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Topological rigid constraints can be computed rather simply with changing composition and tempera-

ture but their estimation remains challenging for other thermodynamic variables. Here, the investigation of

densified silicate liquids from molecular dynamics simulations combined with an analysis of radial and

angular atomic excursions allows defining a pressure dependence of such constraints. Results show, that

for a given composition, the dependence is nonmonotonic as it depends on the interplay between

constraints broken by thermal activation and additional constraints arising from the increase of network

connectivity under pressure. An anomalous behavior for oxygen bending constraints is obtained in the

(P, T) map which connects to reported anomalies in transport properties and is identified as the pressure

analogue of the stress-free Boolchand intermediate phase in rigidity driven by composition.
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From a mechanical viewpoint, the progressive stiffening
of an amorphous network can be described rather accu-
rately from the topology and the relevant interactions
which constrain bonds and angles at the molecular level
[1]. In the literature, this has led to a well-characterized
rigidity percolation which has been observed in chalcoge-
nide and oxide glasses with changing composition [1].
Such systems will indeed undergo a transition between a
underconstrained flexible phase giving rise to local defor-
mation modes and an overconstrained stressed rigid phase
which is locked by its high bond connectivity. In this
respect, Maxwell topological constraint counting, based
on the enumeration nc of bond-stretching (BS) and bond-
bending (BB) interactions acting as constraints, has been
the central ingredient for the theoretical framework [2].
The archetypal system which has served as the benchmark
is the GexSe1�x binary system [3] showing experimentally
a flexible phase for x < 0:20 and a stressed rigid phase for
x > 0:26while defining in between a stress-free Boolchand
intermediate phase (reversibility window) with remarkable
properties [4,5].

More recently, the introduction of temperature-
dependent constraints has permitted to extend the zero
temperature theory to T � 0, allowing for a description
of network-forming liquids and a quantitative prediction of
some physical and chemical properties [6] with changing
composition x and temperature, the main input being the
number of constraints per atom ncðx; TÞ, depending now
explicitly on temperature via a heuristic step function.

At this point, a natural question emerges. Can such
topological constraints be defined as a function of another
obvious thermodynamic variable, for example, pressure?
The question is far than trivial, in contrast with the deriva-
tion of constraints from composition or temperature. In the
former case, ncðxÞ is built straightforwardly [2,4] from

the coordination numbers and the composition x of
the network species. For the latter and for a given constraint
i, the temperature behavior qiðTÞ has the following
obvious properties qið0Þ ¼ 1 and qið1Þ ¼ 0 and qiðTÞ �
ncðiÞðx; TÞ=ncðiÞðx; T ¼ 0Þ. This definition simply highlights

the fact that all constraints must be intact for the fully
connected network at T ¼ 0 and broken in a high tempera-
ture liquid. There have been some attempts to derive qiðTÞ,
mostly from energy landscape approaches [7,8].
In addition, the issue of establishing a topological con-

straint count for densified liquids appears to be of great
importance as these systems display under certain condi-
tions anomalous behaviors in structural, dynamical, or
thermodynamic properties [9,10] which bear striking sim-
ilarities with those observed in the intermediate phase at
ambient pressure [11–13]. Such similarities underscore a
possible common physical origin for the observed anoma-
lies. But before a unified picture can be proposed, there is
need of a precise computation of the number of rigid
constraints nc with pressure. Rigidity induced by pressure
has been obtained in simple network formers from
molecular simulations [14], although an explicit estimate
of nc at the same simple and elegant level as the one used
for x was not reported. Establishing at least partially
ncðx; T; PÞ or generalizing a function qiðT; PÞ is the
purpose of the present Letter.
Here, it is shown from a combination of molecular

dynamics simulations of silicates and an analysis of angu-
lar and radial excursions that topological constraints with
pressure can be established in a neat way. For very high
pressures, glasses and liquids are stressed rigid, whereas
they are flexible at P ¼ 0. Results show that under pressure
change, moderate densified liquids adapt and reduce their
number of BB constraints, thus, opening a pressure
window between approximately 1 and 13 GPa at 2000 K.
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The latter is the pressure analogue of the stress-free revers-
ibility window obtained in compositional studies [4]. In the
present pressure window, transport properties such as dif-
fusion, viscosity, and related activation energies display an
anomalous behavior, i.e., an extremum with pressure
change. It, therefore, suggests that observed anomalies
[10] may well be salient features of the intermediate
Boolchand intermediate phase in the liquid state.

