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We investigate the role of molecular flexibility on the electrical transport properties of model electrolytes
containing ions and an underlying disordered network structure with changing connectedness. Rather than
focusing on the effect of ion content in a stoichiometric network former AY2 (e.g., SiS2), we explore the
possibility of increasing the Y∶A ratio (flexibility index m) in order to reduce connectivity and to promote
the occurrence of flexible modes and topological degrees of freedom in the network structure. At fixed ion
content and below a certain threshold modifier composition xc, topological constraint counting indicates
that a mean-field stress-to-flexible transition is expected for a flexibility index mc, and an ion hopping
model predicts a substantial increase of conductivity once m > mc. Molecular dynamics simulations
on a typical amorphous electrolyte, xNa2S − ð1 − xÞSiSm, independently and quantitatively confirm the
prediction as anomalous changes with m are obtained, and these manifest by waterlike diffusivity
anomalies, and a substantial increase of ionic conductivity upon moderate change of m. The analysis
disentangles contributions from mobility and the free carrier rate in the electrical transport, and finally
suggests that molecular flexibility can serve as an efficient way for conductivity enhancement in all solid-
state batteries using amorphous electrolytes.
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The worldwide ubiquitous use of portable electronics
and their increasing demands for energy and power, as for
example in laptop computers and smartphones in use today,
has exploded the demand for higher energy and power
density batteries [1]. A promising perspective builds on the
use of glasses which can serve as solid electrolytes and
solve critical safety problems in dedicated all solid-state
batteries. Key research topics for the improvement of the
performance of amorphous electrolytes have focused on the
role of the glassy matrix that needs to be established, and
the role of migrating ions such as Li⊕ whose limited
mineral resources also represent an issue of crucial impor-
tance. In order to bring such grand challenges to the next
level, there is a need to find physical theory guided new
strategies for conduction enhancement [2].
The question of transport phenomena (diffusion, con-

ductivity) has often been addressed within the framework
of percolation theory [3] which can be readily used on
regular lattices by focusing on the percolation of sites
or bonds representing moving charge carriers. This is a
rather standard problem in statistical and computational
physics. In disordered systems such as glasses or amor-
phous solids, the question of defining periodic hopping
sites for an efficient mathematical treatment is hopeless,
and additional features specific to such materials must be
taken into account such as the presence of voids [4],
spatially disordered conductive channels and their possible

percolation under certain conditions [5], and, more gen-
erally, the possibility to have a variety of sites with a given
structural information that produce select diffusion path-
ways [6]. Clearly, the overall properties of the host network
with its disordered character must impact such transport
phenomena.
In glasses which are disordered materials, an experi-

mental standard route is to focus on compositional trends
with the alkali content x of electrical properties in chalco-
genide glasses [7,8], in relationship with physical and
chemical properties. Compared to their oxide counterparts,
these have superior ionic conductivities at room temper-
ature (up to ≃10−3 Ω−1 cm−1 [9]) and can be formed more
easily due to lower glass transition temperatures. However,
rather than following this standard strategy by investigating
with ion content alone a given family of glasses with a
stoichiometric network former (e.g., P2S5 in popular
ð1�xÞP2S5�xLi2S electrolytes [10]), an original and
slightly different approach can be adopted by targeting
the notion of flexibility for conductivity (σ) enhancement. It
is well-known [11] that flexible (or low energy deforma-
tion) modes are present in sulphur-rich glasses such as
PxS1−x with x < 2

5
. Alkali additives in off-stoichiometric

glass formers, e.g., SixS100−x, afford therefore, a unique
venue for exploring new routes for an increase of conduc-
tivity in glassy electrolytes. Indeed, a natural guess is that
once the glass network has lost its rigidity and becomes
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flexible at the molecular level, it will contain an important
fraction of low energy local deformation (flexible) modes
which might promote the mobility of the charge carriers,
and lead to a growth of conductivity σ.
In this Letter, we theoretically address the possibility to

