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}Ecole Polytechnique de l’Université d’Orléans, 8 rue Léonard de Vinci,
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Calcium silicate glasses xCaO� (1� x)SiO2 exhibit a threshold in Raman line-
shapes which can be related, on the basis of Maxwell constraint counting, to the
onset of network rigidity as the concentration of calcium oxide x is decreased.
The present results are more deeply characterized by a size-increasing
cluster approximation that allows to perform Maxwell mechanical constraint
counting beyond the usual meanfield treatment. This permits to discuss under
which structural conditions an elastic intermediate phase should be obtained
in the future.

1. Introduction

Magmatic liquids are the principal agents of mass and heat transfer in the Earth and
terrestrial planets and intensive research has been undertaken to understand the
processes of mass or energy transfer with respect to melt or structural properties
[1, 2]. Viscosity and thermal or electrical conductivity are indeed directly related to

the structure of silicate melts which, furthermore, control the thermal behaviour of
magmas and their formation or crystallization [3, 4].

In this context, calcium silicates of chemical formula xCaO� (1� x)SiO2 have
received little attention as compared to the corresponding alkaline systems so that
much of their properties over the whole calcium glass formation range are still a
subject of active research. Most studies have indeed focused on the x¼ 0.50 molar
concentration which corresponds to the crystalline wollastonite composition [5].

Several studies have stressed the special role played by the calcium atom which
acts as a modifier in the silicate networks [6] and leads to a global increase of the
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density from 2.75 g cm�3 at x¼ 0.38 to 2.97 g cm�3 at x¼ 0.60 pyrosilicate
composition [7, 8]. Extensive studies have been performed to understand the
miscibility limits in this system and in other alkaline earth silicates [9, 10].

A special attention has been devoted to the coordination number of the calcium
atom using EXAFS [11] and X-ray spectroscopy [12]. More recently, Yannopoulos
and co-workers have been studying inelastic light scattering of calcium silicates
around the x¼ 0.50 composition by polarized Raman spectroscopy [13]. The results
with composition show a marked change in behaviour around 47% calcium.
Specifically, intensity ratios of particular Raman lines as well as the boson peak
frequency present a sharp jump at this concentration. On the other hand, a line at
606 cm�1 shows an abrupt increase but there remains some uncertainty about its
attribution to the so-called D2 ring line [14]. However, the conclusion obviously
suggests the presence of a transition that has not been characterized by the authors.

In this work, we show using Raman spectroscopy that a very particular elastic
state is reached in the glass when the concentration of calcium x(CaO) equals 47%.
This threshold is identified with a rigid to floppy transition from Maxwell mechan-
ical constraint counting and suggests that elastic transition can take place in calcium
silicate glasses as in chalcogenides [15, 16]. In the latter, the addition of cross-linking
units such as germanium or silicon into a basic network made of twofolded chalco-
genide atoms (sulphur, selenium) constrains the internal degrees of freedom of the
network by increasing the number of bond-bending and bond-stretching forces that
can lead to a very peculiar situation when the number of constraints per atom
equals the number of degrees of freedom [17]. It has been identified by Thorpe
from numerical simulations on amorphous silicon as being a floppy to rigid transi-
tion characterized by the vanishing of the number of normal (floppy) modes of
the dynamical matrix [18, 19]. The glass transition temperature of such systems
undergoing a rigid to floppy transition is also substantially affected [20].

More recently, Raman scattering results [21] and temperature modulated
calorimetry [22] on very different glassy selenides have shown that there were
in fact two transitions. These observations have been also found from numerical
simulations [23] and cluster calculations [24]. Both predict that when a network is
progressively stiffened, the first transition takes place with the onset of rigidity when
the number of constraints per atom equals the number of degrees of freedom. The
second transition is a stress transition which corresponds to the point beyond which
stress (hyperstatic regions) in the network cannot be avoided any more with increas-
ing cross-linking units. Percolation of rigidity and percolation of stress define the
boundaries of an intermediate phase which is rigid but stress-free. Elasticity with
applied pressure has been studied in this kind of systems, which provides a measure
of the local stress and suggests that one has an isostatically rigid backbone inside
the intermediate phase [25]. Isostaticity also accounts for the non-aging behaviour
of glasses [26] observed in this same composition range.

