
VOLUME 87, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 29 OCTOBER 2001

Sharp Rigid to Floppy Phase Transition Induced by Dangling Ends in a Network Glass
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The count of Lagrangian bonding constraints nc� y� in ternary Ge25S752yIy glasses �0 , y , 0.30� is
established from the molecular structure using Raman scattering and first-principles cluster calculations.
The results show that nc� y� decreases to 3 as y increases close to yc � 0.162�3�, where a sharply defined
global minimum in the nonreversing heat flow, DHnr� y� near Tg , is observed in scanning calorimetry.
Here we have a rigidity transition induced by I dangling ends, with its sharpness resulting from the
absence of self-organization in the random network.
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In 1788, Lagrange introduced [1] the notion of con-
straints and generalized coordinates in mechanics. Almost
a century later, Maxwell used mechanical constraints to
examine [2] the stability of macroscopic structures such
as trusses and bridges. In the early 1980s, Phillips rec-
ognized [3] that in covalent solids, valence forces [bond
stretching (bs) and bond bending (bb)] between atoms can
also serve as independent mechanical constraints. A nor-
mal mode analysis of such solids by Thorpe showed [4]
that the count of zero-frequency solutions (floppy modes)
of the dynamical matrix actually vanishes when the num-
ber of Langrangian bonding constraints per atom, nc, in-
creases to 3, the degrees of freedom per atom in 3D. These
simple but powerful ideas have led to the prediction of a
rigidity transition in random networks that has served as a
paradigm [5] of percolative transitions in disordered con-
densed matter. The phase transition has been confirmed
[6] in numerical simulations on generic random networks
and the underlying elastic constant power laws have been
established with increasing precision to discover that the
mean-field results for the transition are remarkably ac-
curate. On the other hand, experiments on binary and
ternary chalcogenide glasses have recently shown the ex-
istence [7–9] of two (transitions) instead of one transition,
thus suggesting that the elegant construction of mean-field
constraint counting alone may be insufficient to describe
the richness of the underlying phase transitions observed
in glasses. Indeed, Raman scattering and T-modulated
scanning calorimetry (MDSC) results on Si (or Ge)-Se,
As-Ge-Se glasses suggest evidence [10] for the growth of a

self-organized intermediate phase between the floppy and
stressed rigid phases, for which independent evidence [11]
is suggested from numerical simulations.

It was therefore of special interest to encounter a glass
system where the rigid to floppy transition appears to be

almost completely described by mean-field theory. In this
Letter, we report on the molecular structure of ternary
Ge0.25S0.752yIy glasses from Raman scattering experiments
and first-principles cluster calculations. The results show
nc� y� � 3 when y is close to 0.162(3), a composition
where a global minimum in the nonreversing heat flow,
DHnr� y� is observed in MDSC measurements. The obser-
vation constitutes direct evidence of a rigid to floppy tran-

sition induced by the onefold coordinated I atoms [12]. A
novel aspect of the transition here is that it is unusually
sharp and occurs close to the predicted mean-field value
[13], features not observed previously [7–11].

The glasses were synthesized by reacting 99.99% pure
elemental Ge, S, and GeI4 as the starting materials, slowly
�1 ±C�min� heating up to 950 ±C and equilibrating the melts
close to the liquidus prior to a water quench. The glass
transition temperature, Tg� y�, was measured at 1 ±C�100 s
modulation rate and 3 ±C�min scan rate using a model 2920
MDSC instrument from TA Instruments, Inc., and show, in
general, a monotonic decrease with y [Fig. 1 (inset)] with a
narrow region near y � 0.17 where a sharp drop in Tg oc-
curs. In a MDSC scan, one routinely deconvolutes [7–10]
the total heat flow endotherm near Tg into a reversing part,
�Hr, and a nonreversing part, �Hnr. Figure 1 reproduces the
DHnr� y� trend, which shows a sharply defined and deep
minimum at y � yc � 0.162�3�, or r̄ � r̄c � 2.34. Here
the mean coordination number r̄ � 2.5 2 y and is ob-
tained by taking the coordination numbers of Ge, S, and I
to be 4, 2, and 1, respectively.

Raman scattering results (unpolarized) taken in a
backscattering geometry using 647.1 nm radiation loosely
focused to a 1 mm spot size appear in Fig. 2. Details of
the setup appear elsewhere [7,8]. At y � 0, one observes
[7] modes of corner-sharing (CS) and edge-sharing (ES)
Ge�S1�2�4 tetrahedra �m � 0� at nCS�0� � 341 cm21
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FIG. 1. Inset shows the Tg� y� variation in titled glasses and the
solid line is the prediction of SAT. The figure gives a variation
of the nonreversing heat flow term, DHnr, as a function of r̄
in the present ternary �≤� and the Ge-Se binary �±� (Ref. [7]).
The arrows delineate the region of self-organization (Ref. [10]).