We have simulated in a (N, P, T) Ensemble a 3000
atomic system of a 2SiO2Na2O liquid and glass under
various (P, T) conditions. The choice of the system is
motivated by the fact that NS2 is flexible (nc < 3) at low
temperature [15] and will become stressed rigid under
pressure due to the tetrahedral to octahedral conversion
of the silicon environment [9,16] which increases the
global network connectivity. The atoms interact via a
two-body Teter potential which reproduces very accurately
not only the structure [17] but also the dynamics [18]. The
equations of motion have been integrated using a leap-frog
Verlet algorithm with a time step of 2 fs. Starting from an
initial temperature of 5000 K, a certain number of points
(T, P) in the thermodynamic diagram have been selected
and accumulated over a time interval of 2 ns, prior to the
constraint analysis. The diffusion coefficientDi (i ¼ Si, O)
has been computed from the long time limit of the mean-
square displacement D ¼ limt!1hr2ðtÞi=6t, whereas the
viscosity has been calculated using the Green-Kubo for-
malism [19]. Details on the computation of the transport
properties can be found in Ref. [18]. The investigation of
the effect of pressure on structure, dynamics and vibra-
tional properties is reported in Ref. [16].

In the following, we focus on the BB constraint of a
bridging oxygen (BO)-centred angle which is defined by
two adjacent SiO4=2 tetrahedra. Over the simulated trajec-

tory (2 ns), for a given BO atom k, the angular motion will
lead to a single bond angle distribution Pkð�Þ which can
be characterized by a mean ��k and a second moment
(or standard deviation ��k). When ��k is large (usually

��k > 15–20� [20]), it suggests that the bond-bending

restoring force which maintains the angle fixed around ��k
is ineffective. As a consequence, the associated BB topo-
logical constraint can be considered as broken. On the
contrary, for low values of ��k , the corresponding angle

acts as a constraint and will contribute to nc.
When averaged over the whole system (i.e., the whole

population of BO atoms), one will not only obtain the usual
bond angle distribution centred at 144�, similarly to a
standard computation [17], but also a distribution of stan-
dard deviations �.

Figure 1 shows the distribution of BO-centred angular
standard deviations in the 2000 K liquid for increasing
pressures (0<P< 20 GPa). At ambient pressure, a bimo-
dal distribution is found, similarly to Ref. [20]. The low
and high� contribution (�i and�b) can be unambiguously
assigned to intact and broken constraints, respectively.

In fact, at low temperature (300 K, i.e., all constraints
being intact) the standard deviation displays usually a
sharp distribution centred at �i < 10� [20], whereas at
high temperature, where all rigid constraints are broken
because of thermal activation [6], a broad distribution
(�b ’ 25�) is found. In the intermediate T interval, both
contributions vary so that a bimodal distribution is
obtained, as shown for P ¼ 0 (Fig. 1). From the latter,
one can estimate the fraction of intact BB constraints
which is here equal to qð2000 KÞ ¼ 0:77. With increasing
pressure, two phenomena take place as shown from the
evolution of the bimodal distribution (Fig. 1). First, the
intensity of the peak centered at � ¼ �b reduces before
vanishing in the pressure range 16<P< 20 GPa. It is the
signature that the thermally activated broken constraints
are restored with applied pressure. The low � contribution
associated with intact constraints has a nearly constant
intensity but shows a continuous shift of the peak position
�i with P (inset of Fig. 1), indicative of an increased
thermal activation but also of the presence of stress. In
fact, it has been shown that angular standard deviations in
GexSe1�x were increasing substantially when the network
was undergoing the flexible to stressed rigid transition [21].
However, stress from applied pressure exceeds by far what
can be achieved from a simple increase of connectivity [4].
In the low temperature liquid, stress cannot be released so
that �i will first increase like in systems under composi-
tional changes or in the present high temperature liquid
containing a large fraction qðTÞ of broken constraints.
However, at low T, one has qðTÞ ’ 1 so that additional
pressure leads to a decrease of �i which results from the
stiffening of the angular motion under high pressure. This
trend can be correlated with the findings discussed below.
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FIG. 1 (color online). Bridging oxygen (BO) standard devia-
tion distribution in a simulated NS2 liquid at 2000 K for various
pressures. Broken lines serve to track the peak positions �i and
�b of the bimodal distribution. The behavior of the peak position
�i with pressure is represented in the inset for different
isotherms.