These new concepts or rigidity and rigidity transitions have been successfully
applied to the study of network chalcogenide glasses. As the ingredients used in the
onset of rigidity and the origin of the intermediate phase are quite generic, one
may expect that these show up (i) in other non-chalcogenide glass systems and
(ii) in other fields. For the latter issue, it has been shown that there are some obvious
links between rigidity theory and computational phase transitions [27], high Tc
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superconductors [28] or protein folding [29]. Extensions from chalcogenide to
e.g. oxide glasses have been reported only very recently. It has been indeed shown
from molecular dynamics simulation and experiment [30] that the same floppy to
rigid transitions could be found in oxide glasses under pressure with a pressure
window found in both densified GeO2 and SiO2 that bears striking similarities
with the measured intermediate phase in chalcogenides. Furthermore, experiments
from calorimetry and Brillouin scattering [31] applied on sodium silicates reproduce
exactly the salient features of onset of rigidity and stress. Understanding to what
extent the methods used with success for the chalcogenides can be applied to oxide
glasses is therefore not only of fundamental interest but also of attractive perspective
for applied purposes [32]. Recently, the signature of a rigid to floppy transition has
been detected in this system from electrical conductivity measurements [33] that
show percolation of the mobility. With these new reported examples, the generic
effect of rigidity on various physical quantities in any kind of networks is clearly
emphasized. The study of a different oxide glass system such as calcium silicates, lies
clearly in this prospect.

We first display the results of the Raman analysis and the deconvolution of the
spectra which show a marked change in behaviour for some modes at x¼ 0.47. Next,
we apply on this system mean-field Maxwell mechanical constraint counting that
permits to compute the concentration xc at which the fraction of zero frequency
(floppy) modes vanishes [18]. We improve the approach in section 4 by analyzing
the present system with size-increasing cluster approximations (SICA) that infer the
effect of medium-range order on the nature and the location of the transition, which
is found to be in agreement with experimental findings. Finally, we show which
conditions in terms of medium range order have to be satisfied in order to obtain
an intermediate self-organized phase [34] that is bounded by a rigidity and a stress
transition [23], in close correspondence with the chalcogen analog.

2. Experimental results

2.1. Sample preparation

The samples were prepared by mixing pre-dried SiO2 (99.99%) and CaCO3 (99.95%)
powders in the correct proportions. For each sample, the mixture was melted in a
platinum crucible at 1650�C for 2 h, and quenched by placing the bottom of the
crucible in cold water. The samples were then annealed at a temperature around
760�C for 5 h and cooled slowly to room temperature. The glasses were transparent
and free of crystallization as confirmed by the absence of Bragg peaks in XRD
spectra. Chemical microanalysis using the energy-dispersive X-ray (EDX) performed
on optically polished glasses showed a very low departure (less than 0.4mol of Ca)
between the theoretical and the real composition for all the studied samples. The glass
transition temperatures were determined with a differential scanning calorimeter
Setaram DSC-1600 at a heating rate 10�C/min. These values (see table 1) are slightly
larger than those reported by Shelby [35] using the dilatometric technique, but they
exhibit the same global trend. The glass-forming region of the calcium silicate system
is rather narrow [typically 0.40–0.55CaO] and explains the concentration range
investigated in the present paper [36].
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2.2. Raman scattering

Raman spectra were obtained on a Jobin-Yvon T64000 spectrometer with CCD
detection and BX40 Olympus microscope (objective�100). The excitation wave-
length was the 514.532 nm argon line of a Coherent Innova 70 Spectrum laser.
The power was typically 300mW at the laser output (20mW on the sample).
The low-frequency part range (<500 cm�1) was obtained in triple substractive
mode (gratings 1800 gr/mm). For the high frequency part (above 300 cm�1), the
spectrometer was in simple monochromator configuration with Notch filter (grating
600 gr/mm). This allows a sufficient recovering spectral range for merging the
spectra. All the data on the different compositions were collected in exactly the
same conditions, one following each other, in order to be consistent throughout
the series in any variation between subsequent spectra.

2.3. Peak deconvolution

The experimental spectra were first corrected for first-order Bose–Einstein factor,
and also for scattering law (I’ �4). The latter (a second-order correction compared
to Bose–Einstein factor) is not of primary importance but is theoretically needed to
extract the Raman susceptibility, which is the relevant physical quantity that can
be used to extract information on dynamics. The Bose–Einstein reduction does not
include the prefactor 1/! generally used for describing the low-frequency part of
Raman spectra in glasses [37], according to the Shuker–Gammon formalism [38].
Examination of the bare spectra shows that the main variations upon increasing
Ca content from 0.42 to 0.53 lie at wavenumbers above 300 cm�1 and thus justify
to focus attention on this spectral range. After this, the spectra were reconstructed
with the FOCUS software [39], by using a log-normal law for the boson peak at
low frequencies, and gaussian shapes for higher frequency ones. The low-frequency
(boson peak) part was fitted to insure a correct description of the mid-frequency
range, due to its long tail, but is clearly beyond the scope of the present paper.
Moreover, recent hyperRaman measurements in silica tend to show that the boson
peak responsible for the excess density of states is directly observed in hyperRaman
and inelastic X-ray scattering, meaning that the low-frequency Raman component
implies other degrees of freedom and is then much more complicated to interpret [40].
For higher frequency modes, gaussian shapes gave a better reconstruction of the
spectra than lorentzian or damped harmonic oscillator ones.

