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the DFT+vdW+U approach
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We investigate the electronic and structural zero-temperature properties of the α phase of solid oxygen at
pressures ranging from 0 to 6 GPa. Crystal and electronic structures have been characterized using a generalized
gradient approximation combined with a semiempirical van der Waals dispersive interaction and a Hubbard U
correction. Lattice parameters, volume-pressure relation, compressibility, dispersion curve, density of states, and
phonon frequencies are studied under pressure and indicate a marked sensitivity with the considered electronic
model. A systematic comparison of the various parameters permits one to determine an optimized scheme that
reproduces the experimental behavior with pressure and represents a clear improvement with respect to previous
simulations and phenomenological models.
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I. INTRODUCTION

Oxygen is particular and unique in many ways given its
fundamental role in biology and geophysics. It is, indeed, the
most abundant element in the earth’s crust and the description
and characterization of its complex phase diagram continues
to stimulate both experimental and theoretical studies.

Oxygen is also the only elemental molecule which carries
a magnetic moment due to the presence of two unpaired elec-
trons on the upper π�

g molecular orbital (Fig. 1) which gives a
ground state with S = 1 (Hund’s rule) in the electronic triplet
ground state 3�−

g . From the first study by Perrier and Onnes
[1] below the melting point of oxygen at around 54 K, experi-
mental evidence has been provided that solid oxygen displays
magnetic ordering. Among the documented low-temperature
crystalline phases (denoted α, δ, and ε, see Fig. 2 the phase
diagram without the external magnetic field, i.e., without the
so called θ -O2 nor η-O2 and ζ -O2 phases), the stable one at
24 K and ambient pressure (i.e., α-O2 phase) has an antifer-
romagnetic long-range order [2]. At low temperature and/or
high pressure, this ordering is disturbed and leads to various
magnetic ground states which have been investigated recently
by neutron scattering [3–6]. Numerical investigations using
density functional theory (DFT) have essentially focused on
high pressure phases [7–10] among which the characterization
[9] of the ε-O2 phase. The latter is thought to have a particular
magnetic structure (a “plaquette”-like) in which spins dis-
play antiferromagnetic ordering over four oxygen molecules.
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Earlier work using empirical force fields [11] have attempted
to describe the α phase but led to an unsuccessful modeling of
the α-β transition, found at too small pressures. The structure
of the α phase is well understood at ambient pressure, but the
transition from α-O2 to δ-O2 has not been studied as part of a
first-principles approach.

The aim of this work is precisely to improve the structural
and electronic description of solid oxygen at low pressure by
first-principles methods. In contrast with previous DFT calcu-
lations [7–10], the focus of the present contribution is, indeed,
on the “low” pressure range, i.e., up to 10 GPa, where the sta-
ble magnetic phases α-O2 and δ-O2 are experimentally found.
Regarding this region of the phase diagram, we are only aware
of the classical model from work of Etters et al. using an
empirical force fields [11], and DFT based approaches have
not yet been considered, apart from exploring the structure of
the magnetic-field-induced θ -O2 phase [12].

At low pressure and low temperature (below 24 K at
zero-pressure), the insulating α-O2 phase crystallizes in
a monoclinic structure (space group C2/m) with two O2

molecules per unit cell (Fig. 3). These in-plane molecules
have an antiferromagnetic coupling (Fig. 4) [2,3,13,14]. Ac-
cording to the choice of the monoclinic cell, there are two
different sets of parameters c and β (see red vectors on Fig. 3)
or c′ and β ′ (see dashed blue lines in Fig. 3) to describe
the monoclinc cell of α oxygen. We use in this paper the
definition for which the monoclinic cell has the smallest mon-
oclinic angle—Delone’s rule [15]—i.e., c and β parameters.
To compare our values with previous simulations [11,12] and
experimental data [16–18] that sometimes use c′ and β ′, we
will use volume conservation to link these parameters using

c sin β = c′ sin β ′. (1)

2469-9950/2024/110(14)/144108(16) 144108-1 ©2024 American Physical Society

https://orcid.org/0000-0002-0273-0563
https://orcid.org/0000-0002-5682-4960
https://orcid.org/0000-0003-3826-4813
https://ror.org/04zaaa143
https://ror.org/05abgg682
https://ror.org/009gyvm78
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.144108&domain=pdf&date_stamp=2024-10-16
https://doi.org/10.1103/PhysRevB.110.144108


ATTAIAA, MICOULAUT, KLOTZ, AND SCANDOLO PHYSICAL REVIEW B 110, 144108 (2024)

FIG. 1. Schematic molecular orbital diagram for the 3�−
g triplet

ground state of O2 molecule.

At fixed temperature and with increasing pressure from
ambient conditions, an orthorhombic phase occurs (space
group Fmmm) with also two O2 molecules per unit cell. This
transition from the monoclinic structure of the α phase to
the orthorhombic structure (δ-O2 phase) is characterized by
a transition that manifests e.g. by a variation of the angle β�

from �100◦ to �90◦. Diffraction patterns during isothermal
decompressions have revealed [17] that this δ-α transition
occurs between 5.9 GPa and 5.3 GPa, albeit the exact experi-
mental locus of the transition pressure [16,19,20] has not yet
been established. Using Alkashi’s relation, one can link this
transition angle β� to the other lattice characteristics by

c′ sin β ′ = 1
2 C sin β�, (2)

FIG. 2. Phase diagram of oxygen. Adapted from Ref. [9]. The
present study focuses on α-oxygen found at low temperature between
0 and �6 GPa.

FIG. 3. Monoclinic structure of α-O2. The dashed (blue) cell is
equivalent to the monoclinic one defined by red lattice vectors.

where the lattice parameter C (see dotted green line on Fig. 3)
is given by

C =
√

a2 + (2c′)2 − 4ac′ cos(180 − β ′). (3)

Neutron scattering experiments [3,4], furthermore, indicate
that the cristallographic phase δ-O2 has up to three different
magnetic orders. The low-temperature commensurate (LTC)
phase is the one originally suggested by Goncharenko et al.
[5]. In the 2D space defined by (a, b), spins are in an anti-
ferromagnetic (AFM) coupling, with a spin direction along
the b axis, as suggested by Gorelli et al. [21] and Santoro
et al. [22]. Between adjacent 2D spaces, spins are in a fer-
romagnetic (FM) coupling at low temperatures [3,5], which
entails a doubling of the unit cell in the c-direction, compared
to the α phase. Conversely, the high-temperature commen-
surate (HTC) phase differs from the LTC ones only by an
AFM coupling between adjacent 2D spaces, i.e., for the mon-
oclinic c lattice, equivalent (0; 0; 0) and (0; 0; c) molecules

FIG. 4. Magnetic configuration of monoclinic structure of α-O2.
The in-plane molecules are in an anti-ferromagnetic coupling, while
the out-of-plane molecules are in a ferromagnetic configuration.
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in HTC phase are not anymore in LTC phase. This HTC
magnetic δ-O2 phase is identical to the α-O2 phase. Finally,
the intermediate-temperature commensurate (ITC) phase is
made up of FM and AFM alternation stacking along the c axis.
This underscores the complexity of the magnetic ordering that
is transformed in a rather subtle fashion with applied pressure.