PRL 110, 095501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 MARCH 2013

095501-2



One can now track the fraction of intact constraints
qðT; PÞ along an isotherm or along an isobar. Figure 2
shows such computed fractions qðTÞ at different fixed
pressures, established from the respective populations con-
tributing to the bimodal distribution (Fig. 1). At moderate
pressures, all display a broad step like behavior, with qðTÞ
decreasing from one to zero when the temperature is
increased. For very high pressures, qðTÞ is found to decay
only weakly with temperature and does not fall to zero
even at the most elevated temperatures (5000 K). A least-
squares fit (solid line in Fig. 2) to the numerical data at
equilibrium (T � 1500 K) using a simple two-state model
[22] involving Boltzmann prefactors exp½�U=kBT� satis-
fying qð0Þ ¼ 1 and qð1Þ ¼ 0 shows that for P ¼ 0, 6, and
14 GPa, the activation energy U necessary to break a
constraint is equal to 0:61� 0:08, 0:40� 0:05, and 0:53�
0:07 eV, respectively. Thus, U passes through a minimum
suggesting that thermally activated constraints can break
more easily in a certain pressure interval.

Such a behavior can be quantitatively represented on a
(P, T) map (Fig. 3) or with pressure along an isotherm
[black curves, Fig. 4(a)]. In Fig. 3, a clear minimum is
found at low temperatures in a pressure window approxi-
mately located over the interval 1<P< 13 GPa for
2000 K. Note that the width of the window decreases
with decreasing temperature and is found to be centered
at around 5 GPa at 1500 K, i.e., at the same pressure where
a thermodynamic anomaly has been found in silica (nega-
tive dilatation coefficient [9]). The present anomaly
appears to be the result of an interplay between the increase
of connectivity arising from the tetrahedral to octahedral
coordination change under pressure [18] which leads to
additional stress and the softening of the bond-bending BO
constraints which reduces rigidity. At ambient pressure, the
NS2 glass and corresponding liquids are flexible (nc ¼
2:56 at low temperature [15]). With the increase of pres-
sure, the average silicon and oxygen coordination numbers

�rSi and �rO increase (growth of SiV, SiVI, and OIII species
[16]), leading to an increase of the number of constraints per
atom by �nc ¼ 0:50 when P increases from 0 to 10 GPa
(and �rSi from 4.0 to 4.2). At the level of the network, the
global increase of nc arising from the growth of �rSi can be
reduced during a certain pressure interval by breaking the
energetically softer BB constraints of the BO atoms so that
qðPÞ decreases at low pressure [Fig. 3 and 4(a)]. However,
with growing pressure (and still growing �rSi and �rO), this
adaptive behavior can only hold up to a certain point
(’ 13 GPa at 2000 K), beyond which the softening of the
BB constraints can not accomodate any more the steadily
increasing pressure-induced stress. As a consequence, the
BO bending motion will stiffen under pressure, resulting in
an increase of qðPÞ for P> 13 GPa. In this respect, the
observed features bear large similarities with the self-
organized Boolchand intermediate phase where growing
stress induced by composition is released in adaptive
networks maintaining nc ’ 3 over a finite compositional
interval up to the stress transition [4].
Furthermore, the behavior of qðPÞ is found [Fig. 4(a)] to