3. Discussion

3.1. Spectra description

Figure 1 displays the experimental Raman data for the six CaO concentrations
0.42 to 0.53. Figure 2 exhibits the typical agreement between experimental and fitted

Table 1. Glass transition temperatures of the (1� x)SiO2� xCaO system.

Concentration x 42 44 47 50 53
Tg [

�C] 769 769 770 781 795
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Figure 1. Raman lineshapes for six CaO concentrations. The low wavenumber range
was acquired in triple substractive mode (see text) which explains the higher noisy level.
The spectrum of silica at the bottom of the figure is displayed for comparison.
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Figure 2. Fits of the Raman spectra of the x¼ 0.44 sample. The numbers (1–9) correspond
to the various gaussian deconvolutions of the spectra (see text for details). BP is the boson
peak and LB the luminescence background.
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spectra (Bose–Einstein and scattering corrected). Results of the fitting procedure are
displayed in the different panels of figures 3 and 4 (line wavenumbers, linewidths,
and integrated intensity). The whole concentration range was described with 9 modes
(plus the boson peak) : 3 modes in the range below 550 cm�1, 3 modes to describe the
sharp and asymmetric peak near 600 cm�1, and 3 modes for the higher-frequency
group around 1000 cm�1. A broad luminescence background was needed to describe
the intensity increase up to high relative frequencies, a feature that may be related
with the presence of 3d impurities in the Ca precursor.

The 1000 cm�1 group is sometimes described by four components or more.
We consider that as only three bumps are unambiguously visible in the spectra,
the lowest number of components giving satisfactory reconstruction of the
experimental data is the best possible choice. The four components needed by
Kalampounias et al. [13] look obviously necessary on their data for x>0.55
and x<0.40, but not in the range investigated here.

Modes 2 and 3 are somewhat weak and then are rather inaccurate (at least com-
pared to other ones) as their possible parameter variation in the Ca range is hindered
by experimental uncertainty. Mode 1 is discussed below. The accuracy is better for
modes 4 and 5. Both wavenumbers increase monotonously upon increasing Ca
concentration (see figure 3). Their intensities show a transfer from 5 to 4 near 47%
Ca. The linewidth of mode 4 shows a smooth increase whereas that of mode
5 abruptly, narrows at compositions greater than 50% CaO. The greater effects
concern the higher frequency modes, 6, 7, 8, and 9. One can first consider the latter
three modes, clearly connected in one broad band. This assignment slightly differs
from [13], where mode 7 is assigned to Q0 species, and from Frantz and Mysen [41]
where Q3 corresponds to a weaker mode and mode 8 is assigned to Si–O stretching
vibrations. The superscript n in Qn denotes the number of bridging oxygens
(not connected to Ca) on a SiO4/2 tetrahedra. According to Zotov [42], mode 9 can
be assigned to Q3 species, mode 8 to Q2 and mode 7 to Q1. The wavenumbers for
modes 7 and 8 are practically constant. It is not the case of their intensities, which show
a continuous increase for modes 7 and 8, whereas for mode 9 is rather constant up to
47% Ca, and decreases rapidly after. The wavenumber of mode 9 displays a decrease
up to around 47% Ca, and then a slight increase. This effect is small but clearly large
than experimental error. One can note that the sum of intensities of modes 8 and 9 is
roughly constant above this value 47% Ca (figure 4). The linewidths of modes 7 and 8
increase slightly, whereas that of mode 9 is constant up to 47% CaO, and shortens
after. From the foregoing, one can conclude that the increase of CaO affects the glass
structure in two ways: first, a continuous increase of the number of Q2 and Q1 species
to equilibrate the higher number of cations, and second a sharp transfer from Q3

species to Q2 ones upon increasing Ca content above 47%. Then the remaining
Q3 are more decoupled of the network, as shown by their lower linewidth.

Mode 6 is the most affected by the modification of Ca content as shown in
figure 4. Its frequency is hugely increased (more than 50 cm�1, which is consider-
able), the width of the line is decreased by more than a factor 2, between 42 and 48%
Calcium Oxide, and its integrated intensity falls down by one order of magnitude
in the same concentration range. When comparing with [13] where the
600 cm�1 asymmetric component is described only by one line, the present work
shows that the anomaly around x(CaO)¼ 47% is only due to mode 6, the other
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Figure 3. Composition behaviour in wavenumber, linewidth, and relative integrated intensity
for the lines 4 and 5 of the Raman spectra in the (1� x)SiO2� xCaO system. There are no
scale factors between the integrated intensities.
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modes 4 and 5 overlapping this component evolve monotonously in this composition
range. This mode 6 cannot then be assigned to Q0 species as the corresponding
intensity must increase upon enriching Ca content. It is more plausibly connected
with Si–O–Si motions. The intensity dependence, which is more rapid than for
mode 9, would lead to think that mode 6 could correspond to Si–O–Si vibrations
of Q3

�Q3 species.
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intensity for different lines (6–9) of the Raman spectra in the (1� x)SiO2� xCaO system.
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Mode 1 displays two specific features around 46–47% Ca. Its frequency exhibits

a noticeable downshift (20 cm�1), the width decreases by 30%, and the integrated

intensity falls down by a factor two (figure 5). Even if this mode is broader than the

preceding ones, these parameter evolutions are sufficiently large to be unambiguous.