To describe the low-pressure behavior of solid oxygen,
it is very much desirable to assess a DFT scheme able to
substantiate the electronic and magnetic characteristics and
to improve the classical modeling [11]. This is the purpose
of the present contributions that builds on the recent method-
ology [9] introduced for δ-O2 and [12] for the investigation
of θ -O2. Our results indicate that the DFT simulations also
must involve Hubbard and dispersive [van der Waals (vdW)]
corrections to account for the complex electronic interactions
at play at low pressure. Once such model parameters are fixed,
we explore the phase transformation with increasing pressure,
and obtain a transition pressure for the α-δ transformation
that is now compatible with experiments. The electronic and
vibrational properties are then investigated as a function of
pressure.

The paper is organized as follows. In Sec. II we summarize
the DFT+vdW-D2+U formalism we have used and a certain
number of numerical considerations about our calculations.
Then, we present and discuss our main results in Sec. III
and compare them with other data. This permits to assess the
parameters used for our model. We then describe in Sec. IV
both electronic and vibrational properties with pressure. Fi-
nally, in Sec. V we summarize our findings and propose some
conclusive remarks.

II. METHODS AND COMPUTATIONAL DETAILS

A. DFT framework

The use of DFT [23,24] has become a such general
framework for bonding and structure studies in condensed
matter. This theory involves the determination of one-electron
Schrödinger equations—so called Kohn-Sham equations—
in the presence of an effective one-electron self-consistent
potential Veff(r), which stands for three contributions: (i)
the Coulomb potential from the density n(r), (ii) the ex-
ternal potential, and (iii) the functional derivative of the
exchange-correlation (XC) density functional EXC[n(r)]. In
principle universal, the latter ones describe many-particle ef-
fects. According to this framework, an approximate density
energy functional EDFT[n(r)] is obtained using the QUANTUM

ESPRESSO (QE) suite [25–27].
The effect of electron correlations was complemented with

GGA+U corrections and with long-range vdW corrections—
as shown hereafter—so that, at last, in our DFT+vdW-D2+U
formalism, the total energy is then given by

EDFT+disp+U = EDFT[n(r)] + Edisp + EU
[{

niσ
mm′

}]
. (4)

All properties were calculated using DFT as implemented
in QE based on plane waves and periodic boundary con-
ditions. The electron-ion interactions were treated using a
projector augmented wave pseudopotential with six valence
electrons. We used for the XC term a generalized gradi-
ent approximation (GGA) of the Perdew-Burke-Ernzerhof
(PBE) functional [28]. Ultrasoft pseudopotentials [29] of

Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) type [30,31] are
used without further modification to describe valence-core
interactions, all scalar products between crystal and atomic
pseudowave functions are intended to include the usual S
matrix describing orthogonality in presence of charge aug-
mentation [29].

The valence electron wave functions are expanded in a
plane-wave basis set with a kinetic energy cutoff of 150 Ry
and a charge density cutoff of 600 Ry are used to achieve
pressure convergence within less than 5 × 10−2 GPa.

The crystal structure (C2/m) and the initial atomic posi-
tions were taken from the experimental data of Krupskı̆ et al.
[32]. Both the lattice parameters and atomic coordinates for
all the structure were obtained by performing variable-cell
optimization at various values of pressure. A molecular AFM
in-plane configuration was used to take into account the mag-
netization of the α phase. Vibrational zero-point motion, finite
temperature effects and spin-orbit coupling are not included.
The spin-orbit coupling matrix element between the triplet
3�−

g state and the singlet 1�+
g state has been widely studied

[33–38] and published experimental and computational values
vary between 150 to 180 cm−1 (around 20 meV), which is
one to three orders of magnitude smaller than the disper-
sion energy and Hubbard energy. It should be noted that
the absence of spin-orbit coupling avoids that the direction
of the magnetization is coupled to the crystal lattice. As a
result, the energy of the system is not affected by a global
rotation of the magnetization, i.e., DFT calculations cannot
predict the global direction of the magnetization, but only the
relative orientation of the magnetization at different points in
space.

Cell parameters and atomic positions were then fully
optimized at different pressures until forces were smaller
than 10−5 a.u. using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [39,40]. Results obtained with a denser
30-point grid did not change significantly the results: less than
0.1 mRy for the energy per molecule, less than 10−3 eV/Å for
the forces on atoms and less than 0.5 kbar for the stress tensor.

Brillouin’s zone (BZ) integration was carried out using k-
point grids generated with the Monkhorst-Pack method [41].
The size of this grid is 4 × 4 × 4 for the primitive cell of α-O2

phase considered in this study (two O2 molecules).
The DOS and Löwdin projected-DOS calculations were

performed using a 8 × 8 × 8 q-points mesh and a Gaussian
broadening of 27.2 meV (2 mRy). Electronic integration in the
self-consistent run before phonon calculations was performed
on a 12 × 12 × 12 Monkhorst-Pack q-points mesh. Finally,
the vibrational properties at T = 0 K were calculated using
DFPT in the linear response regime [42–44].