enhance ion motion by acting on the underlying network
properties. A rigidity analysis is applied to a typical
nonstoichiometric tetrahedral glass former AYm (e.g.,
GeSm) whose base network is disrupted by alkali ions
M2Y (e.g., Na2S) [12]. Noteworthy is the fact that one
considersm ≠ 2, i.e., unlike GeS2 there is the possibility to
introduce at fixed modifier content x flexible (floppy)
modes into the network by increasing the amount m of
twofold Y (chalcogen) atoms. Once a Phillips-Thorpe
topological constraint count is applied to the network, an
isostatic condition is obtained at some threshold contentmc
which is identified with the locus of a mean-field rigidity
transition (MFRT). Within this framework inspired from
Maxwell’s pioneering study of the stability of trusses,
atomic interactions are treated as mechanical constraints,
and the resulting transition is of mean-field type as neither
spatial fluctuations nor coordination defects are considered.
It is shown that flexible networks satisfying m > mc
display interesting properties regarding electrical transport.
We then calculate from a phenomenological model [13] the
ionic conductivity and identify distinct régimes for σ over
identified flexible and stressed rigid topological phases.
Such results are then enriched and brought to a more
quantitative level from molecular dynamics simulations on
a model xNa2S − ð1 − xÞSiSm system which exhibits for
m ≥ 2 a certain number of anomalies in transport properties
close to mc, in close connection with the salient phenom-
enology of glass or liquid rigidity [14]. While most if not all
amorphous conductors use only stoichiometric compounds,
this Letter opens a new window to tailor fast-ion transport,
especially in sulfides which represent the most promising
glassy materials for such applications [1]. Ultimately,
it is expected to identify alternative alloying possibilities
able to induce an increase of ionic conduction in amor-
phous electrolytes.
Our first piece of evidence builds on the approach

developed by Mauro and co-workers [15,16] who use a
constraint theory to model topological degrees of freedom
in glasses with changing composition or connectivity, that
we combine with a phenomenological conductivity model
introduced for a silicate model structure [13]. For a
modified tetrahedral network glass of the form xM2Y −
ð1 − xÞAYm or M2xA1−xYmð1−xÞþx with, e.g., M ¼ Li, Na;
A ¼ Si, Ge; and Y ¼ S, Se, a T ¼ 0mean-field constraint
count [14] assuming the octet rule and broken bond-
bending interactions [17] for so-called nonbridging
sulfur (NBS) which are close to the alkali ions, leads
to a fraction of topological degrees of freedom that is
equal to

f ¼ 3 −
ð1 − xÞð7þ 2mÞ þ x
1þ 2xþmð1 − xÞ ð1Þ

where the number of atoms in the network is derived from
the chemical formula of the considered system, i.e.,
N ¼ 1þ 2xþmð1 − xÞ. Here Eq. (1) is obtained by
assuming a disordered network constrained by bending
and stretching interactions whose atomic density for an
r-fold coordinated atom is given by r=2 and (2r-3),
respectively (see detail of the species contribution in
Supplemental Material [18]). For example, the atom A
contribution to the constraint density is 7ð1 − xÞ. From
Eq. (1), a MFRT satisfying f ¼ 0 is, thus, expected for the
condition mc ¼ ð4 − 12xÞ=ð1 − xÞ.
The local structure of the disordered network can be,

furthermore, thought as a collection of three building
blocks: AY4=2 and MAY5=2 tetrahedra, and a Y2 chalcogen
chain with probability p4, p3, and p2, respectively. The
latter element permits us to tune the connectivity of the base
network [13] in the regime m ≥ 2, whereas the MAY5=2

unit contains a so-called nonbridging Yatom in the vicinity
of the M cation (NBS in sulfides). One, furthermore has
by virtue of probability conservation p4 þ p3 þ p2 ¼ 1,
and from stoichiometry p4 ¼ 2ð1 − 3xÞ=mð1 − xÞ and
p3 ¼ 4x=mð1 − xÞ. From all possible structural connec-
tions j�k containing such basic building blocks
ðj; k ¼ 2; 3; 4Þ, we evaluate associated probabilities pjk ∝
Wjkpjpk exp½−Ejk=kBT� and such connections j�k, and
their corresponding energies can be classified [30] accord-
ing to their rigidity status [flexible (FL), isostatic (IS),
stressed rigid (SR) [18] ]. Here Wjk represents an entropic
factor, i.e., the number of equivalent ways to connect two
species j and k together (e.g., W43 ¼ 24, see clusters
displayed in Fig. 1), and Ejk represents an energy gain
which depends on the elastic nature of the connection j�k:
FL, IS, and SR. The density of topological degrees of
freedom fð2Þ can then be calculated [15,16] from such
connections according to

fð2Þ ¼
X

j;k¼FL

ð3Njk − NcðjkÞÞN−1
jk pjk ð2Þ

where NcðjkÞ and Njk are the number of topological con-
straints and the number of atoms found in a cluster j�k
with probability pjk, respectively. Here, the sum runs only
over flexible (FL) connections satisfying NcðjkÞ < 3Njk.
The profile of such probabilities pjk with modifier