This frequency downshift and line narrowing upon increasing Ca content is different

from high-frequency modes (6, 9). This softening and narrowing is an uncommon

behaviour and can be qualitatively explained only by a significant change of

eigenvectors. The low frequency of this mode implies some Ca vibrations. These

vibrations would then be decoupled, and softer, above ca. 46%, that can be

attributed to floppy regions in the glass.

3.2. Raman threshold and rigid to floppy transitions

The results on the behaviour of some Raman modes with concentration closely

parallel that found in chalcogenides [43]. The frequency increase exhibited by
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Figure 5. Compositional behaviour in relative wavenumber, linewidth and relative integrated
intensity of the mode 1 line lying at 392 cm�1 for 42% Ca.
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modes 6 and 9 above 47% calcium can indeed be discussed in the context of rigid to

floppy transitions. In fact, these modes look to harden just when the network

becomes softer. This apparent contradiction can be explained by a non-uniform

distribution of stress: in the stressed rigid range close to our observed threshold at

x¼ 0.47, the network is mainly hardened by interconnected Q3 species. Upon under-

going a rigidity transition, these links should become much less numerous, leading

to a network which is dominated by Q2 connections. The remaining Q3 domains

will then be smaller and consequently more homogeneous, this is evidenced by the

noticeable line narrowing which occurs. The distribution of Q3 force constants is less

important, leading to a linewidth closer to a lorentzian one. These Q3 islands lie then

in the holes of the Q2 network. The increase of mode 9 (Q3) line wavenumber can

then be easily explained by partial decoupling of Q3 vibrations inside islands from

the Q2 network, leading to a wavenumber closer to that of an alone Q3 tetrahedron.

In the floppy range at high CaO concentration, the structure should be a network of

Q2 elements, separated by small ‘harder’ islands. The narrowing exhibited by mode 5

above 50% can also be interpreted in the same way.
We finally note that only selected Raman modes are active in the detection of the

rigid to floppy transition. This is obvious for the modes 1 and 6 and also for mode 5.

From the analysis displayed above, it appears that the onset of rigidity affects rather

intertetrahedral motions (mode 6, Si–O–Si motions, see aforesaid) than e.g. intra-

tetrahedral symmetric stretching vibrations (modes 7–9). Nevertheless, the latter

modes can be sensitive to the transition because of the coherent motion between

tetrahedra. It contrasts with binary chalcogenides where the majority of the Raman

modes [43] were displaying some characteristic behaviour at the thresholds. We

stress, however, that the structure of the latter system is much more simpler than

the present silicates.

4. Analysis from constraint theory

Maxwell constraints counting appears to be useful to understand the present results

as the calcium silicate network can be described by a molecular system constrained

by bond-stretching and bond-bending (angular) forces.

4.1. Maxwell global constraint counting

We consider the CaO–SiO2 system as a network of N atoms composed of nr atoms

that are r-fold coordinated. Enumeration of mechanical constraints [17–19]

associated with bond-stretching (radial) forces leads to n�c ¼ r=2, while the number

of bond-bending (angular) constraints is n�c ¼ ð2r� 3Þ. The average number of

floppy modes per atom F/N in this three-dimensional network is given by [19]:

f ¼
F

N
¼ nd � nc ¼ 3�

1

N

X
r�2

nr
5r

2
� 3

� �
ð1Þ
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where nd is the dimension of the network and nc ¼ n�c þ n�c . Applied to the system

of interest leads to:

f ¼
F

N
¼ 3�

11� 7x

3� x
ð2Þ

The latter equation holds if one assumes that silicon is fourfold, calcium and

oxygen are twofold coordinated [44]. The constraint counting applied in the

present system cannot be applied down to x¼ 0 (Silica) as the latter has broken

bond-bending constraints [45] due to the partial ionic character of Si–O bonds as

shown from the broad angular Si–O–Si distribution. Specific counting has there-

fore to be accomplished for silica that has a certain number of floppy modes and is

found to be floppy [46]. With addition of alkali oxide, the angular distribution

becomes sharper [47] thus suggesting that at some point the bond-bending

constraints are restored.
As one can see, the number of floppy modes vanishes when the network

attains the critical concentration x¼ xc¼ 0.50 which is in close agreement with the

thresholds observed from our Raman results. The calcium coordination number of

two is used to obtain equation (2) deserves some supplementary comments because

EXAFS studies [11] and computer simulations [48] have suggested that the number

of nearest neighbours of the calcium could be different from the formal valence of 2

and would rather be of the order of 6. On the other hand, the Debye–Waller factors

for this system or related alkaline earth silicates [11] clearly show that the oxygen