B. Dispersive forces scheme

To describe vdW interactions in the molecular crystals, we
selected the semiempirical dispersion option called DFT-D2,
developed by Grimme [45] and implemented into QE by Gi-
annozzi et al. [25–27]. Added to the conventional DFT total
energy, this long-range corrective term is given by

Edisp = −1

2

∑
i, j

Ci j
6

[∑
R

|ri j + R|−6 fdamp(|ri j + R|)
]
, (5)
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where ri j = r j − ri is the vector distance between two atoms,
R are the lattice vectors, and Ci j

6 dispersion coefficients are
computed for each atom pair i j by the geometric mean of

atomic terms: Ci j
6 =

√
Ci

6 · C j
6 . In Eq. (5), the external sum

runs over the few atoms of the crystal unit cell, while the
inner sum runs over the lattice parameters until the distance
|ri j + R| becomes larger than 100 Å (convergence criterion).
To avoid near-singularities for small lattice vectors, a damping
function is used, which takes the following form:

fdamp(|ri j + R|) = s6

{
1 + exp

[
−d

( |ri j + R|
R0

− 1

)]}−1

,

(6)

where s6 is a global functional-dependent scaling factor and
d is a parameter that tunes the steepness of the damping
function. According to Barone et al. [46], these parameters
are set to s6 = 0.75 and d = 20 (for PBE functional used here,
see above). By default, the R0 terms are a sum of atomic vdW
radii of the atom pairs (R0 = Ri

0 + R j
0).

We started our study by adopting the parameters pro-
posed by Grimme [45,47], i.e., dispersion coefficient of C6 =
24.284 Ry a6

0 and vdW radius of R0 = 2.536 a0.

C. GGA+U scheme

To describe the oxygen as an antiferromagnetic Mott-
Hubbard insulator at low pressures, we introduce another
correction by taking into account the strong intramolecu-
lar Coulomb repulsion within the π�

g states (Fig. 1). In the
DFT+U scheme, the DFT total energy EDFT[n(r)] is aug-
mented by a corrective EU term which favors Mott localization
of electrons on atomic sites. Inspired by the Hubbard model
[48], it was implemented into QE [49] using a simplified
rotationally invariant formulation [50] as

EU =
∑
i,σ

U i

2
Tr[niσ (1 − niσ )], (7)

where U i is the spherically averaged onsite Coulomb repul-
sion parameter on atomic site i (here, applied on the 2p
orbitals of oxygen) and the occupation matrices niσ are com-
puted as

niσ
mm′ =

Nk∑
k

Nocc∑
v

f σ
vk

〈
ψσ

vk

∣∣φi
m

〉〈
φi

m′
∣∣ψσ

vk

〉
. (8)

In Eq. (8), the first sum runs over the number of k points (Nk)
in the first Brillouin zone, while the second one runs over
the occupied states (Nocc) characterized by the electronic band
index v. Indexes m and m′ run over projections of the angu-
lar momentum manifolds that are subjected to the Hubbard
correction on atoms i.

Furthermore, the ψσ
vk denote the oxygen valence electronic

wave functions—i.e., Kohn-Sham states—matching to the
(vk) state with a spin σ and for a f σ

vk occupations according to
the Fermi-Dirac distribution of their energy. Localized orbitals
φi

m are the valence atomic orbitals with state index m (angular
momentum component |�m〉) and centered on site i. Thus,
projectors |φi

m〉〈φi
m′ | are localized-level occupation matrices

FIG. 5. Evolution of the cell volume with pressure using regular
DFT, compared to data from Etters’ classical molecular dynamics
simulations [11] and experiments from Akahama et al. [16] and Bar-
rett et al. [52]. We also indicate the effect of an additional correction
(+U or +vdW-D2) to the DFT (see text).

projecting on atomic pseudowave functions. Finally, the ele-
ments niσ

mm′ measure the occupation of localized orbitals.
In this paper, we have used the implementation by Gian-

nozzi et al. [27] in QE of the density functional perturbation
theory (DFPT) method from Timrov et al. [51] to calculate
the ab initio onsite Coulomb repulsion parameters as intro-
duced in Ref. [49] and neglecting intersite terms. Within the
first-principles linear-response approach, the Hubbard inter-
actions U i associated to site i (for each inequivalent atom)
are the elements of an effective interaction matrix, computed
as the difference between bare χ0 and screened χ inverse
susceptibilities (i.e., noninteracting and interacting response
matrices):

U i = (
χ−1

0 − χ−1)
ii. (9)

As for the BZ, the q-point grid used to obtain the effective
interaction matrix was also of 4 × 4 × 4.

III. RESULTS AND DISCUSSION

As a starting point, we represent the cell volume of α-O2

(Fig. 5) and the transition angle β� (Fig. 6) as a function of
pressure for our results and other data from x-ray diffraction
experiments (Akahama et al. [16]) and empirical simulations
from Etters et al. [11]. When no corrections are considered,
it can be noted from the V -P equation of state (Fig. 5) that
the volume at low pressure is widely overestimated whereas
at high pressure, simulations and experiments differ by 5–6%.
Note that Kasamatsu et al. [12] studied α-O2 using two differ-
ent van der Waals density functionals (vdW-DF): the revised
version of PBE (revPBE) and the Becke type (optB86b) ex-
changes, and in both cases, this led to an underestimate of
the volume with U = 0 eV. Similarly, the application of the
Hubbard correction alone (calculated value of U = 6.0 eV)
overestimates the volume at low pressures, but considerably
improves consistency between simulations and experiments
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FIG. 6. Evolution of the transition angle β� with pressure using
regular DFT compared to data from classical molecular dynamics
simulations [11] and from experiments [16,52]. We also indicate the
effect of an additional correction (+U or +vdW-D2) to the DFT
(see text).

at high pressures. Also note that with a vdW correction using
default Grimme’s values (see above), the volume is systemat-
ically underestimated.

On Fig. 6, the evolution of the transition angle β� with
pressure indicates a transition at around 1 GPa, that is even
lower than the predicted one from Etters et al. [11] which
itself is lower than the one measured in diffraction experi-
ments [17]. Note that although the volume at low pressure
is overestimated by our calculations, the transition angle is
underestimated in comparison with the other represented data,
and even more when vdW correction is used. However, one
can see that the Hubbard term (U = 6.0 eV) enables to im-
prove the zero-pressure value of this angle.

Obviously, the absence of corrections or even basic cor-
rections (i.e., Grimme parameterized dispersive corrections
or self-consistent Hubbard term) neither permit to describe
correctly the pressure evolution α-O2, nor to obtain the an-
ticipated α-δ transition pressure.

