## Comment on "Microscopic Theory of Network Glasses"

In a recent Letter, Hall and Wolynes [1] (HW) ask whether a microscopic theory of network glasses can be developed starting from a model of dense spherical fluids. To do so, they constrain the number of nearest neighbors and count their central force interactions separately. They obtain the dynamical transition temperature  $T_A$  (below which the system is nonergodic and the motion is landscape determined), and the entropy crisis (Kauzman) temperature  $T_K$  as functions of  $n_b$ , the average number of nearest neighbor bonds/atom. A Lindemann melting criterion on the amplitude of nearest neighbor vibrations defines the glass transition temperature  $T_G$ . The model shows that  $T_A/T_G$  and  $T_K/T_G$  monotonically increase and decrease, respectively, as functions of  $n_b$ . For  $n_b = 2.4$ ,  $T_A/T_G = 100$ , an unreasonable result. Mode coupling theory defines a critical nonergodicity temperature  $T_c$ beyond which a radical change in the long time limit of the density-density correlation function occurs.  $T_c$  has been plausibly estimated for vitreous silica in molecular dynamics simulations [2] as  $T_c/T_G = 2$ . Even this temperature is presently outside the reach of experimental investigations [2].

How do these results compare with experiments? There are standard procedures for extrapolating specific heats to obtain  $T_K$ , but identifying the onset of nonergodicity at  $T_A$  (or  $T_c$ ) is much more difficult. Chalcogenide glasses are ideal test systems because one can synthesize them over a wide range of  $n_b$  by chemical alloying group IV additives in Se base glass. Fortunately, glass transitions of these systems have been recently reinvestigated [3] using T-modulated scanning calorimetry (MDSC), a new method which permits separating the usual DSC heat flow endotherm  $\dot{H}_T$  into a reversing part  $\dot{H}_{rev}$  which is ergodic (and which follows the modulated T profile) from the nonreversing part  $\dot{H}_{\rm nr}$  which is nonergodic (arising from underlying temperature dependent activated processes) as illustrated in Fig. 1(a). MDSC permits one to establish this temperature  $T_A$  at which dynamics become landscape dominated (i.e., in MDSC language dominated by a *T*-dependent  $\dot{H}_{nr}$ ) in contrast to the linear response regime (i.e., at high temperatures when the heat flow is  $\dot{H}_{rev}$  dominated by a constant activation energy).

In binary  $Ge_x Se_{1-x}$  glasses, observed variations in  $T_A/T_G$  and  $T_K/T_G$  as a function of  $n_b = 2 + 2x$  are compared to HW predictions in Fig. 1(b). The  $T_K/T_G(n_b)$  results were obtained from a Vogel-Fulcher analysis of viscosity measurements [4]. One finds the observed and predicted variations in  $T_K/T_G(n_b)$  ratio to be in reasonable accord with each other showing a general reduction starting from a value of about 0.9 at  $n_b = 2$  to a value of 0.6 near  $n_b = 2.7$ . Note, however, that the broad global minimum in the observed  $T_K/T_G$  ratio near  $n_b = 2.4$  is not reproduced by the HW approach. More serious is the fact that ob-



FIG. 1. (a) MDSC scan of  $As_{20}Se_{80}$  bulk glass;  $T_G$  is defined as the inflexion point of  $\dot{H}_{rev}$  while  $T_A$  is the end point of the  $\dot{H}_{nr}$  endotherm. (b)  $T_A/T_G$  ( $\bullet$ ) and  $T_K/T_G$  ( $\blacktriangle$ ) for Ge-Se glasses. Lines without symbols are HW predictions [1].

served  $T_A/T_G$  values are (i) 2 orders of magnitude lower than the HW predictions and (ii) show a global minimum near  $n_b = 2.4$  that is in sharp contrast to the almost linear increase [Fig. 1(b)] predicted by HW. The global minima in  $T_K/T_G$  and  $T_A/T_G$  ratios are features related to selforganization of glasses that are missing in the HW approach. Clearly, features such as inclusion of local structures [3,5], structural self-organization [5,6], and noncentral forces (bond bending) are missing in the theory. Bond-bending forces constitute  $(4n_b - 6)/(5n_b - 6)$  of the global number of network constraints (e.g., 0.6 at the ideal  $n_b = 2.4$ ) indicating that the noncentral (angular) forces have to be included in a successful theory of network glasses.

- M. Micoulaut<sup>1</sup> and P. Boolchand<sup>2</sup>
- <sup>1</sup>LPTL, Université Paris VI 4 Place Jussieu 75252, Paris CEDEX 05, France <sup>2</sup>Department of ECECS University of Cincinnati Cincinnati, Ohio 45221-0030, USA

Received 1 April 2003; published 9 October 2003 DOI: 10.1103/PhysRevLett.91.159601 PACS numbers: 61.43.Fs, 64.70.Pf, 65.60.+a

- [1] R.W. Hall and P.G. Wolynes, Phys. Rev. Lett. **90**, 085505 (2003).
- [2] J. Horbach and W. Kob, Phys. Rev. E 64, 041503 (2001).
- [3] X. Feng, W. Bresser, and P. Boolchand, Phys. Rev. Lett.
  78, 4422 (1997); Y. Wang, J. Wells, D.G. Georgiev,
  P. Boolchand, K. Jackson, and M. Micoulaut, Phys. Rev. Lett. 87, 185503 (2001).
- [4] C. A. Angell, in *Rigidity Theory and Applications*, edited by M. F. Thorpe and P. M. Duxbury (Plenum, New York, 1999).
- [5] M. Micoulaut and J. C. Phillips, Phys. Rev. B 67, 104204 (2003); J. C. Phillips, Phys. Rev. Lett. 88, 216401 (2002).
- [6] P. Boolchand, D.G. Georgiev, and B. Goodman, J. Optoelectron. Adv. Mater. 3, 703 (2001).