atoms around a calcium atom were not all equivalent, thus confirming the picture

drawn by Kerner and Phillips [44] on resonating bonding constraints that lead to an

effective number of constraints for the calcium of 2. Finally, we mention that the use

of an effective number of constraints in related sodium silicates [31] permits to

recover from experiment the mean-field threshold at correct critical concentration

of sodium, although the number of oxygen neighbours in the vicinity of a sodium

atom is usually found to be larger [49] than one.
Equation (2) defines a mean-field transition in which the number of mechanical

constraints is computed from the macroscopic concentration x. Obviously, this

elastic transition may be attained at x<xc provided that some macroscopic floppy

subregions can emerge with the addition of alkaline earth oxide. On the other

hand, it has been recently shown [23, 24] that the underlying nature of the floppy

to rigid transition was more subtle and could contain under certain circumstances

[34] two transitions instead of the single one predicted by mean-field constraint

counting. In this context, stress will not spread randomly over the whole network

as initially believed but will accumulate in underconstrained subregions leading

to the occurrence of an intermediate elastic phase that is found to be stress-free.

The detection of this intermediate phase has been mostly accomplished from

calorimetric probes using temperature modulated differential scanning calorimetry

(MDSC) [50]. Here, a sinusoidal variation is added on the usual linear DSC ramp

and permits to decompose the total heat flow into a reversing part that tracks the

initial modulation and a residue. The latter is found to vanish in the intermediate

phase [34].
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4.2. Cluster construction

Size-increasing cluster approximations (SICA) appear to be a useful tool to describe

the elastic nature of the network backbone (floppy, intermediate, stressed rigid) and

permits to take into account medium-range order effects that may, or may not, serve

as ingredient for the presence of an intermediate phase. Furthermore, SICA start

from the mean-field description as basic level and take into account non-random

structural elements and their related mechanical constraints in a systematic fashion.

This method was first introduced to study the formation of fullerenes [51] or Penrose

tilings in quasicrystals [52] and was then applied to quantify the boroxol ring statis-

tics in amorphous B2O3 [53]. Recently, SICA has been used in the context of floppy

to rigid transitions [24] in an archetypal chalcogenide network (GexSe1�x) and has

led to the definition of a stress-free intermediate phase that depends substantially

on the fraction of small rings in the structure.
The basic level (l¼ 1) of the SICA construction corresponds to the mean-field

approximation, having as elements structural species that depend directly on the

macroscopic concentration. The construction permits to generate clusters at step

l¼ 2 sharing all possible combination of the basic (l¼ 1) elements, clusters at step

l¼ 3 having three (l¼ 1) units, etc. The probabilities of the clusters are computed

within the Canonical Ensemble having energy levels En related to bond creation

between the basic level molecules. The construction is, furthermore, supposed to be

performed at the formation of the network when T equals to fictive temperature

Tfictive which is defined by the intersection of the extrapolated supercooled liquid and

glass curves [54]. Mathematically, these probabilities will involve statistical weights

(or degeneracies g(En) of a corresponding energy level), which correspond to the

number of equivalent ways to connect two (l¼ 1) basic units, and a Boltzmann

factor [54] of the form en¼ exp[�En/Tf ].
We have used as basic units the CaO molecule and a SiO4/2 tetrahedron, having

for respective probabilities the macroscopic concentration x and (1� x). The energy

levels are defined from the consideration of all possible connections at the step l¼ 2

and permit to distinguish the mechanical nature of the underlying clusters (floppy,

isostatic, stressed). The creation of a chain-like Ca2O2 floppy structure (nc<3)

is related to an energy gain of Ef while the creation of a CaO connected to a silicon

tetrahadron (an isostatically rigid CaSiO3 cluster, nc¼ 3) is associated with an

energy Ei. Finally, the basic network, formerly represented by two connected

SiO4/2 tetrahedra (a stressed rigid Si2O4 cluster, nc>3), corresponds to an energy

gain of Es. At step l¼ 2, three different clusters can be obtained (see figure 6) and

their probabilities are given next. We mention that edge-sharing SiO4/2 tetrahedra

have been excluded from the construction as they have no experimental evidence at

all in silicates [55]. The probabilities at step l¼ 2 are:

p1 ¼
16ð1� xÞ2es

4x2ef þ 16xð1� xÞei þ 16ð1� xÞ2es
ð3Þ

p2 ¼
16xð1� xÞei

4x2ef þ 16xð1� xÞei þ 16ð1� xÞ2es
ð4Þ
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p3 ¼
4x2ef