A. Effect of the corrections

1. Hubbard correction

To get ab initio calculations closer to observations, we
first examine the possible values of the Hubbard poten-
tial by imposing a set of vdW coefficients (R0;C6), the
DFPT calculations providing a relationship between the
fixed radius R0 and the corresponding Hubbard potential
U . Figure 7 represents for three selected pressures (0, 3,
and 5) GPa, the calculated Hubbard potential U versus the
vdW radius for different dispersion coefficients C6. Here,
three possibilities are considered: (i) the default value pro-
posed in the DFT-D2 scheme [45], i.e., C6 = 24.284 Ry a6

0,
(ii) the calculated atomic coefficient of Wu and Yang
[53] (25.900 Ry a6

0), which is in good agreement with that
of Neumann and Perrin [54] (25.580 Ry a6

0), and (iii) an

FIG. 7. DFPT determination of Hubbard potential U as a func-
tion of vdW radius R0. Horizontal dashed lines are the calculated
Hubbard values without vdW correction.

arbitrary higher value of 30.112 Ry a6
0 to check the trend of

our simulations.
Results indicate that the higher the pressure, the greater the

value of the potential U needed to obtain an α-δ transition
at reasonable pressure value. Moreover, for the three selected
pressures, the calculated Hubbard potential can be considered
as independent of the value of C6 coefficient, but is weakly
correlated to the vdW radius, even at zero-pressure. The rea-
son is as follows. Since the van der Waals radius of an atom
is the radius of the corresponding hard sphere representing
the closest approach distance to another atom, by increasing
it, the electronic repulsions are also increasing for a given
distance, due to the charge distributions overlap. Thus, one
simply move the attractive effects of the vdW forces to a
higher distance through the damping function. Indeed, we can
note that for a given U correction, the distance between two
neighboring molecules—given by the

√
a2 + b2/2 length (see

Fig. 3 for the notations)—increases with the vdW radius. We
conclude that the larger the R0, the less attractive the vdW
forces.

However, this trend weakens by increasing pressure, which
in essence brings molecules closer together and weakens the
effect of nonlocal interactions, as seen for higher pressures
(Fig. 7). Since the vdW radius dependence is still much
smaller than the absolute value of Hubbard parameter at
high pressures, we approximate the vdW-radius-dependent
first-principles U by its value without vdW correction, i.e.,
the constants 7.8 eV or 8.3 eV for all oxygen atoms at all
pressures (see dashed lines on Fig. 7). We will add another
value 6.5 eV corresponding to vdW radius of R0 = 2.587 a0

at 0 GPa (see below) for comparison purposes.
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FIG. 8. Effect of Hubbard potential on the α-δ transition—R0 =
2.587 a0 and C6 = 25.900 Ry a6

0—together with experimental data
from Akahama et al. [16] and Barrett et al. [52] and classical MD
from Etters et al. [11]. The gray zone represents the α-δ transition
region determined from spectroscopic studies [17]. No δ-O2 phase
was observed [16] (see text).

Now, to fix the appropriate values of the vdW coefficients,
we use the characteristics of the α-δ transition. Gorelli et al.
[17] studied solid oxygen by x-ray scattering and concluded
that the α-δ transition occurs when the angle β� shifts from
96◦ to 90◦. Figure 8 shows the effect of selected Hubbard
potential on the optimized β� angle calculated at different
pressures. We also reproduce the experimental data from Aka-
hama et al. [16] and the classical molecular dynamic (MD)
simulation results from Etters et al. [11]. It is important to
emphasize that Akahama et al. do not see any α-δ transition.
With respect to the initial simulation containing no corrections
at all (Fig. 6), plots on Fig. 8 now clearly indicates that (i) an
incorporation of vdW-D2+U corrections leads to the presence
of an α-δ transition and (ii) the value of the Hubbard potential
directly influences the locus of the monoclinic to orthorhom-
bic phase transition, the potential U obviously increasing the
transition pressure, as also observed for the ζ -ε transition [55].

Between the three tested values of potentials, the two
largest values reproduce a phase transition at high pressure,
around 5.4 GPa, that is compatible with the anticipated transi-
tion pressure. Note that the obtained transition from classical
MD [11] is around 2.3 GPa and Akahama’s experiments [16]
do not detect any α-δ transition, contrary to the evidence from
x-ray, neutron and light scattering experiments [17,18]. This
absence of the α-δ transition in Ref. [16] is probably due to a
lack of kinetics at 19 K [4,17,56].

We can, thus, conclude that a U correction of typically 7
to 8 eV is needed to reproduce more accurately the α-δ phase
transition. It is a rather high value compared to most of the
literature values of transition metal systems, but our result is in

FIG. 9. Pressure dependence on the transition angle β� at dif-
ferent dispersion coefficients C6—U = 8.3 eV and R0 = 2.587 a0—
together with Akahama’s [16] and Barrett’s [52] experiments.

good agreement with first-principles linear response calcula-
tions [55] which predicts a Hubbard value of ≈9.6 eV around
20 GPa once coupled to a vdW-DF functional correction.

Moreover, the value of 8.3 eV may seem high compared
with ones of 1.0 eV yielding the transition δ-ε pressure and
fitting experimental findings [9]. However, our value is not
too high if we compare other studies [12] in which DFT+U in
combination with van der Waals density functionals reported
that Ueff = 5 eV (revPBE) and Ueff = 12 eV (optB86b) are
needed for reproducing the experimental structure of the α-O2

phase at ambient pressure.

2. Van der Waals correction

In contrast to U which was determined self-consistently as
an intrinsic response of the material, the vdW parameters were
chosen as the ones that fit more reasonably the experimental
findings, that is, the structural parameters and the locus of the
α-δ transition.

All the following results were obtained for a fixed Hubbard
potential of 8.3 eV corresponding to the pressure closest to
the observed α-δ transition pressure (as previously described).
Figures 9 and 10 show the effect of the dispersion coefficient
C6 and the vdW radius R0 on the transition angle β� over the
pressure range from 0 to 6 GPa, respectively. Experimental
data [16] are also given as a reference.

Plots on Fig. 9 are obtained for a fixed value of vdW radius
of R0 = 2.587 a0, while on Fig. 10, calculations ran with a
selected value of C6 = 25.900 Ry a6

0. It appears clearly that
irrespective of the set of both parameters, our calculations pre-
dict a value of β� that is always lower than the experiment one.

In both cases, these parameters influence the transition
angle, as it is the case for the ζ -ε transition [55]. Indeed, the
larger this dispersive coefficient, the more the α-δ transition
pressure increases. We can note that the calculated value [53]
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FIG. 10. Pressure dependence on the transition angle β� at dif-
ferent vdW radii R0—U = 8.3 eV and C6 = 25.900 Ry a6

0—together
with Akahama’s [16] and Barrett’s [52] experiments.

of C6 = 25.900 Ry a6
0 gives a phase transition pressure rather

close to the expected area [17] (see gray zone on Fig. 9). Con-
versely, the larger the vdW radius R0, the more the α-δ transi-
tion pressure decreases. One can see on Fig. 10 that Grimme’s
default value does not enable to reproduce the expected tran-
sition, no more than β� values at low pressures. As a result,
there seems to be some competition between these two vdW
parameters: a more attractive vdW force (i.e., high C6 value)
permits to improve the phase transition pressure from the
monoclinic to the orthorhombic structure, while a less attrac-
tive ones (i.e., high R0 value) produces the same result.