content M2Y appears in Figs. 1(a)–1(c) for select values
of the flexibility index m. For the “stoichiometric” m ¼ 2,
one recovers the usual evolution of rigidity loss, that is, a
dominant stressed rigid network at low modifier content,
typically x < 15% M2Y (black curves), a growing frac-
tion of isostatic clusters (cyan) with increasing x which
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maximize around x ≃ 20% [Fig. 1(a)], consistently with the
prediction of a MFRT at this composition [17], and with
the experimental detection of an elastic threshold [31]
for M ¼ Na, Y ¼ O, and A ¼ Si (sodium silicates). With
increasing m, the network connectivity and the constraint
density now decrease, inducing a growth in topological
degrees of freedom [fð2Þ, Fig. 1(d), right axis] which
become nonzero for xcðmÞ ¼ ð4 −mÞ=ð12 −mÞ, i.e., at
the same condition as the one obtained for f ¼ 0 in Eq. (1).
As the index m and the overall network flexibility increase,
the locus of the MFRT shifts to lower x, and for m ¼ 4
this transition vanishes because the base network former
[i.e., at x ¼ 0] is already isostatically rigid (e.g., GeS4
[32]), and any addition of alkali ions will further increase
the network flexibility [red curve in Fig. 1(c)]. It is also
interesting to note that the model is able to reproduce
the salient features of rigidity transitions in Group IV
chalcogenides with (i) a MFRT for random networks when

x ¼ 0, in absence of structural self-organization [14], (ii) for
select ðm; xÞ conditions a topological Boolchand phase
[11,30,32] where the network remains essentially iso-
static [18]. These features extracted from a simple model
highlight the fact that close to the locus of the MFRT,
a certain number of anomalies (extrema, thresholds) in
physical properties should be expected [14], as dis-
cussed below.
Application of a hopping model [13] then permits us to

calculate from the probabilities pjk and Eq. (2) an ionic
conductivity σ using mobility μ and free carrier rate nL:

σ ¼ nLμ ¼ 2x exp½−hEci=kBT�: exp½−Em=kBT� ð3Þ

with a Coulomb energy averaged over the various anionic
sites [snapshots in Fig. 1(d)]:

hEci ¼
X

j;k

X

q

qEcpjk exp½−qEc=kBT� ð4Þ

where Ec is the Coulombic energy to extract a single cation
M⊕ from an anionic site and acts as a free parameter in the
theory. Em ¼ −Δfð2Þ with Δ ≃ 5 meV ¼ 0.2 kBT [33] is
usually a strain energy that can be expressed as a function
of the floppy mode density fð2Þ, i.e., the network defor-
mation energy Em is favored if local (flexible) deformation
modes are present.
Results for the conductivity are given in Fig. 1(d), and

clearly suggest that the presence of flexible modes will
substantially enhance ionic conduction. For m ¼ 2 and
with addition of an alkali modifier (M2Y), the increase of
σðxÞ is first driven by the growing presence of charge
carriers (nL), prior to a substantial increase once fð2Þ ≠ 0 at
the threshold xcðmÞ. The trend clearly indicates that the
presence of network flexibility will enhance ionic con-
duction, and mimics the exponential evolution of conduc-
tivity during an intermediate to flexible transition [13]. At
fixed alkali content x, an increase of the flexibility index m
now induces a growth of σ by up to one order of magnitude
(e.g., at x ¼ 20%, comparison between σ for m ¼ 2
and m ¼ 3).
Our second piece of evidence for conductivity enhance-

ment driven by network flexibility uses molecular simu-
lations which provide a support to the predicted thresholds,
and lead to additional insight at the atomic scale, while
also contrasting the results obtained from the simple
hopping model. Here we work at fixed alkali content x
on a N ¼ 3000 particle system ð1 − xÞSiSm − xNa2S, and
use a classical Born-Mayer (BM) force field that has been
fitted [34] in order to simulate the structure of sodium
thiosilicates. This potential is able to reproduce the main
features of the structure factor SðkÞ (position and amplitude
of the main peaks) of the Na2SiS3 (NS) composition, as
well as experimental data on diffusivity and conductivity
for m ¼ 2 [18]. The obtained structure is made of SiS4=2

FIG. 1. (a)–(c) Probability of finding stressed (black), isostatic
(cyan), and flexible (red) clusters for different flexibility indexsm
as a function of modifier (M2Y) content x: m ¼ 2 (a), m ¼ 3 (b)
and m ¼ 4 (c). (d) Calculated conductivity [Eq. (3)] for different
m values (green, orange, red), and parameters Ec ¼ 0.0002 and
Δ ¼ 0.2 in kBT units. The right axis represents the topological
degrees of freedom [Eq. (2) for m ¼ 2 (red) and m ¼ 3 (orange)]
as a function of x. The location xcðmÞ of the MFRT (broken
vertical lines) is indicated for each m. Bottom: three clusters
with respective probabilities p43 ∝ 24p4p3eIS, p33 ∝ 9p2