4x2ef þ 16xð1� xÞei þ 16ð1� xÞ2es
ð5Þ

out of which the (l¼ 2) concentration of calcium atoms can be computed

xð2Þ ¼
p2 þ 2p1

4� p2 � 2p1
ð6Þ

Due to the initial choice of the basic units, the energy Ei will mostly determine the

probability of isostatic clusters since the related Boltzmann factor ei is involved

in the probability (4) of creating the isostatic CaSiO3 cluster (a CaO–SiO4/2

bonding). In the case where Ei�Ef, Es, the bonding of the network construction

will be mainly achieved by isostatic clusters.
For large steps (l>2), one has to take care of possible isomers produced by two

distinct clusters at the lower level. The cluster displayed in figure 7a can be, for

example, produced either by connecting two SiO4/2 tetrahedra onto a CaSiO3

(l¼ 2) cluster or by adding CaO and SiO4/2 onto a Si2O4 (l¼ 2) cluster. The statistical

weight g(En) of such isomers will be, of course, larger than the one of low connected

clusters having a single pathway of production.
As seen from equations (3)–(5), the cluster probabilities will depend only on

two energy parameters (i.e. the factors es/ei and ef/ei) and the problem can still be

reduced by using a charge conservation law [56] for the calcium atom applied on the

population of clusters of size l.

xðl Þ ¼ x ð7Þ

(b)

(c)

(a)
p1

p2

p3

Si O Ca

Figure 6. The different clusters obtained at SICA step l¼ 2. (a) A fragment of the silica
network with g(Es)¼ 16, (b) a wollastonite-like cluster CaSiO3 with g(Ei)¼ 16, and
(c) a calcium-rich cluster with g(Ef)¼ 4.
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The x-dependence of either es/ei or ef/ei means that either the fictive temperature Tf

or the energies En depend [54] on x but here only the en(x)/ei (x) dependence

is relevant for the analysis.
In order to obtain some clusters having significant medium range order

(figure 7b), the SICA construction has been realized up to the step l¼ 4.

4.3. Maxwell cluster constraint counting

Next, one can apply on the generated set of clusters Maxwell constraint counting by

enumeration of bond-bending and bond-stretching constraints and calculation of the

corresponding expressions of n�c and n�c . Of particular importance are the structures

containing a ring having less than six atoms (see figure 7a), because one has to

remove some extra constraints [18].
For each step l, the total number of constraints nðl Þc can be computed as:

nðl Þc ¼

PN l

i¼1 ncðiÞpiPN l

i¼1 Nipi
ð8Þ

where N l is the total number of clusters of size l and nc(i) and Ni are respectively

the number of constraints and the number of atoms of the cluster of size l with

probability pi. Applied to the set of clusters at step l¼ 2, one obtains for example:

nð2Þc ¼
22p1 þ 15p2 þ 4p3
6p1 þ 5p2 þ 2p3

ð9Þ

We have determined either es/ei or ef/ei as a function of concentration, by solving the

charge conservation law (7). With these factors depending on the concentration x,

it is possible to compute the cluster probabilities pi of given step l as a function of

composition and finally obtain the composition xc where the number of floppy

modes fl ¼ 3� nðlÞc vanishes. The statistics of the Qn species with Ca concentration

can also be computed as discussed next.

(b)(a)

Figure 7. Clusters generated at SICA step l¼ 4. (a) a 3-membered ring at low Ca
concentration. (b) A high Ca structure.
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5. Results

5.1. Structural properties and speciation

In this section, we consider the solutions of the SICA construction in terms of

structure. One principal objective of the present investigation is first to compare

the model results with some experimental data on calcium silicate glasses such

as the relative abundances and mixing properties of the structural units with respect

to the concentration.
Figures 8 and 9 represent the distribution of Qn units computed from SICA

at step l¼ 4, respectively as a function of Ca concentration and as a function of

the relative abundance of non-bridging oxygens NBO/T that is defined by:

X
k

nkxðQ
k
Þ ¼

NBO

T
ð10Þ

where nk is the fraction of non-bridging oxygens per SiO4/2 tetrahedra and x(Qk) is

the concentration of Qk species. The quantity defined by equation (10) is commonly

used to quantify network depolymerization with non-bridging oxygens [57].
As one can see, the probability of findings a Q4 unit decreases smoothly with the

addition of calcium whereas the emergence of Si2O
2�
5 ðQ

2
Þ and SiO2�

3 ðQ
3
Þ groupings

is noticeable. One can, furthermore, notice the crossover of the abundance of Q2

0 10 20 30 40 50 60 70

Ca concentration

0

0.2

0.4

0.6

0.8 Q4

Q3

Q2

Q1

Stressed FloppyIntermediate

Figure 8. Qn distribution in (1� x)SiO2� xCaO as a function of the calcium concentration,
computed at SICA step l¼ 4. The vertical broken lines show the boundaries of the
intermediate phase (see base line). The symbols are the results obtained from the Raman
modes (see text for details).
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and Q3 at the concentration x¼ 0.47, a behaviour that has also been observed from
the integrated intensity of modes 8 and 9 in the Raman spectra.