Furthermore, a systematic inspection of the simulation re-
sults (not shown in this paper) on lattice parameters permits
to state that regardless of the value of C6, simulations under-
estimate the b lattice and overestimate the a and c ones with
respect to experimental data, while it is the opposite for the
values of R0 parameter (overestimate b and underestimate a
and c). Our study reveals a certain dilemma as to the choice
of the value of R0, since the greater the vdW radius, the
closer the low-pressure description of lattice parameters is to
the experimental data. So, a compromise was reached on the
intermediate value of R0 = 2.587 a0.

More generally, it appears that the impact of the vdW
dispersive term on the cell volume decreases with pressure,
which seems to be consistent with the fact that under com-
pression, the interatomic distances decrease so that the role of
nonlocal interaction becomes smaller. However, we can also
note that the bond length of the O2 molecule decreases when
C6 increases. This behavior can be explained by the fact that
C6 is directly linked to the amplitude of the vdW correction,
which becomes more attractive as this coefficient increases.
As expected, vdW forces are less attractive for large values of
R0, which can be detected from the dependence of the pressure
on the molecular bond length.

FIG. 11. Pressure dependence of (a) the b/a ratio calculated from
the lattice constants and (b) the transition angle β�. For comparison,
experimental values come from [16,52] (T = 19 K)—where only an
α-ε transition is observed by Ref. [16] (see text)—and simulated data
come from Ref. [11], for which the obtained α-δ transition is shown.
Lines are guides for eyes.

Finally, based on the above semiempirical study of vdW
parameters, we select R0 = 2.587 a0 and C6 = 25.900 Ry a6

0
in the following. These values are higher than the default ones
of Grimme [45] but have a certain legitimacy because they
are physically acceptable: the first one does not exceed the
Bondi’s vdW oxygen radius [57] of 2.872 a0 (1.52 Å) and the
second one has been calculated [53].

B. Lattice parameters and phase transition

Figure 11(a) shows the pressure dependence of the b/a
ratio, which is about 0.64 for different temperatures at am-
bient pressure [13,16,32,52] [see dotted line Fig. 11(a)]. Such
value results from the deformation of the frustrated triangu-
lar lattice of the in-plane lattice parameter which is b/a =
1/

√
3 ≈ 0.577 in the basal plane of the β-O2 phase due to

the AFM interaction. In contrast to experiments [16] obtained
at T = 19 K in the pressure range of stability from α-O2 to
ε-O2 and MD force fields simulations [11], our calculations
first present a decrease (not seen by Klotz [18] in the pressure
range from 0 to 2 kbar) of this ratio until ≈2 GPa then it
increases with pressure and reaches a value of between 0.73
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and less than 0.75 from 6 to 15 GPa. Furthermore, one can
see a break in the slope of the b/a curve around 5.4 GPa,
as as signature of the α-δ phase transition, which occurs at
a much lower pressure in force fields simulations [11] [see
arrow labeled “α-δ” on Fig. 11(a)].

Figure 11(b) shows the dependence of the transition angle
β� (defined before, see notations on Fig. 3) with pressure. As
mentioned above, the transition from the monoclinic α phase
to the orthorhombic δ phase manifests by a sudden change
of this angle. The dotted line Fig. 11(b) represents the limit
angle β� = 90 ◦. As experimentally measured [5,16,17], one
can see that our calculated angle indeed approaches 90 ◦ with
increasing pressure. Moreover, the closer (R0;C6;U ) set of
parameters describes rather well the locus of the α-δ transition
approximately at 5.4 GPa. Again, previous MD simulations
[11] underestimate the locus of this transition [at 2.3 GPa,
see left arrow labeled “α-δ” on Fig. 11(b)]. However, at T =
19 K, the high-pressure x-ray-diffraction experiments [16]
show a phase transition at 7.6 GPa [see right arrow labeled
“α-ε” on Fig. 11(b)] where α-O2 directly transforms into ε-O2

without any signature of the intermediate δ phase. However,
one can note that although our calculations underestimate
β� by less than 2% before the transition in comparison with
experimental data, the pressure coefficient of β� is well repro-
duced. Finally, the pressure dependence of the transition angle
is not continuous up to 90 ◦, as revealed by the experimental
data [16]. So, we conclude, as previous simulations do [11],
that the α-δ transition is likely to be first order [17,58]. Both
plots on Fig. 11 reflect an α-δ phase transitions occurring
between 5.3 and 5.9 GPa (see gray zones), in good agreement
with experimental observations [17].

We also examined the different magnetic configurations
of the δ-O2 phase around 6 GPa at zero-temperature. It turns
out that the LTC configuration is more stable than the HTC
ones, which is in good agreement with experimental neutron
scattering patterns [3,5] under pressure.

Figure 12 now shows the change of the cell volume as a
function of pressure as compared to the experimental data
[16,18] and to the classical MD simulations [11]. Although the
volume of the α-O2 shows an obvious reduction with pressure,
it is clear that this is somewhat overestimated as compared to
experiments. Indeed, the set of vdW parameters used to mimic
the structures and properties of the α phase reduces the cell
volume at 0 GPa. For comparison, with an initial compression
to 1 GPa, the experimental volume reduces by around 16–17%
of its initial value, whereas our calculated volume reduces by
≈11% only. The underestimation of our calculated volume
seems to be a general behavior for low pressures, up to 2 GPa.

The third-order Birch-Murnaghan (BM) isothermal equa-
tion of state (EOS) [59] allows to evaluate the cell volume
V0 = V (0) at zero pressure, the bulk modulus B0 and its pres-
sure derivative B′

0 at zero pressure using a range of P-V data,
which is given by

P(V ) = 3
2 B0

(
Ṽ

7
3 − Ṽ

5
3

)(
1 + 3

4 (B′
0 − 4)

[
Ṽ

2
3 − 1

])
, (10)

where Ṽ = V0/V . All experimental and simulated (from the
unit-cell volume) data were fitted by nonlinear least-squares
using the EOS-fit program [60].