be deeply correlated with a certain number of reported
transport anomalies in tetrahedral liquids [9,10,18].
Figure 4 summarizes what has been found from molecular
simulations at the temperature of 2000 K for the present
NS2 liquid. In the pressure window where BB constraints
break partially and reduce from qðPÞ ¼ 0:82 to 0.72 at
6 GPa [Fig. 4(a)], in order to adapt for the increasing
pressure-induced stress, viscosity and diffusion are found
to be minimum and maximum, respectively. The Arrhenius
plot of the viscosity or the diffusion constant (i.e., repre-
senting DSi;O or � with inverse temperature) permits us to

follow the corresponding activation energies for viscous
flow (E

�
A) or oxygen diffusion (ED

A) as a function of pres-

sure and these are also found to be minimum in the same
pressure window as qðPÞ for T ¼ 2000 K and 1500 K,
reducing from 1.6–1.4 eV to 1.1 eV, directly correlated
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FIG. 2 (color online). Fraction qðTÞ of intact angular (BB)
constraints for different isobars in simulated NS2 liquids (sym-
bols). The lines represent least-squares fit using Boltzmann
prefactors (see text, for details).

FIG. 3 (color online). Contour plot of the fraction (in %) of
intact constraints qðT; PÞ of liquid NS2 in the (T, P) map.
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with the trend obtained for qðPÞ. It underscores the fact that
BB constraint adaptation is intimately related to the low-
ering of the energy barriers involved in viscous flow.

The pressure window appears to be the interval where,
obviously, certain anomalies in the liquid take place and
the constraint behavior suggests that it is the pressure
analogue of the Boolchand phase or reversibility window
where viscosity and E

�
A anomalies [5,23] have been

observed as well. Therefore, several more general com-
ments can be drawn in conclusion which connect to
relaxation, the glass transition phenomenon, and the notion
of optimal glasses.

First, it has been observed [24] that the glass-forming
tendency is increased for systems that are able to increase
their melt viscosity down to lower temperatures. For this
reason, glasses form more easily at eutectics because
freezing-point depressions bring the system to lower tem-
peratures and higher viscosities, and this correlates rather
well with observed minima in the critical cooling rate in
order to avoid crystallization in NS liquids [25]. Following

this observation, one should expect that along an isotherm,
glass-formation will be optimized for systems having a
lower viscosity [Fig. 4(b)]. This property will indeed allow
the system found in the range 1<P< 13 GPa to reach
lower temperatures at � ¼ 1012 Poise, i.e., viscosity of the
glassy state. We have not computed the evolution of the
numerical glass transition temperature Tg with pressure

and can, therefore, not rescale the behavior of �ð1=TÞ to
�ðTg=TÞ at fixed pressure to estimate the liquid fragility

MðPÞ. However, given the known formula [12]: MðPÞ ¼
E�
AðPÞln102=kBTgðPÞ and assuming that Tg does not

depend too much on pressure, one may expect that in the
present system the pressure window coincides with a mini-
mum in fragility. This conclusion parallels the one derived
from a simplified Kirkwood-Keating model of the glass
transition [12] showing that glass-forming liquids in the
Boolchand intermediate phase are strong and that activa-
tion energy for viscosity or relaxation time are minimum
when nc ’ 3.
Second, one should mention the role played by compo-

sition such as in the archetypal GexSe1�x system. Here, for
a given composition of a silicate system, we have shown
that a subtle interplay can take place between pressure-
induced stress and the softening of topological constraints
by thermal activation. It becomes now clear that, ulti-
mately, a rigidity map can be established for any ionoco-
valent compound from the estimate of the number of
constraints ncðx; T; PÞ, defining flexible, intermediate and
stressed rigid zones in the thermodynamic diagram. At
present, only some areas of this map have been character-
ized for sodium silicates: at fixed composition (NS2,
present work), at zero pressure and zero temperature
[15], and at zero pressure and fixed composition [20].
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