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We study the kinetics of chemical short-range ordering in liquids within the framework of diffusion-controlled reaction theory. 
We present the long-time dependence caused by the essentially many-particle behavior of reaction-diffusion systems, and the 
intermediate asymptotic similar to Smoluchowski’s results. 

1. Intradwtion 

The theoretical description of chemical short-range ordering kinetics in liquid and solid solutions is one of the 
fundamental unsolved problems of statistical physics of solutions [ I-41. The major difficulty is in its essentially 
many-particle nature. 

Let us consider a triple system containing diffusive substances A and B and solvent S. Substances A and B 
interact with each other by means of a potential U,,(r), which is attractive for r> r. and repulsive for r< ro. 
Besides, U,,(r) tends to infinity as r goes to zero and LJ,, (r) + - 0 for r-m. We assume that potential inter- 
actions defined by U,,(r) dominate interactions of substances with solvent. 

In disordered random mixtures of noninteracting particles A and B the concentration nc of pairs A and B 
being in contact is defined completely by the product nAnn of their mean concentrations and geometry of the 
first coordination sphere. The mutual attraction of unlike particles leads to the increase of nc, i.e. increases the 
probability to find a particle A in the vicinity of particle B. In the initially disordered systems of attractive 
substances the short-range order parameter nc ( t ) grows with t and approaches the steady-state value nc ( 03 ) as 
t-m. 

Each, even homogeneous in average, solution contains large (as compared to the mean distance between 
particles) randomly distributed regions enriched (or depleted) by particles of one type, say A. In the ordering 
process the concentration of particles B in such regions grows (or vanishes ). This phenomenon is followed by 
the complicated redistribution of diffusive fluxes of particles B. One can assume that in systems with low con- 
centrations of A and B such many-particle (or, in other words, fluctuation-induced) effects can be neglected. 
However, as we will show below, these effects support the long-time relaxation of nc( t) and the decrease of pair 
correlation functions. 

Diffusion-controlled reactions (DCR) kinetics is characterized by the analogous processes. The course of 
contact reactions leads to the alteration of the probability to find a particle of one of the reagents in the vicinity 
of a particle of the other reagent as compared to this value in disordered systems without reactions. Diffusive 
motion of particles smooths the spatial inhomogeneities appearing in the reactive systems. The alteration of 
statistic properties of the solution leads to the alteration of the reaction rates. 

In this paper we describe the evolution of the chemical short-range order parameter nc( t) by means of an 
analogy between the kinetics of short-range ordering and the diffusion-controlled reaction A+B*C kinetics, 
i.e. within the context of quasichemical approximation [ 5 ] kinetic version. This analogy enables us to estimate 
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the relaxation rates at intermediate times and to evaluate the universal fluctuation-induced long-time 
dependences. 

Despite the fact that kinetics of DCR is an essentially many-particle process, considerable progress has been 
gained. The field of diffusion-controlled processes was first stimulated by the work of Smoluchowski [ 61 con- 
cerning the kinetics of irreversible coagulation of colloid particles A+A+2A. According to Smoluchowski’s 
approach one has to put the origin to the center of the labelled particle A and to soive the homogeneous diffusion 
equation with doubled diffusion constant and deterministic spatially homogeneous initial distribution. The re- 
action is accounted for by introducing the absorbing boundary condition on the surface of the reaction sphere 
r= 2RA, where RA is particle’s radius. Within the context of this approach the reaction rate of particles being in 
contact is assumed to be infinitely large, and all many-particle effects are neglected. The reaction rate equals the 
composition of particles. A concentration and diffusive flux through the reaction sphere. This leads to the fol- 
lowing mean-field type equation, 

&(f)= -&n:(t) 7 (la) 

where in three-dimensional systems 

K,,=47cDa[ 1 +a/(rtDt)“*] , a=2R,. 