3eFL and
p32 ∝ 12p3p2eFL (see full detail as a function ofm and x in [18]),
and anionic sites (circles with broken lines) that can be identified
for the hopping model.
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tetrahedra that are connected by corners and edges as
also revealed from experiments [35]. The simulations
provide, therefore, a good basis for further investigations,
albeit obvious limitations can be expected as the BM
parameters have been fitted only on the single NS compo-
sition so that inaccurate force-field effects might appear
for any other ðx;mÞ condition. But as we are seeking
a generic effect, we work for this reason at fixed cell
length in NVT by varying only the connectivity via the
flexibility index m, and the subsequent induced homopolar
S─S bond population (Fig. 2). With varying the flexibility
index or sulfur content m, each starting system is cooled
from a high temperature state (2500 K, atomic position
memory loss) to different liquid target temperatures in
NVT at which a clear diffusive regime can be found for
t < 100 ps [18].
At fixed modifier content x and by focusing on the effect

of sulfur contentm > 2 larger than its stoichiometric value,
one can probe the role of molecular flexibility since it is
known that S-rich glasses belong to the flexible phase of
rigidity theory [14–16]. Two starting configurations are
used, (m ¼ 2, x ¼ 9%, i.e., NS9) and (m ¼ 2, x ¼ 50%,
i.e., NS), corresponding to NNa ¼ 200, NSi ¼ 900, NS ¼
1900, and NNa ¼ 1000, NSi ¼ 500, NS ¼ 1500, respec-
tively, and one furthermore has, e.g., m ¼ ðN-NSiÞ=NSi for
NS. The former system is stressed rigid [17,31] and
according to the constraint count of Eq. (1), one expects
the NS9 system to become flexible with increasing S
at the MFRT point mc ¼ 28=9 ¼ 3.11 or for Nc

Si ¼
9N=40 ¼ 675. The Na-rich system (Na2SiS3, NS) is
already flexible [f > 0, Eq. (1)] and depolymerized [23]
by the creation of NBS atoms (connected to Na ions), and
one will check if an additional reduction of network
connectivity could enhance even more the flexibility of
the network in order to promote ion conduction. For both
systems, with decreasing NSi one acknowledges a decrease
of the network connectivity (Fig. 2) which is characterized
by the reduction of the average coordination number [18],
consistent with the growth of flexible modes.

Focus is made on dynamic and electric properties.
Figure 3(a) displays the calculated diffusivities Dk of the
species k at different target temperatures as a function of
the number of Si atoms NSi. For NS9, the increase of
flexibility (i.e., reduction of NSi) obviously leads to a
substantial increase of Dk which grows (k ¼ Na) from
0.06 × 10−5 cm2 s−1 for N ¼ 850 to 0.6 × 10−5 cm2 s−1
for N ¼ 500, and maximizes for all temperatures around
NSi ≃ 600�650, i.e., close to the predicted MFRT thresh-
old Nc

Si. Here one recognizes salient features associated
with the well-established (waterlike) diffusivity anomaly in
densified tetrahedral liquids (water, silica,…) for which
network connectivity is controlled by the density induced
coordination change [36]. Recently such dynamic anoma-
lies have been unambiguously related with the isostatic
character of tetrahedral liquids [37,38] which represents a
stress-free state between the flexible and stressed rigid
phase of glassy networks with changing connectedness.
The temperature behavior leads to an obvious Arrhenius
behavior DkðTÞ ∝ exp½−EA=kBT� and corresponding acti-
vation energies also display an anomaly with the flexibility
index m (Fig. 4), the minimum in EA being also a seminal
signature of flexible to rigid transitions detected in early
experiments [39] and up to recently [40]. Molecular simu-
lation results, thus, indicate the presence of a MFRT signa-
ture for NS9. Results for the other system (NS) now clearly
indicate, as expected, the absence of a MFRT with
increasing flexibility index m since this system is already
flexible for m ¼ 2. This is confirmed by the absence of
diffusivity anomalies at all considered temperatures, and
instead, Dk grows continuously with m [18].
The ionic conductivity (σ) as a function of temperature T

can be obtained from the Nernst-Einstein equation [41]:

FIG. 2. Sulfur-related underlying network structure at 300 K in
NS9 for NSi ¼ 650 and NSi ¼ 300 obtained from molecular
dynamics simulations. Bars represent the homopolar S─S bonds
which are absent for NSi ¼ 900 (m ¼ 2).