FIG. 12. Static-compression data for O2 phases plotted as vol-
ume versus pressure. Calculated V (P) curve was fitted using
third-order BM EOS (solid curve) in the range of stability of α phase.
Experimental values come from Ref. [18] (solid circles), Ref. [16]
(solid squares), and Ref. [52] (solid triangles). Simulated data (empty
squares) come from Ref. [11]. Inset shows a zoom on the pressure
range from 2 to 6 GPa.

Table I summarizes BM EOS—i.e., V0, B0, and its deriva-
tive B′

0 parameters—from our different simulations compared
with experimental data [16,18], previous MD force fields
simulations [11] and vdW-DF+U functionals [12] (retrieved
data). As expected according to Fig. 12, our simulations
underestimate by a factor of less than 10% the zero-
pressure volume. Moreover, the lower compressibility for
pressures below 1 GPa is reflected in the bulk modulus,
which is too high compared with experiments. Note that
the bulk modulus extracted from experiments of Akahama
et al. [16] is only of 3.3 GPa, whereas Kasamatsu et al.
[12] established a value of ≈6 GPa. That being said, all
simulations predict a much less compressible lattice than
experiment.

Furthermore, one can note on Fig. 12 that no phase tran-
sition is visible within these volume-pressure plots. However,

TABLE I. Parameters (volume V0, bulk modulus B0 and its initial
pressure derivative B′

0) of the third-order BM isothermal EOS from
experiments and theoretical calculations in the α-O2 phase at ambient
pressure. Only lines marked with the dagger symbol are the result of
a fit.

Reference V0 ( Å3 ) B0 (GPa) B′
0

† This work 63.1 6.2 6.58
† Experiments [18] 67.5 3.1 (11.49)
† Experiments [16] 68.9 2.9 8.86
† Experiments [16,18] 67.5 3.3 9.16
Experiments [32] 69.1 3.6a —
† Classical MD [11] 68.6 4.0 5.21
vdW-DF-revPBE+U [12] 74.1 4.7 —
vdW-DF-optB86b+U [12] 69.7 4.4 —

aCalculated from the isothermal compressibility value at 8 K.
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TABLE II. Parameters of the monoclinic unit cell in the α-O2 phase at ambient pressure. The d length stands for the intramolecular O2

distance. See Fig. 3 for others notations.

Reference V ( Å3 ) a (Å) b (Å) c′ (Å) d (Å) β′ (◦)

This work 63.10 4.94 3.45 4.84 1.19 130
Experiments [32] 69.58 5.404 3.424 c = 4.252 1.207 β = 117.82
Experiments [14] 68.95 5.40 3.43 5.09 1.28 133
Experiments [61] 69.44 5.40 3.43 5.09 1.21 133
vdW-DF-revPBE+U (5 eV) [12] 73.92 5.35 3.60 5.01 1.25 130
vdW-DF-optB86b+U (12 eV) [12] 69.61 5.29 3.48 5.01 1.27 131
vdW-DF-SGC [62] 75.97 5.43 3.61 4.57 — 122
Force fields simulations [11] 69.36 5.36 3.45 5.06 1.21 132

the arrow (Fig. 12) pinpoints the locus of our previous α-O2 to
δ-O2 lattice-parameter transition at ≈5.4 GPa and the �V/V
ratio at this pressure is apparently close to zero, as expected
by experiments [17], for which the authors estimate this ratio
to be less than 0.5% (due to the sensitivity of measurements).

Table II shows the lattice parameters of the α-O2 phase
(see Fig. 3 for notations) at zero-pressure obtained in our
DFT+vdW-D2+U approach compared to x-ray [32] (used as
input parameters for the variable-unit cell optimization pro-
cedure) and neutron diffraction [14] experiments and others
simulations [11,12,61,62].

As mentioned above, the present simulation with the fixed
set of DFT parameters has some difficulty reproducing very
low pressure lattices, which is the result of our aim to de-
scribe an appropriate α-δ transition value. Indeed, at ambient
pressure, the vdW-D2+U method underestimates by about
9.3% the cell volume of the experimentally reported value
[32] while a scheme with a spin-dependence of GGA type [62]
(vdW-DF-SGC, with two adjustable parameters) and vdW-
DF-revPBE [12] (with one adjustable parameter) functionals
overestimates by about 9.2% and 6.2%, respectively. With
one adjustable parameter, the vdW-DF-optB86b functional
seems to reproduce the cell volume rather well, as in other
studies [11,61].

In all cases, simulations predict an AFM ground state, but
they all fail to reproduce correctly the b/a ratio, except for
certain simulations schemes [11,61]. Whatever the method,
there is a general underestimation of the c′ parameter and the
angle β ′. Note that both b/a and β ′ values are an indirect mea-
sure of the exchange interaction in the ab plane. We therefore
conclude that this may be due to an insufficient description
of the exchange interaction between the ab planes, which the
approaches [11,61] do not have to describe explicitly. This
shortcoming in the simulations apparently can explain the
disagreement with experiment.

Finally, we note that the vdW-D2+U method leads to an
improved agreement compared to vdW-DF+U functionals
of the intramolecular O–O distance (denoted d in Table II).
Indeed, compared with the experimental value of 1.21 Å, we
find a bond length of 1.19 Å, that is an underestimate of only
1.6% for this work, while vdW-DF+U approaches overesti-
mate it by 3.5 and 5.2%.

Figure 13 highlights an indirect method to detect a phase
transition [63,64]. One introduces the effective strain g derived
[65] from the assumption that the strain energy of a solid
undergoing compression can be expressed as a Taylor series

in the finite Eulerian strain:

g = 1

2

[(
V0

V

)2/3

− 1

]
, (11)

which allows to define the normalized pressure for the Birch-
Murnaghan EOS as [66]

G = P

3g(1 + 2g)5/2
. (12)

With this representation, the α-δ transition becomes ev-
ident at around P ≈ 3.7 GPa from the V (P) data (upper
horizontal dashed line on Fig. 13), lower than the expected
pressure range [17] given by gray zone (Fig. 13). Given the
lack of experimental data on V (P) from diffraction patterns
at low temperatures [17], the gray zone is an indicative in-
formation only. This transition pressure is also lower than the
transition obtained by the pressure-dependence of lattice pa-
rameters (b/a ratio and β� angle) study in Fig. 11, represented
by the upper arrow labeled “α-δ” (Fig. 13).

