of particle
V(z) = — AlZ?, with the substratez is the distance from the P P yorp

b A is the H K 811 behavior of evaporation in the direction normal to the solid wall, which
substrate and is the Hamaker constant. [81] behavior of v ta1e place in experiments with volatile liquids. How-

hy was analyzed as a function of parametgd and A/J.  gyer the possibility of the evaporation along the wall, i.e.,
One of the most interesting observations made was that, atigq-dimensional evaporation, is well captured by our model.
fixed gJ, the substantial change in the substrate potentiafherefore, in the following we will assume thaE | is suf-
strength does not affect the behaviorhpivery dramatically. ficiently large and the evaporation normal to the solid wall is
For instance, fo3J=1/2 the increase i/J from 5 to 100  suppressed:; i.e., we will constrain ourselves to experimental
caused the precursor length to differ only less than 10% aftesituations for which our model makes sense.
150 000 time steps. Now, noticing that paramefeasidA in We notice also that the situation with zero surface force is
[31] are qualitatively the same as oWf_ andE, let us see appropriate to the experimental situation discussefR#,
how the change of their magnitude affects the growth of thevhich was concerned with spreading of metallic beads and
film, Eq. (13). In Fig. 9 we plot the parametdy,, as a func- the setup of which we depict in Fig. 10. Here a horizontal
tion of the microscopicspreading parameter for several dif-
ferent values ofW_: gW_=0.1, 0.5, and 0.9. We show
that also in our model the value &f,,, at a fixedBW__, does 4
not vary significantly with a strong variation of the spreading :
parameters. For instance, takinggW_=1/2 andB8s=5 we o
find from Eq.(12) thatA,,,~1.062 while increasings up to :
o
o
(/)

To complete our presentation we consider the spreading

100 we haveA,,~1.067, i.e., the value that is only 0.5% off.
Consequently, our analytical results show that the change in
the value ofBs from 5 to 100 will make the film’s length
larger in only less than 7%. Finally, let us remark that the
situation is reminiscent of that with the macroscopic spread-
ing parametef5; although spreading of a droplet at the mac-
roscopic scales occurs only & is positive, the rate of
growth of the macroscopic liquid edge is weakly, logarith-  FIG. 10. Experimental setup of Ré24]. Spreading of metallic
mically dependent on the actual value®f1-12|. beads on a vibrating racklike corrugated plane.
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rack, confined inside of a rectangular tube, is fixed on a Now, we will seek the solution of Eq§29) and(30) as an
plane. A vertical stack is placed at the left end of the rackexpansion in the powers of inverse diffusion coefficient, i.e.,
The plane is vibrated by two motors, whose flywheels are

eccentric and produce irregulérhaotig vibrations. Now, a o %

column of metallic beads is introduced into the stack and, as C(w,t,Cy)= E D "V (w,t,Cy), (31
soon as the vibration is switched on, the beads start to move n=0

along the rack away from the stack. The size of the beads is . .
chosen in such a way that only a single bead can oc:c:upyI .Wh'Ch Wo(w,1,C,) obeys Eq(6) with the boundary con-
given slot of the rack. In addition, the distance between thé1onS Wo(w=01,C1)=Co and ¥o(w=11,C,)=C, and
top of the slot and the top of the tube only slightly exceedshus is given explicitly by Eq(8). The h|gher-oro_ler terms,
the radius of bead. Consequently, the beads cannot pabg" \I_,”>0(‘°’t’cl)' may be calculated recursively from
through each other. In this experiment both the mearer equations

several realizationgisplacement of the rightmost bead and

the mean numbepor mass$ of beads on the rack are found to ' vy IV, 9V, ,dCy
. . Y + Amw =h e (32)
grow in proportion tovt [24]. dw dw oot dC, dt
We turn now to the behavior of EgE) to (5) in the case
when all particles including the BP have equal probabilitiesand
for jumps to the right and to the lefp=q=p,. Diffusion
coefficient in this case will b® =a’p,/ . T (w=0t,C;)=0, V¥ (w=1t,Cq)=0. (33
We recall first that as we have seen in Sec. IV this case is
somewhat peculiar since the rhs of Efj2) diverges, which Next, to define the time evolution &,, andh; we will

means thaf\, is no longer a well-defined constant but ratherproceed as follows. Noticing that in the case q=p, Eq.
is some increasing function of time. Equati¢h7) shows (3) reduces to

that whenq tends top the divergence i\, is logarithmic,

i.e., Ap*x—In|g—p|. Therefore, one may expecand this C a dh 34)
will be shown to be the casdhat in the caseg=p the !
parameter, should grow in time as a logarithm of Con- ]

sequently, the approach devised in the previous section caM{€ may rewrite Eq(5) as

not be directly applied here since one canaggriori claim 5 — w
the existence of the stationary solution in E8). However, ah (dh)® JC S pn v, (35
as we proceed to show, even in this case (Bprepresents a D? | dt do| _, n=0 Jw |
fair approximation ofC(X,t) when timet is sufficiently B
large. Further on, assuming@he validity of this assumption will be
We start our analytical analysis by noticing that the solu-checked in the Appendjxhat
tion of diffusion Eq. (4) with the boundary conditions
C(X=—a,t)=C, and C(X=h;—a,t)=C,(t) can be writ- A 1|9V,
; : ; — > — |— (36)
ten in the following general form: Jo| . D"| dw )
— we will neglect in the rhs of Eq(35) all terms withn>0.
CXH=Clo,t,Cy). (26) Then, combining Eqs35) and (10) we will obtain
Consequently, the derivatives 6f(X,t) with respect to the )
time and space variables will read ah, dht) . [2AnCorxp(—An/2) -
_ D\ dt T erf(VAy2)
dC(X,t) o dh; 9C 9C 9C dC;
Tt h dt dw t—t 9c, dt’ (27)  which, employing the definition of the parametey,, Eq.
(7), can be cast in the following form:
2 2~ 2 Cph
ey 1 o°C 29 APexp( An/2)erf( \An/2) = \[; —. @9