The general evolutions of populations of Qn species look somewhat comparable,
particularly for the Q1 ones. To compare the results from SICA with those from the
Raman spectra analysis, two aspects must be considered. First, the scattering cross
sections are not identical for each Qn species, and to make a comparison valuable,
we have renormalized the Raman results of figure 8 to the SICA calculated ones at
x¼ 0.47. Second, the meaning of Qn intensities are not exactly the same ones in the
model (which gives the Qn population in terms of a probability) and in Raman
scattering. In the latter, the so called ‘Qn-line’ intensity varies as the Qn number
but may not be exactly proportional to the Qn number. For Q2, Q3, and Q4 species,
the line intensity depends, indeed, also on the type of the next-nearest neighbour
species. This changes the coupling and the spatial extent of the vibration mode in
such a point that it can sometimes be possible to distinguish different types of a
given Qn [58]. For Q1 species, this argumentation is not relevant as they correspond
to the upper end of modification of the silica network, and are then less coupled
to the backbone. Q1 Raman intensities will then be more precisely representative of
the Q1 population. Finally, the difference between the model and the Raman results
can arise from the limitations of the SICA approach. First, the fact that we limit the
cluster construction to the step l¼ 4 does not permit to generate Q0 as these species
are made of a central tetrahedron that shares four Ca atoms (that structure would be
created by l¼ 5). As a consequence, the distribution of our Qn (n¼ 4, 3) are slightly
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NBO / T
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Figure 9. Qn distribution in (1� x)SiO2� xCaO as a function of NBO/T, computed
at SICA step l¼ 4. The insert shows the calculated equilibrium constant KC1 (solid line)
and KC2 (broken line) as a function of NBO/T. See text for details. Data points are taken
from Frantz and Mysen [31].
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overestimated in the high calcium range. Second, as the energetical factors are intro-

duced only on the basis of the overall mechanical character of the bonding type

(stressed, isostatic, floppy) between two basic units, difficulties arise in order to

describe the behaviour with changing alkaline earth cation as the size

(or energetics, or steric hindrance, . . .) does not appear in this approach. This

means that other ingredients [44] are necessary to describe the differences arising

in e.g. magnesium or barium silicates.
Next, we can focus on equilibrium constant [59] Kc1 and Kc2 between species

respectively related to the equilibria:

Si2O
2�
5 Ð SiO2 þ SiO2�

3 ð11Þ

4SiO2�
3 Ð Si2O

2�
5 þ Si2O

6�
7 ð12Þ

The mass action constants can be computed from the above equilibria using the

computed distribution of Qn species. It is obvious that equation (11) will be the

dominant equation in the low calcium region while both equilibria will have to be

taken into account in the concentration range lying around the rigid to floppy

transition when NBO/T is larger than the value 1. As one can see from the insert

of figure 9, the calculated Kc1 from the equilibrium constant of (11) is in fair agree-

ment with the two data points number reported by Frantz and Mysen [41]. We note

also that Kc1 remains almost constant over the entire concentration range of interest

suggesting that the conversion between species is not favoured in the stressed rigid

side of the glass formation range. On the other hand, the rapid variation of Kc2 can

arise from the floppy nature of the backbone, when NBO/T>1.25. The change in

equilibrium constant following the underlying elastic nature of the network has been

questioned by Eckert and co-workers in phosphorus chalcogenides [60].

5.2. Boolchand intermediate phase

We now turn to self-organization that permits to obtain an elastic intermediate

phase [23, 24]. This elastic phase has been first observed by Boolchand and

co-workers in chalcogenides [34], but as rigid to floppy transitions have been also

detected in oxide glasses [61], there is no reason why this intermediate phase should

not exist in the present system as well. We consider here the structural possibilities

that can lead to an intermediate phase. It is achieved with SICA by selecting

the pathways of cluster production. One starts, for example, with an undercon-

strained (floppy) cluster of size l which exists at high calcium concentration.

Agglomeration of basic units l¼ 1 onto this cluster is only allowed if the creation

of a stressed rigid region can be avoided on the generated cluster of size (l¼ 1). This

would happen if one starts to connect two SiO4/2 tetrahedra together, involving an

energy gain of Es. On the other hand, if x is decreased one will accumulate with this

rule isostatically rigid regions on the generated clusters as the only allowed concen-

trations are either floppy CaO–CaO or CaO–SiO4/2 bondings. Alternatively, if one

starts from the low calcium side, self-organization can be obtained by selecting along

the same scheme stressed rigid and isostatically rigid connections and excluding

systematically the possibility of floppy CaO–CaO bonding in the SICA construction.
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With decreasing calcium content, one will be able to maintain that rule up to
a certain point beyond which connections between two silicon tetrahedra (or a
stressed rigid connection) can not be avoided anymore. The latter point corresponds
to a stress transition [24] and appears only if some medium range order (MRO) made
of rings is accepted in the construction. The concentration range bounded on its low
calcium side by the stress transition and on its high calcium side by the vanishing
of the number of floppy modes, defines the intermediate phase of width �x.