If the contact reaction between particles occurs with some finite probability, the reaction act is defined by the 
radiation boundary condition - the model of the “grey sphere” [ 7- 13 1. This boundary leads to the following 
renormalized effective rate constant 

Ke,=4nDaK/(4xDa+K). (lb) 

The solution to eq. (la) in 3D is simply nA( t)a 1 /K,fft for t> [K,,n,(O) 1-l. It can be easily shown that 
Smoluchowski’s approach leads to the similar description of two-species reaction, A+ B+C. In this case the rate 
equation reads 

~A(t)=~B(t)=-KeffnA(t)nB(t). (2) 

The solution to this equation gives an exponential decay of n (t) for the minority component for nA( 0) > nB( 0) 
and power-law decay n+, ( t ) = &i ( t ) % (K,&) -’ with a= RA + RB for equal initial concentrations. Finally, Smo- 
luchowski’s approach leads to the following definition of reversible reaction A + B=C rates [ 14 1, 

~A(t)=~B(t)=-KeffnA(t)n~(t)+Keffnc(t) > 

where the effective backward reaction rate constant equals 

(3a) 

Keff=4xDaK_/(4xDa+K), d=3. (3b) 

K_ is the intrinsic backward reaction constant. The solution to eq. (3a) predicts an exponential relaxation of 
mean concentrations to the equilibrium values. 

The Smoluchowski approach was the basis of traditional (mean-field) methods of reaction + diffusion sys- 
tems investigations. An interested reader can be addressed to the exhaustive reviews [ 10-l 3 1. Prior to mid’70s 
it was generally accepted that DCR theory based on the Smoluchowski’s approach leads to the exact description 
of the reaction kinetics for systems with low volume fraction of substances. However, it was recognized that 
perturbation theory corrections to the effective rate constant tend to infinity as t-+cc [ 7,111. It was shown in 
refs. [ 15- 17 ] that in some reaction + diffusion systems eqs. ( 1 )- (3 ) are invalid at the t-r co limit and the long- 
time behavior is governed by the evolution of the fluctuation spectrum. In particular, for irreversible bimolec- 
ular reaction of two diffusive substances A and B, which react at the first encounter, A + B+ inert, it was shown 
that mean A and B concentrations follow an anomalous long-time decay [ 15-241, 

n,(t)=n&t)Xt-d’4) (4) 
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which displays a slower kinetic behavior as compared to the mean-field predictions. This decay law stems from 
the tendency for longer persistence of particles in spatial regions created by fluctuations in which either A or B 
substance dominates. For sufficiently large times the kinetic beha.vior if bimolecular reaction is controlled by 
diffusive smoothing of these spatial regions (depleted or enriched by particles of one type) what entails the 
decayofeq. (4). 

We stress, however, that these long-lived fluctuation states govern the mean concentration decrease only in 
case of equal initial concentrations (EIC), nA (0 ) = nn (0). If the initial mean concentrations are not equal to 
each other (NEIC) the fluctuation effects are suppressed at large times and the mean-field exponential decay is 
still valid. The mean-field description is also valid for the EIC bimolecular irreversible reaction of charged 
substances [ 1525 1. The spatial regions created by fluctuations of A and B induce the local electric fields which 
smooth the inhomogeneities faster than diffusion. 

The fluctuation effects induce the universal long-time behavior of reversible conversions, associated with the 
conservation of summary concentrations of particles and products. It was shown that in systems with random 
initial distributions of substances a wide variety of reversible bimolecular reactions are defined by power-law 
approach to equilibrium at t&cc 

n(t)-n(co)Z(Dt)-d’2, (5) 

instead of exponential mean-field decay. For instance, such kinetic behavior exhibit the reversible binary reac- 
tion: A + A*B [ 22 ] and the more general coagulation/fragmentation reaction A, + A,,,* A,,+,,, [ 26 1. The power- 
law decay ( 5 ) defines the long-time kinetics of EIC reversible reaction A + B =C of uncharged species [ 23,24 ] 
and even of charged substances [ 27,281. 

Interestingly, in the latter case the decay of eq. (5 ) is supported by the special type of density fluctuations - 
the fluctuations of the same sign, i.e. the spatial regions where the deviations from the mean density have the 
same value and the same sign both for A and B. These electrically neutral fluctuations are smoothed only by the 
diffusive processes, what causes the power-law approach to equilibrium. However, one is unable to predict at 
once the type of dependence characterizing the long-time behavior of reversible NEIC reaction A+B*C, since 
the effect of NEIC can be decisive. 