(a) (b)

FIG. 3. (a) Calculated Na diffusivities (red) at 2000 K (filled
circles), 1500 K (open circles), and 1000 K (open triangles) in
NS9. Si (black) and S (green) diffusivities appear as solid and
broken lines for 2000 K and 1500 K, respectively. (b) Calculated
Nernst-Einstein conductivity σ as a function of the flexibility
index m for different isotherms in NS9 (red) and NS (black). The
vertical broken line indicates the locus of the MFRT in NS9. Error
bars are of the order of the size of the symbols.
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σðTÞ ¼ lim
t→∞

e2

6tVkBT

X

i;j

zizj
��
riðtÞ − rið0Þ�½rjðtÞ − rjð0Þ

��

ð5Þ

where V is the volume of the simulation box, e is the
elementary charge, and zi and zj are the fractional charges
of ions i and j of the BM potential, respectively. Here riðtÞ
is the position of atom i, and the brackets hi denote
ensemble averages. Figure 3(b) now represents the system
conductivity for different target temperatures as a function
of the flexibility index m for both systems of interest, NS9
and NS. Here, one clearly acknowledges that the situation
m ≥ 2 induces a growth in σ by about one order of magni-
tude in NS9, and a marked jump occurs close to the locus
mc ¼ 3.11 of the MFRT. For m > mc, the reduction of σ is
the consequence of the decrease ofDk in weakly connected
systems [NSi > 500 in Fig. 3(a) or m > 4.5 in Fig. 3(b)],
which in turn results from a reduction of excess entropy
(D ∝ exp½−A=TSex� [42]) driven by the profound structural
modification of a loosely connected network, a feature not
taken into account in the simple phenomenological model
of Eq. (3). One also acknowledges a continuous increase of
σ for the flexible NS system [Fig. 3(b)]. Similarly to the Na
diffusivity, for NS9 the related activation energy obtained
from an Arrhenius fit of the σðTÞ data also displays a
minimumwith the flexibility indexm (Fig. 4) as a signature
of a rigid to flexible transition, and not detected for the
flexible NS liquid (red solid line).
The present results revealing the central role of network

flexibility on electric properties in disordered media induce
some broader perspectives, while also providing some
clues for conductivity enhancement in a reasoned fashion.
From a basic viewpoint, it highlights the generality of
concepts from rigidity theory that obviously applies to
the present complex glasses as well, as also recently

emphasized for another complex material (calcium
hydrates, cement [43]). Although, the trends from Fig. 1(d)
(rigidity inspired calculation with varying x) and Fig. 3(b)
(Kubo based calculation with varyingm) cannot be directly
compared, they lead to the same conclusion, i.e., flexibility
and induced conductivity increase are achieved either by
network depolymerization (as in archetypal silicates [13])
or by additional twofold atoms as suggested by the present
numerical results. The obtained percolation of flexibility
at m ¼ mc can be put in perspective with the recent
identification of percolation phenomena in Ag based
sulfide electrolytes [5] where the substantial high ionic
conductivity has been related to the formation of percola-
tive channels with superionic conduction at a critical Ag
content xc. For the isochemical oxyde compound, calori-
metric and scattering measurements have indicated that
glasses satisfying x > xc belong to the flexible phase [44].
This provides direct experimental evidence that flexibility
induces conductivity enhancement as it is here demon-
strated that the addition of lower coordinated atoms brings
into an amorphous network flexible deformation modes
promoting the diffusion of charge carriers and conductivity.
Finally, the fact that conductivity can be increased by an
appropriate alloying should stimulate a new class of glassy
materials in the context of all-solid-state battery applica-
tions: “off-stoichiometric network modified glasses.”
While such alloying methods can obviously not apply to
silicates, sulfides are attractive because (i) they exhibit an
increased conductivity (10−3 Ω−1 cm−1) that results from
the more polarizable sulfur atoms with respect to oxygen,
and (ii) the flexibility index of sulfide network formers can
be tuned continuously by compositional changes, from
elemental sulfur to the stoichiometric compounds [32], in
addition to the presence of alkali modifiers which disrupt
the network by depolymerization. In this respect, identified
target systems might use, e.g., GeS4, SiS3, or AsS4 as
network formers rather than the stoichiometric compounds
GeS2, SiS2, or As2S3 [4].
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