FIG. 13. Static-compression data for O2 phases plotted as nor-
malized stress versus effective strain (see text), compared with
classical MD data [11].
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FIG. 14. (a) Calculated band structure of α-O2 at zero-pressure
along the lines connecting points of high symmetry. (The dotted
horizontal line marks a guide to the eye for the Fermi level.) (b) Plots
of total density of states and its decomposition into 2s and 2p oxygen
orbitals. Filled (empty) states have negative (positive) energies. The
calculated band gap is about 3.9 eV.

Finally, monoclinic to orthorhombic phase transition oc-
curs also at a lower pressure value with the MD force fields
method [11] (see at the bottom of Fig. 13 the difference
between dashed line and arrow which stands for the transition
based on the evolution of the β� angle).

IV. ELECTRONIC AND VIBRATIONAL PROPERTIES

A. Electronic structure

Figure 14(a) shows the electronic band structure estab-
lished along high symmetry points of the Brillouin’s zone
(BZ) of the monoclinic α structure at 0 GPa. The valence
bands at very low energies (below −26 eV) are not shown for
the sake of clarity. One can see a rather flat band dispersion as
calculated ones [8], unlike the δ-O2 [7] (calculated at 10 GPa),
ε-O2 [67] (same pressure), or ε-O2 [8] (at 13.7 GPa) band
structures.

This calculated band structure reflects the electronic struc-
ture of α-O2 (Fig. 1) with two highest valence bands and
two lowest conduction bands, both of them derived from the
highest occupied molecular orbital (HOMO) and the low-
est unoccupied molecular orbital (LUMO) of the two O2

molecules defining the unit cell.
Our simulations displays an indirect band gap, correspond-

ing to a transition between the HOMO located at the �

point and the LUMO at the D point. A such indirect gap
is also highlighted in ε-O2 DFT-calculated band structure
[67]. Our resulting value is of about 3.9 eV at zero-pressure.
At ambient pressure, an other DFT simulations [8] per-
formed on α phase gave also an indirect gap of 4.5 eV
with the top of valence band located at the same high
symmetry point.

TABLE III. Optical gap values at ambient pressure from different
simulations.

Reference Phase Gap (eV) Type

This work α-O2 3.9 indirect
DFT LSDA [8] α-O2 4.5 indirect
vdW-DF-revPBEa [12] α-O2 ≈1.7 —
vdW-DF-SGC [68] β-O2 ≈1.7 indirect

aRetrieved data (Ueff = 0 eV).

All other things being equal, the optical gap values of
Table III sums up few band gap energy form different theo-
retical approaches.

The band structure with molecular levels is recognizable,
except for σ �

u , σg, and πu orbitals which seem hybridized
(unlike the δ phase [7] or the ε phase [8,67]). This behavior
can be clearly seen on the projected DOS (PDOS) onto 2s
and 2p orbitals of oxygen [Fig. 14(b)]. Note that the valence
and the conduction bands have opposite spins while these have
the same orbital character (i.e., π�

g orbitals). The split between
the valence and the conduction bands is due to the exchange
interaction.

For three different pressures, Figure 15 shows the total
electronic density of states (EDOS). Although, we do not

FIG. 15. Calculated total electronic density of states (EDOS) and
inverse participation ratio (IPR) for different pressures (a–c) across
the α-δ transition. Panel (c) shows the effect of the Hubbard correc-
tion at zero-pressure.
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expect changes in the localization of Kohn-Sham orbitals ac-
cross the α-δ transition, we still decided to test this hypothesis
by calculating the inverse participation ratio (IPR) [69–71].
This ratio permits to measure the degree of localized orbitals
around specific bonds: a high value of IPR stands for a high
degree of localization. It is commonly accepted that IPR tends
toward 0 for a fully delocalized state (i.e., a conductor) and
IPR tends toward 1 for a pure state. The IPR is defined by

IPR =
∫ |ψ (r)|4 dr(∫ |ψ (r)|2 dr

)2 . (13)

In the setting of DFT calculations, oxygen electronic wave
functions (i.e., Kohn-Sham states) can be written as a sum
over the number of localized orbitals (N). With the same
notations as before (and omitting the spin for more clarity),
ψvk = ∑N

i=1 aiφi. The IPR is thus defined as

IPR =
∑N

i=1 ai
4(∑N

i=1 ai
2
)2 , (14)

where ai is the coefficient of the ith localized orbitals of
a given Kohn-Sham state. A Gaussian smearing (width of
2 mRy) was applied to determine the band occupations and
electronic density of states.

With increasing pressure, the band gap of the α-O2 and
δ-O2 phases decreases from 3.9 to 3.2 eV, as expected by the
experiments in Refs. [19,72,73]. This behavior is consistent
with the calculated band gap [67] of 200 meV in ε-O2 at
10 GPa, which then becomes negative at high pressures when
the conduction and valence bands lose their identity. As ex-
pected, no noticeable effect of localization with pressure of
the Kohn-Sham orbitals can be seen on IPR plots in Fig. 15.

Moreover, Fig. 15(c) represents the effect of the Hubbard
correction at 0 GPa and indicates that the DFT+U approach
enables indeed to increase the energy band gap, which rises
from 1.68 eV at U = 0 eV to 3.93 eV at U = 8.3 eV. The
Hubbard correction shifts to lower energies the occupied
states close to the Fermi level, while for the empty states, their
position in energy with respect to the Fermi level is roughly
identical to the calculation without correction.

A more detailed study of the Löwdin PDOS on oxygen or-
bitals (not shown) suggests that the bottom of the conduction
band is mainly formed by the 2p(O) orbitals with a majority of
spin down. These oxygen orbitals remain unchanged in energy
due to the effect of the Hubbard potential. However, one can
also note that the top of the valence band is mainly formed
by the 2p(O) orbitals with a majority of spin up. Unlike the
previous ones, these orbitals move down in energy under the
effect of the U parameter. These observations are in agreement
with DFT+U simulations [12] on the α phase.

Finally, we can note that the atomic magnetic moment
also decreases with pressure from 0.99 μB/atom at 0 GPa to
0.93 μB/atom at 8 GPa. The magnetization of α-O2 is almost
the same as that of the free oxygen molecule, we can conclude
that O2 molecules in the α phase are far enough apart for the
electrons to be localized. Indeed, without Hubbard correction,
simulations give a value of 0.97 μB/atom, compared to
0.6 μB/atom at 13.7 GPa and 0.1 μB/atom at 90.0 GPa [8].