This paper is outlined as follows: In section 2 we discuss the basic assumptions and present the equations 
which govern the evolution of local concentrations. In section 3 we derive the system of reaction+diffusion 
equations, which describe the temporal behavior of mean concentrations and correlation functions and evaluate 
its solutions in case of suppressed breakup of C. In section 4 we consider the kinetics of short-range ordering in 
the “reversible” case, when the breakup of C is possible. We show that in the first case the fluctuation effects are 
suppressed and in the latter one they are decisive and the long-time approach of mean concentrations and cor- 
relation functions follow an anomalous power-law dependence, instead of exponential mean-field predictions., 

2. Basic assumptions 

Treatment of the short-range ordering process within the framework of contact reaction A+B*C is equiva- 
lent to the approximation of the real potential UAB( r) by some model function f: This function defines the 
following interaction of particles A and B: an infinite repulsion for r< Q, where a is the closest approach distance 
between the centers of A and B (e.g., the sum of A and B radii for hard-core particles); infinitely narrow and 
deep potential well with its center at r-a; andf=O for f> a. It is easy to show that the behavior of VA,(r) for 
r> a can be accounted by means of some standard methods (see, e.g., ref. [ 121). This will result only in the 
replacement of the “reaction radius” a by the effective Debye radius [ 12 1. 

Therefore, the formation of the stable pair AB is represented as a product C of direct reaction, which occurs 
at the encounter of A and B with some finite probability determining the direct rate constant K. The backward 
reaction, unimolecular breakup of C into a geminate pair of A and B, born at distance a, is defined by the 
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intrinsic constant K_. The rate constants phenomenologically account the potential interactions between A and 
B defined by U,, ( r ) . 

The analogy between the short-range ordering process and the kinetics of the diffusion-controlled reaction 
A+ B=C might be straightforward only for the saturated potentials U,,(r). For unsaturated potentials one 
should consider the set of reactions 

AkB,_, +B=A,B,, Ak_,B,+A=AkB,, 

where k, n are less than 2, Z is the coordination number in the first coordination sphere. 
We stress, however, that all the results concerning the long-time asymptotics of nc (t ) are valid for this case 

too and the major conclusions of the present work will not be changed. 
Within the framework of our assumptions on the analogy between the chemical short-range ordering process 

(formation of the stable pairs AB) and the kinetics of diffusion-controlled reversible reactions, the rates of local 
concentrations evolution are governed by the following equations: 

it,(r,~)=~An*(r,t)+L,(r,t)-KyJ dr,6(1r-r,I-a)n,(r,t)n,(r,,t)+K_n,(r,t), 

y dr16(lr-r,]-a)=l, 
I (ha) 

&(r, t)=DAn,(r, t)+Ln(r, t)-Ky dr, S( Ir-r, I --a)n*(r, t)nB(r, t)+K_nc(r, t) , (6b) 

where 6(x) is the delta-function and A the d-dimensional Laplacian. The terms Lj( r, t) define the fluctuations 
of diffusive fluxes [ 131. The first term in eq. (6a) or (6b) represents the contribution of diffusion, the second 
term, proportional to the product of local concentrations, represents the contribution of the direct reaction 
between A and B, and the third is the gain of particles due to the unimolecular breakup of stable pairs-For 
simplicity we have assumed that the diffusion coefficients of A, B, and C are equal to each other. The initial 
mean concentrations of A and B are not equal, ( & (r, 0 ) ) r is larger than ( nB (r, 0) ) I, i.e. the substance A is 
presented in excess (NEIC). Systems of equations, similar to eqs (6), are the starting point for the studies of 
diffusion-controlled reactions kinetics [ 13 1. For local concentrations they seem to be obvious. The main prob- 
lem is to average its solutions over the realizations of random initial distributions of substances and, in general, 
over the realizations of random functions Lj( r, t). 