Results of self-organization are displayed in figure 10. The simplest case for self-
organized clusters is again the case where rings are removed from the construction
corresponding to dendritic clusters, which would correspond in the limit l!1 to
Bethe lattice solutions [62] or Random Bond models [63] obtained in the context of
floppy to rigid transitions. We obtain here a single transition for all SICA steps l
either at the mean-field value x¼ xc¼ 0.50 or close to it (xc¼ 0.509(7) for l¼ 4).
No intermediate phase is obtained. The probabilities of floppy, isostatically
rigid, and stressed rigid clusters can be displayed as a function of calcium content
(figure 10) and show that the abundance of isostatically rigid clusters is maximum
at the threshold defined by f¼ 0. This is obviously the case for the l¼ 2 case,
but also for larger SICA steps.

The intermediate phase shows up if a certain amount of medium range order
(MRO) is allowed. This is realized in the SICA construction by generating in the
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Figure 10. Probability of finding stressed rigid, isostatically rigid, and floppy clusters as a
function of calcium concentration x. The thick solid line corresponds to the basic SICA step
l¼ 1 and l¼ 2, the thin solid line to l¼ 3, and the broken line to l¼ 4. The vertical lines define
the intermediate phase of width �x at step l¼ 4. The present situation for l¼ 3 and l¼ 4
corresponds to self-organization with ring structures. Notice the kink around x¼ 0.40
corresponding to the stress transition (see text for details).
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construction ring clusters such as the one displayed in figure 7. The requirement of
self-organization in the cluster construction still holds for dendritic stressed rigid
structures made of at least two connected SiO4/2 tetrahadra which propagate stress
in the structure. But now cyclic structures such as rings are preserved from
self-organization. Two transitions are obtained for every SICA steps l>2
(see figure 10). The first transition lies always around the concentration xc2¼ 0.50
calcium and corresponds to a rigidity transition where the number of floppy modes
vanishes. The second transition that emerges with increasing MRO is located for
l¼ 4 at xc1¼ 0.392 and corresponds to the stress transition. When starting from
a floppy network at high calcium concentration, the progressive stiffening of the
network can be accomplished by requirement of self-organization leading to
the accumulation of isostatically rigid regions and stressed rigid ring structures.
This will work for any decreasing x up to xc2 below which stressed rigid bondings
outside of ring structures cannot be avoided anymore.

The two transitions xc1 an xc2 will define an intermediate phase �x that depends
on the fraction of MRO allowed and we show that �x is an increasing function
of the MRO (figure 11). Furthermore, as the rigidity transition f¼ 0 at xc2 is almost
not affected by the presence of MRO, the increase of the width with the latter
quantity arises mostly from the decrease of xc1 with growing MRO. Finally, as
seen from figure 10, there is a kink observable at xc1, which would produce in
first-order derivatives such as the energy [64], a jump suggesting a first-order stress
transition at xc1 [23, 24] and a continuous rigidity transition at xc2.
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Figure 11. Width of the intermediate phase at step l¼ 4 in (1� x)SiO2� xCaO glasses,
as a function of the fraction of medium range order (rings) computed at x¼ 0.50. The insert
represents the computed number of floppy modes for step l¼ 3 (solid line) and l¼ 4
(broken line).
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The elastic nature of the network can be also analyzed within this framework.
From figure 10, one can see that the probability of finding isostatically rigid clusters
is maximum in the window �x. It is equal to 1 for the l¼ 2 SICA step and about
0.5 or 0.6 for the larger steps, thus providing evidence that the molecular structure
of the network in the window is almost stress-free.

6. Summary and Conclusions

We have shown in the present work from Raman measurements that a particular
transition was observed at around 47% calcium in the calcium silicate system,
in harmony with previous findings [13]. We have elucidated the origin of the
observed threshold as being the manifestation of a global softening of the glass
structure that corresponds to the manifestation of a rigid to floppy transition.
Constraint-counting algorithms applied on size-increasing clusters permit to refine
the picture by predicting the possibility of an intermediate phase in the Raman
threshold region.

Recent calorimetric and spectroscopic studies have shown that this kind of elastic
transitions could be found in alkaline silicates as well, with a well-defined signature
of the intermediate phase in both sodium [31] and potassium glasses [65]. We are
confident that a similar generic behaviour should be expected in the alkaline earth
silicate glasses. An elegant probe for the existence of the intermediate phase in the
present system could be given using MDSC measurements during the glass
transition. The results present always a vanishing of the kinetic dependent heat
flow inside that phase [34] and provide an unambiguous signature for both transi-
tions, rigidity and stress. Unfortunately, the values of the glass transition tempera-
tures of calcium silicates are too high to be accepted from the actual performances
of the MDSC setup [66].

We finally emphasize the generic character of these rigid to floppy transitions
that were originally found and extensively discussed in chalcogenides. Indeed,
recent experiments and computer simulations now show that in oxide glasses these
transitions can be produced either by chemical alloying like in the chalcogenides
(or our present system) or with applied pressure [30].
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