XT 2 9w

We note now that the rhs of E§38) diverges ag—»
sinceh, evidently grows with time. This means, in turn, that
at sufficiently large times the dominant multiplier on the lhs

and Eqg.(4) will take the form

92C 9C h? 9C &C_dcl of Eq. (38 is_the exponent ofA,/2; the _multiplierAf,;’2
ot AW —= = | — ——|, (29  grows essentially slower and ey#,/2) is bounded by
dw do D |adt 9C, dt ; Aam <)
unity. Consequently, for the leading in time termAy, we
get

which is to be solved subject to the boundary conditions

4C§Dt) 9

C(w=04,C)=Cy, C(w=1C,)=C;. (30) Am%'”( a2
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i.e., an expected logarithmic growth Af, in time. Accord- IC(w) a2 |12 " 4C3Dt
ingly, the growth of the film’s length in this case will obey o w:l~ —CiAp~— spr) N gy

4C3Dt (46)

hi~\/2Dt In — . (40)
7a and

We hasten to remark that Eq€0) and (39) are asymptotic IC(X,t) a AC3Dt
results and the time needed to ensure their utility may be X ~ ot saZ (47)
considerably large. If24], in which measurements were per- X=h-a

formed within a rather short time interval, the additional

logarithmic factor has not been seen. We also doubt whether VI. CONCLUSIONS

the slowly varying logarithmic multiplier can be distin-

guished in laboratory experiments with spreading of volatile ~TO summarize, we have presented a microscopic, molecu-

liquids. lar model describing the growth of monomolecularly thin
Consider now the time evolution of other characteristicliquid films in systems with planaicapillary ris¢ geometry.

properties of the film, such as the mass of particles, the meafye have found analytically that both the length and the mass

concentration, and the concentration gradients. For the maégumber of particlesof the film grow in proportion toyt, in

of particles we have from Ed20) (which is an exact equa- accord with the experimentally observed behaviors. The

tion for this property and holds also for the cgseq=p,)  Prefactors in this law are determined analytically and in two
that it grows as limiting cases explicit expressions are derived. We have de-

termined a microscopic parameter that determines the physi-
cal conditions when the growth of films occurs and also ana-
M~Co\/ —; (41) lyzed the underlying physical mechanism of the film growth.
™ We show that the essential physical process responsible for
uch a growth is associated with the diffusive transport of
acancies from the tip of the film to the edge of the macro-
scopic meniscus, where they are filled with fluid particles. In
addition, we have examined the time evolution of several
characteristic properties, which define the fine structure of
the film. These are the mean concentration, concentration
\/ 2 profiles along the film length, the particle concentration at
p=%0\ In(4C2Dt/ wa?)’ 42)  the tip of the film, and also the concentration gradients. Nu-
merical simulations are in a very good agreement with our
The particle concentration on the left-hand side adjacent t@nalytical predictions for both the time evolution and the
the BP site may be readily found from Eq34) and(40) and  values of the prefactors for different parameters of the
obeys model.

i.e., the additional logarithmic multiplier does not appear an(f/
the mass of particles grows in proportion\to. Accordingly,
from Eqgs.(40) and(41), we find that the mean concentration
p slowly decreases with time:
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=0 APPENDIX
and In this Appendix we consider the behavior ®F;/dw and
check our assumption that corrections to the stationary solu-
JC(X,1) - Co (45) tion in Eq. (8) are insignificant at large times, provided that
X |y, Dt the parameteA,, is either a constant or a slowly varying in

time function. From Eqgs(32) and (33) one may readily de-
while the gradient at the poirdb=1 (and X=h;—a) obeys rive the first correction term, which is given explicitly by

|
2A, i J’w fl f“’l p( An )(a dc, 4 )
\I’ = — dw dw dw ex - a)2+w2—w2 —_—t — — \I’ . Al
! 7 erf(VA2) Jo o o t)e, 0 p (01t wamw3) [\ 5ot gt ¢, Vo (A1)

Now, the analysis of the exact form as in E41) seems rather cumbersome, and we will merely try to find an upper bound
on the absolute value of this function. To do this, we first note that
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aerC1 7\
gt dt 9Cq) ©

Employing the inequality in EqA2) we may bound¥,| from above by

. 2A,  ah? thtfwd J’ld fwld ;{ Am( 2, 2 2)) m2ah?
= w w w3eXp — 5 (Wit wr,—w3) | ——
! 7 Derf(VA/2) | At [Jo o 2] T 2 TR I DA,

a
= —
D

d?n, A2
rrat (A2)

d2h,
dt®

erflovAL/2).

(A3)

Consequently, we will obtain frorfA3) that while d¥/dw at point w=1 is bounded from above, Eg.

(A4), by a function that tends to zero as/Liwhent—c. In

o, ahZexp( — An/2) dzht‘ th;e casg=q the derivative¥/dw at pointw=1 vanishes as
Y < qe ‘ (A4) In?(t)/\/t when t—o, while the derivative of¥, is bounded
@ lh=1 DVA, by a function that decreases as'it)/t¥2. We thus may

_ o . infer that in both cases at sufficiently large tintég [and
Now, in the caseq>p the derivatived¥y/dw at point  thus the stationary solution in E¢B)] represents the leading
w=1 assumes constant values(1—-p/q)A,, Eq. (22), term in the expansion in E431).
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