The initial fluctuation spectrum we assume to be Gaussian and &correlated, i.e. initially the correlation func- 
tions are equal to 

GAB(R, 0) = (~dr,d(lr-r,I-R)[~A(r,O)-(~A(r,O)),I[n.(rl~o)-(~B(r,,0)),1) =o, 
, 

C,(R,O)= (jdr, &jr-r, I-R)[~j(r,O)-(~,(r,O))l[~j(r,,O)-<~j(rj,0))~1) =Q(R), 
, 

j=A, B, C . 

These conditions correspond to the random uncorrelated initial distributions of particles A and B. 

3. Kinetics of short-range ordering witb suppressed breakup of C 

The kinetics of short-range ordering within the framework of chemical reactions A+ B@C is governed by the 
system of eqs. (6). 

We introduce the substances concentrations as follows 



one can derive the system of reaction + diffusion equations governing the temporal and spatial behavior of cor- 
relation functions 

i;ii=-K[nA(t){GBi+GBj)+nB(t)(GAi+GAj) ]+K_(Gio+G~)+2D[A~G,-6~nj(t) A,&(R)]-KTo;j, 

i, j=A, B , (8a) 

~;i~=-K[n,(t)(G,i_G~~)+n~(t)(G~i_G~~)]+K_(G~~-Gi~)+20A~Gi~-KTi~, i=A,B, (8b) 

G,,=ZK[n,(t)GBc+n,(t)G,,l-2K_Gcc+2D[A,G,,-n,(t) A,tB(R)l-KTcc, (8~) 

where S, is the Kroneker delta, Tu are the third-order correlation functions. Thus, we have to face the problem 
of solving an infinite hierarchy of coupled equations. One has obviously to resort to approximate methods to 
solve it. One of such methods, connected with the fourth-order correlation functions decoupling, was recently 
applied in refs. [ 17,26-281 to describe the fluctuation-induced behavior of bimolecular reversible and irrever- 
sible reactions. It was proved in ref. [ 291 that this approach leads to the definition of the upper bound on the 
expected densities. Moreover this bound differs from the exact result for irreversible reaction [ 29,301 only by a 
numerical multiplier, while the time dependence is the same. In this paper we extend the decoupling of fourth- 
order correlation functions on the case of reversible reactions in NEIC mixtures. This procedure enables us to 
present the enclosed description of the long-time kinetics of short-range ordering taking into account the spatial 
correlations between substances. Next, by extracting the short-wave correlations of high-orders (before decou- 
pling) we define the intermediate times kinetics tantamount to the Smoluchowski’s approach predictions. 

(7) 

S.F. Burlatsky et al. / Chemical short-range ordering in liquids 17 

where the angle brackets refer to volume averaging, index j extends over A, B, C. Averaging eqs. (6) we get the 
exact equation for the mean concentrations evolution 

li,(t)=ri,(t)=-K[n,(t)ne(t)+GAB(IRI-a,t)]+K_nc(t), 

ri*(t)+&(f)=O. 

Combining eqs. ( 6 ) , ( 7 ) and using the obvious equality 

First we consider the influence of density fluctuations on the kinetics of short-range ordering with the sup- 
pressed breakup. The time evolution of this process (from the viewpoint of our approximations) is governed 
by eqs. ( 7 ) , ( 8 ) with K_ = 0. The third-order correlation functions are equal to 

T.,(R, t)= -Y 
(I 

dri&r-r,-R) dr2~~A(~,t)~~(~2,f)~~A(~~,t)[~(Ir~-r2I-a)+~(lr-r2I-a)l I > , 

LdR 0 = -Y (I drl d(r-r, -RI 1 dr2 aA(r, Thor,, 0 

xt~~A(~2,f~~~I~l-~21-~~+~~I~-~21-~~~~~~2,~~l , 
> 

and T,, is defined similar to T,. Below we merely outline the decoupling procedure. To define the contribution 
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of short-wavelength spectrum of correlations we represent substances densities as a sum of delta-functions #’ 

%(r~ t) = c d(r-&(t)) , nB(r, t) = 1 &r-&,(t)) , 
n m 

where R, andp, are the radius vectors of nth particle A and mth particle B respectively. The compositions ~,a, 
(or aBaa) in correlators Tlj can be written down as follows 

o~(r, t)o,(r,, t) = 1 G(r-R,(t) P(r, -R,(t)) 
n 

+ C C &r-&(0)&r, -R,.(t))-2n,(t) C &r-&(t))+&(t), 
n rl’,rl#?l’ 

i.e. we extract the summation over the coincident indexes n and n’. We denote the first on the right-hand side 
as a “regular” part of Tlj and all other terms as a “fluctuation” part of the third-order correlation functions. It is 
easy to calculate the “regular” part directly, 

TzB(R, t)=K-‘yA,(t)G( (RI -a), Tz(R, t)=K-'h,(t)&(R) . 