and at nES � 370 cm21, respectively. The line shapes
reveal new modes [14] (Fig. 2) of mixed Ge�S1�2�42mIm

tetrahedra, m � 1, 2, 3, and 4, with increasing I content at
about 240, 230, 185, and 155 cm21, respectively. These
modes are found to be strongly polarized while the one at
260 cm21 is depolarized. By deconvoluting the observed
line shapes to an appropriate superposition of Gaussians,
we have also obtained the mode frequency variation of
the CS mode of the m � 0 species nCS� y� [Fig. 3(b)],

FIG. 2. Raman line shapes observed in the present ternary
showing modes of CS Ge�S1�2�42mIm tetrahedra (m � 1, 2,
3, and 4) evolving with increasing iodine concentration in the
low-frequency regime (left panel) and blueshift of the CS mode
of m � 0 tetrahedra in the high-frequency regime (right panel).
The label s � symmetric mode (polarized); a � antisymmetric
(depolarized). The theoretically predicted mode frequencies
from first-principles calculations are shown as vertical bars on
top. Sn designates modes of S chains.

and the matrix element corrected (discussed later) nor-
malized concentrations of the mixed tetrahedra Nm� y��N

[Fig. 3(a)]. The concentrations of the mixed (m � 1, 2,
and 3) tetrahedra increase at the expense of those of the
pure tetrahedra �m � 0� with increasing I content. A
comparison of the observed trends with those inferred
from combinatorial calculations [15] [the solid lines in
Fig. 3(a)] suggests that I replacement of bridging S atoms
of the backbone proceeds almost stochastically up to
y � 0.20. At higher y �.0.20�, this behavior is, however,
interrupted as m � 3 and 4 units grow preferentially.

The Tg� y� variation has been analyzed by stochastic
agglomeration theory (SAT) [16]. The theory relates an
increase in melt viscosity (or relaxation time) to
agglomeration of specific local structural configura-
tions (m � 0, 1, 2, 3, and 4 units in our case), and
Tg is identified with the T where the agglomera-
tion process freezes [17]. The solid line in the Fig. 1
inset gives the Tg� y� prediction for the case when m � 0,
1, 2 units are considered in the agglomeration, and, as
expected, nicely reproduces the observed trend since these
are the only units populated at low y. At higher y �.0.15�,

FIG. 3. (a) (color) Concentrations Nm� y��N of the mixed tetra-
hedra, m � 0 (dark circles), m � 1 (red circles), m � 2 (green
squares), m � 3 (yellow squares), and m � 4 (blue triangles)
plotted as a function of y. The solid curves are the predictions
of the combinatorial calculation (Ref. [15]) and are not a fit to
the data points. (b) Raman mode frequency (open circles) varia-
tion n0� y� of m � 0 units and the Raman count of nc� y�, (solid
circles) calculated from Eq. (2), plotted as a function of I con-
tent. The solid line is the prediction of nc� y� from SAT.
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m � 3 units must also be considered, thus substantially
increasing the range of possibilities for agglomeration, a
point of ongoing investigations.

First-principles calculations [18,19] based on density
functional theory (DFT) were carried out to predict the
Raman mode frequencies and strengths for Ge�S1�2�42mIm

tetrahedra, with m � 0, 1, 2, 3 and 4. The calcula-
tions made use of local orbital basis sets and a mixed
pseudopotential/all-electron formalism [19]. H atoms
were used to terminate dangling bonds so that all the
S atoms in the models are twofold coordinated. Each
cluster model was first relaxed to its minimum energy
geometry and the full vibrational spectrum was calcu-
lated using a standard, finite-difference approach for
building the force constant matrix [18,20]. The Raman
intensity of each vibrational mode was computed us-
ing a new DFT-based approach [18] that was recently
used to successfully model the Raman spectrum of
GeSe2 and GeS2 [21]. The calculated Raman-active
bond-stretching modes of the Ge�S1�2�42mIm tetrahedra
appear in Table I. The modes are labeled (Table I,
Fig. 2) symmetric (s) and asymmetric (a) according to
whether the stretches of the various bonds are in phase
or out of phase, respectively. The total number of modes
�symmetric 1 asymmetric� in each case is four, corre-
sponding to the four bonds of a tetrahedron. As m increases
from 0 to 3, the frequency of the upper mode increases
from 347 to 400 cm21 while the frequency of the lower
mode decreases from 226 to 183 cm21. The latter
modes are clearly resolved in the observed line shapes
(Fig. 2) and permit the integrated mode intensities to be
established. The m-unit concentrations, Nm� y��N, of the
network building blocks [Fig. 3(a)] were then deduced by

TABLE I. Predicted Raman mode frequencies and scattering
strengths of the mixed Ge�S1�2�42mIm units using first-principles
calculations (Refs. [16–18]).

Unit Symmetric Mode Asymmetric Mode
m v IRam v IRam

�cm21� �D4�amu� �cm21� �D4�amu�

0 347 49.5 402 6.2
412 8.6
412 8.6

1 226 13.5 398 8.4
358 38.7 398 8.4

2 202 23.6 251 3.1
387 20.7 418 9.1

3 183 26.4 260 3.7
400 14.7 263 3.5

4 159 27.6 261 4.1
261 4.1
261 4.1

normalizing the integrated intensities by the mode cross
sections (Table I).