Further on, we assume that the fourth-order correlation functions can be decoupled formally as a composition 

HABij(R, ~)=GAB( IRI =a, t)G,(R, f) * 

Then, since Tlj( t = 0) = 0 this assumption actually leads to the absence of nontrivial solutions of equations de- 
termining the time evolution of the “fluctuation” part of T,. Thus, we get the enclosed system of equations 
determining the behavior of the pair correlation functions and mean concentrations. 

It seems convenient to make the analogous extraction in the pair correlation functions. The “regular” part, 
G$, is connected with the short-wave correlations and is defined via the equations 

~~=-K[nA(t)(G*,i+G~j)+nB(t){G~i+G~j}]+2DA,G;-KT;, 

with G* ( t = 0) = 0. The quasi steady-state solution to these equations entails 

GZB(R t)= s[exp(- ix)(F -I> +exp(-2’/2tx)], 

where the parameter x= ?UZ( 2Z@/D) ‘j2, p= nA( 0) - &( 0). A more detailed analysis, however, shows that the 
parameter x must be renormalized due to the contribution of the higher short-wave correlations as X= 
xa [ 8~pDuKp/ (4xDa+ K) ] ‘I2 (i.e. the “chemical” constant is in a usual fashion replaced by the effective Smo- 
luchowski-type constant). Substituting 

GAB(~R~=~,~)=~AB~IRI=~,~)+G~B(IRI=~,~), 

where gAB is the “fluctuation” part of the correlation parameter, from eq. (7) we get the effective equation 
which accounts the short-wave and long-wave correlations in spatial distributions of substances: 

fiA(t)=fiB(t)= --Kerr[n~(t)n~(t)+ gAB( IRI =a, t) 1 +Kznc(~) > (9) 

where the effective rate constants are equal to 

4zDaK 
Keff= 4nDa+K{exp( -X)[ (shX)/X- l]+exp( -2”‘X)J ’ 

Kef-dKew=K-/K. 

Formally, the diffusion equation is not valid for unsmoothed functions n(r, t). All the conclusions of this paper pertain to average 
densities or correlators obtained by averaging over the initial distribution n( r, 0) or over the volume of the system. Despite this, the 
discreteness of the distribution exerts an important influence on the short-wavelength spectrum of the correlation parameters. 



S.F. Burlatsky et al. / Chemical short-range ordering in liquids 19 

In the limit of small X (i.e. small volume fraction e=4n;a3p) the terms in braces tends to unity and we recover 
the results of ref. [ 81. Within the opposite limit EX 1 the effective rate constants are reduced to &=K and 
K$ = K_ , i.e. the diffusive transport can be neglected (perfect mixing). 

For the “fluctuation” part of the correlation functions we get the following equations: 

$j=-K[n,(t)( S&+C%j)+nB(t)( S&i+ ~~~)]+20[AR~~--6iinj(t) ARB(R)], C$j(R,O)=d~n~(O)d(R). 
(10) 

One can show that eqs. ( 10) exhibit qualitatively different behavior for NEIC and EIC cases. For p> 0 in the 
t-too limit one gets 

%Ja, 0 = - 
n*(O) 

(Dt)-d’2 ew(-E@G[l-exp(-Ot)19 

i.e. Q drops exponentially as time grows. Solving eqs. ( 10) for p = 0 we get that 

gAB(a, 0% - nA(0) 
(D[)-d’2 ’ 

i.e. a power-law decrease of the correlation functions. Consequently, we have quite different behavior of mean 
concentrations. Eq. (9) with K_ = 0, entails the mean-field exponential decay 

nB(t)xnB(0)exp(-_ff~~), 

for p > 0, and for p = 0 the power-law decay [ 15- 17 ] 

nA(t)=nB(t)z [ - gAB(a, t)]“*X [nS(O)/2r~Dt]~‘~, 

which is induced by the decrease of the correlation functions. 

4. Kinetics of short-range ordering with breakup of C 

Now we take into account the unimolecular breakup reaction. By means of the decoupling procedure pre- 
sented in the previous section we derive the following system of reaction + diffusion equations which governs 
the temporal behavior of the correlation functions 

i;,=-K[n,(t)(~i+~j)+n,(t)(~*,i+~,j)]+K_(~~+~~)+2D[A,~j--S,inj(t)A,6(R)] ) 

i, j=A, B , 

~~=-K[n,(t)(~i-~~)+n,(t)(~*i-~*‘,,)]+K_[~~’,,-~~]+2DA,~~, i=A,B, 

~~e,,=2K[n,(t)~~+n,(t)~,,]-2K_~~,+2D[A,~~’,,-n,(t) A&(R)]. 

One can easily find the solutions to the latter equations in the large t limit, 

(lla) 

(llb) 

(llc) 

gAB(aT t) = gAB(a) -n* 
K_ +K[:;;moK:;n.(m)] 2(Dt)-d’2 

I 

+exp - 
(I 

dr (K[FA(~)+~B(~)I +Kl i-1, 
0 

> 

where An, = nA ( 0 ) - nA ( 03 ) = An, = - Ant; nA ( 0 ) and nA( 00 ) are the initial equilibrium VdUeS of substance A 
mean concentration, n* is the conserved total concentration n*= nA(t)+nB(t)+2&(t). The terms in square 
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brackets are omitted since they are multiplied by an exponentially vanishing function on time. Inserting the 
leading term in +&n (a, t) into eq. (9) we notice that the asymptotical behavior Of 6nj( t), where 6nj are the small 
deviations from the steady-state values n,(a), is defined by the decrease of the correlation functions, i.e. the 
long-time solution of the eq. (9) is defined by 

hdt) =fb 
%a,(4 f)- %B(a) K_ K2n* An 

fk+Kz-dnA(~) +ndm) 1 = K_ +K[nA(m)+iB(m)] 
(Dt)-d’2, (12) 

while the mean-field Smoluchowski approach predicts an exponential decrease of 6n, (t ), 

Gnc(t)~:exp{-(K,ff[n,(co)+nB(03)l+K~)tj. (13) 

However, the power law decay of eq. ( 12 ) is valid for sufficiently large times. For the intermediate times, when 
the correlation functions are small and does not contribute to decay, the mean-field exponential dependence 
( 13) is valid. One can estimate the crossover time from eqs. ( 13)-( 12), 

tc,~{Ke~[n,(m)+n,(co)]+K~ff}-lln 
> 

=ln(a)L, 

where Keg = K_ /K, n = nA ( co ) + nB ( co ) , /3= K/4aDa, and the reaction depth &to ( t,, ) is the fraction of particles 
A which react via the asymptotic ( 12 ), 6nc( tcr) m at 

To summarize, we have studied the kinetics of short-range ordering within the framework of chemical reac- 
tions of diffusive species in systems with inequal initial concentrations. We have shown that in the case of a 
suppressed breakup of C the fluctuation effects are suppressed and the mean-field approximation is valid over 
the entire time domain. Application of our results to systems with a high concentration of one of the reagents 
( EX 1) shows that the rate constants are not renormalized due to the diffusive transport of reagents to each 
other, i.e. in such systems the reaction becomes kinetically controlled. 

We have shown that kinetics of short-range ordering exhibits qualitatively different behaviour, i.e. is not 
sensitive to the difference of initial particles’ mean concentrations, if the breaking up of C is not suppressed. In 
this case the long-time approach of short-order parameter to the equilibrium value is governed by slow power- 
law dependence. This supports our recent conjecture [ 26-281 that all reversible reactions are diffusion-con- 
trolled over a long period of time and are characterized by fluctuation-induced power-law kinetic dependences. 
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