Our interpretation of the results is as follows. As in the
chalcogenides [7–10], the global minimum in DHnr� y�
(Fig. 1) provides evidence of the rigid to floppy transi-
tion at yc � 0.162�3� or r̄c � 2.338�3�. DHnr measures
the latent heat (configurational energy change) between
the glassy and liquid states, and it vanishes when the net-
work is optimally constrained, i.e., nc � 3. The location
�r̄ � 2.34� and narrow width �Dr̄ , 0.01� of the rigidity
transition are both consistent with a stochastic evolution of
the network with increasing I content, as independently in-
ferred above from the Tg� y� trends (Fig. 1, inset) analyzed
by SAT [16]. The mean-field prediction [13] of the rigid-
ity transition in a random network having a finite fraction
n1�N of onefold coordinated atoms introduces a shift of
the phase transition from the magic number [3,4] of 2.40
to a lower value that is given by

r̄c � 2.40 2 0.4�n1�N � . (1a)

For the present Ge25S752yIy ternary, the phase transition is
then predicted to occur at a critical concentration yc, given
by

2.5 2 yc � 2.40 2 0.4yc or yc � 1�6 . (1b)

The mean-field prediction [13] at yc � 0.166 above
is thus in excellent accord with the MDSC result of
yc � 0.162�3�.

The Raman results [Fig. 3(b)] provide crucial insights
into features of the glass structure responsible for the sharp
phase transition observed. The near stochastic evolution of
network structure at y , 0.20 suggested by the results of
Fig. 3a is the consequence of a delicate balance between
competing effects; a Pauling charge transfer effect [22]
that promotes I bonding with Ge to favor network forma-
tion, and a local clamping (size) effect [23] that leads to
molecular phase separation. The Pauling charge transfer

effect requires I �xp � electronegativity � 2.5� to chem-
ically bond with Ge �xp � 1.8� rather than S �xp � 2.5�,
ensuring that the I for S replacement proceeds exclusively

in the rigid backbone. On the other hand, such a replace-
ment also clamps the backbone [23] locally in addition to
reducing the global connectivity (reflected in the Tg re-
duction) as dangling Ge-I ends form. The local clamping

is the consequence of a 30% larger covalent radius of the
iodine additive �rI � 1.33 Å� in relation to the S substitu-
tent �rS � 1.02 Å� and the repulsive nonbonding van der
Waals (vdW) interactions that drive the lone-pair bear-

ing I and S atoms apart (rvdW � 3.78 Å, Ref. [24]). One
thus finds a blueshift [Fig. 3(b)] of the CS mode frequen-
cies �n0� y�� of the m � 0 units but a redshift of modes of
m � 1 4 units (Fig. 2) as the network softens. The sig-
moidal dependence of n0� y� [Fig. 3(b)] reflects the local

clamping effect of the backbone. At low y, n0� y� increases
slowly at first � y , 0.05� and then rapidly � y . 0.10�
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as the clamping effect manifests upon halogenation. At
y . 0.20, n0� y� saturates because the rapid growth in the
m � 4 units [Fig. 3(b)] provides stress relief as molecular
phase separation ensues.

A rewarding feature of the Raman results is that they fix
concentrations, Nm�N , of the various m units [Fig. 3(a)]
which permits an estimate of the global Lagrangian bond-
ing constraints. Using

nc� y� �
3

4

X

m

Nm� y�

N
Cm 1

1

2
, (2)

where the sum extends over network-forming units (m �

0, 1, 2, and 3) and Cm � �22 2 m���6 1 m� represents
[25] the count of bs and bb constraints per atom in a given
m unit. In Eq. (2), the base glass �Ge25S75� is regarded
to be made up of a rigid GeS2 phase (first term) and a
floppy Sn-chain phase (second term) with I for S replace-
ment depleting the count of constraints in the GeS2 phase.
Figure 3(b) provides a plot of nc� y�, and one finds that
the phase transition, nc � 3, occurs when yc � 0.147�15�,
close to the more accurate value yc � 0.162�3� observed
in MDSC. The less accurate Raman value of yc is not
surprising given the uncertainties in measurements of the
mode scattering strengths and the estimate of mode cross
sections. Finally, a fourth independent means to establish
yc derives from the Tg� y� trends analyzed by SAT. By us-
ing Eq. (2) and the SAT derived Nm� y��N values, we have
also deduced the nc� y� variation and obtain yc � 0.169 at
nc � 3 [Fig. 3(b)]. These results provide a direct test of
the original principle [3,4], nc � 3, used as the basis of
the rigidy transition in random systems.

In summary, we have observed a sharply defined rigid-

ity transition in a glass network induced by dangling ends.
We have estimated the critical composition by two inde-
pendent methods, both yielding good agreement with ex-
periments. The best agreement is obtained by assuming
that at the critical composition the I dopants are bonded to
Ge but are otherwise randomly distributed and unaffected
by clamping (size) effects. Such random distributions are
rare and their presence explains the observed extreme nar-
rowness of the thermally reversing window. This in turn
implies that observation of wide thermally reversing win-
dows in network glasses [7–10] is best understood in terms
of network self-organization.
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