FIG. 16. Calculated absorption edge at different pressures in
solid oxygen, within DFT+vdW-D2+U scheme (crosses), com-
pared to experimental data (squares and triangles) [19,73] (in β-O2

at T ≈ 300 K and ε-O2). Circles are zero-temperature calculated
data [8]. Squares data are fitted for extrapolation to zero-pressure
(see text).

Figure 16 gives the dependence of the optical absorp-
tion gap versus pressure in solid oxygen. Squares [73] and
triangles [19] represent experimental data obtained in the
β−O2 phase (300 K and 5.5 GPa) for two different crystalline
orientations. To our knowledge, there is no experimental op-
tical gap data reported at low pressure. To get a value at
zero pressure, these experimental data were fitted using lin-
ear regression. Triangles are other retrieved data points [73]
estimated from optical density curves [19] and circles are
first-principles calculated data [8].

On another note, we compared the dependence of the band
gap as a function of pressure. According to our simulations,
we obtain a slope of about 0.08 eV/GPa, compared to slopes
of 0.15 eV/GPa for δ-ε in Ref. [19] and 0.13 eV/GPa in
Ref. [7]. In the pressure range from 13 to 50 GPa, the slope is
about 0.05 eV/GPa for ε-O2 in Ref. [8].

Due the well-known band gap underestimation problem
of conventional DFT, we assume that our calculated optical
gap is smaller than the experimental value. However, optical
absorption experiments at ambient pressure and low temper-
ature will have to be carried out to determine the band gap
and should help to clarify the level of agreement between
experiments and simulations.

B. Phonons

Because of the fact that the intermolecular potential is
affected severely by electronic properties, we now confront
our vdW+U approach to vibrational spectroscopic data by
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TABLE IV. Calculated phonon frequencies (in the center of the
BZ) with their respective symmetry for different pressures. At 8 GPa,
the crystal and magnetic structure of the δ phase gives other symme-
try modes. Note that all these modes are Raman active, but only the
in-phase vibration modes are experimentally observed.

Pressure (GPa)
Frequency

(cm−1) Symmetry Vibration

α-O2 : C2/m with AFM structure

0 86.65 Bg in
105.13 Bg out
155.61 Ag in
191.07 Ag out

1750.9 Ag out
1777.8 Ag in

3 127.6 Bg in
156.4 Bg out
214.8 Ag out
229.5 Ag in

1749.7 Ag out
1812.5 Ag in

5 167.3 Bg in
192.2 Bg out
247.6 Ag out
269.1 Ag in

1739.2 Ag out
1812.9 Ag in

8 225.5 Bg in
244.7 Bg out
284.5 Ag out
318.2 Ag in

1709.4 Ag out
1799.5 Ag in

δ-O2 : Fmmm with FM structure

8 208.2 B3g in
229.2 B3g out
272.3 B1g out
306.9 B1g in

1728.5 Ag out
1818.8 Ag in

calculating the phonon frequencies of the fully relaxed α-O2

structure. Indeed, a spectroscopic study can highlight fine
changes in the internal and external modes and are particularly
relevant in the case of the α-δ transition.

With the selected (R0;C6;U ) set of parameters (see above),
our calculations produce for the α phase (C2h space group,
with two molecules per unit cell) nine optical modes, of
which, at the center of the Brillouin zone, six would be Raman
active and three infrared active according to the QE suite.
Our calculations provide no information on peak intensity or
magnons.

For different pressures, Table IV lists these 6 Raman
modes, which are split into 4 librons at low frequencies and 2
vibrons at higher frequencies. Note that the simulations do not
produce any imaginary modes—within the numerical limits of

the acoustic sum rule—i.e., it was confirmed that this structure
is indeed stable in the AFM configuration.

Table IV also gives the Ag or Bg symmetry of the mon-
oclinic AFM configuration, which is consistent with group
theory of α-O2 and the type of vibration of the molecules—
i.e., in-phase or out-of-phase refers to the relative motions
of the two O2 molecules in the unit cell—knowing that only
the in-phase movements of atoms can be seen in experiments.
Note that the lower visible frequency mode corresponds to the
Bg symmetry and the higher one to the Ag symmetry, which is
in line with experimental observations [74]. We additionally
calculated vibrational modes for the LTC δ-O2 phase (Fmmm
space group and an FM configuration) at a pressure of 8 GPa.
Note that to obtain the correct magnetic structure, we doubled
the c lattice parameter of the orthorhombic structure, thus
keeping two molecules per cell.

Our results can be compared with room-temperature Ra-
man spectra of Akahama et al. [72] who studied solid oxygen
up to the insulator-metal transition (until the ε-O2 phase).
At 20 GPa, their experiments show that there are three main
bands: two low-frequency bands below 500 cm−1 assigned
as librons and a vibron mode with a frequency around
1590 cm−1. Note that high-pressure Raman spectroscopy data
[72] show a pressure-dependence of the Raman vibron fre-
quency with a slope of around 2 cm−1/GPa throughout the
pressure range of stability of ε-O2, against ≈5 cm−1/GPa in
α-O2 according to our results, similar to the slope between
α-δ transition range of ≈3 cm−1/GPa [75]. This behavior
of the in-phase vibron Raman component whose frequency
increases with pressure is most probably a hint for a phase
transition. A complete study of the range of stability of δ-O2

would allow us to verify this hypothesis.
Figure 17 shows the vibron [Fig. 17(a)] and libron

[Fig. 17(b)] frequencies as a function of pressure across the
α-δ transition (gray zone). We also retrieved the frequen-
cies observed in Raman experiments from data at different
temperatures:

(i) Meier et al. [76] at 6 K. Note that the authors could not
see any significant difference between data at 6 K and 18 K,

(ii) Jodl et al. [75] and Klotz [18] at 10 K, and
(iii) Hochheimer et al. [77] at 25 K.
For a better comparison of the pressure-dependence, we

shift on Fig. 17 our calculated libron frequencies by 50 cm−1

and vibron frequencies by 240 cm−1. The choice of a constant
offset for all phases is debatable, but it simplifies the reading
of the figures. In addition, we also plot the low-frequency
librons calculated by Ref. [11] [empty squares, Fig. 17(b)].
These classical MD simulations predict two low-frequency
branches with respect to the crystallographic unit cell, while
they produced two additional high-frequency branches by tak-
ing into account the magnetic unit cell. We remark that at very
low pressures, three of these branches are degenerated.

As a result, the shifted frequencies of our in-phase vi-
brons are reasonably consistent with experiments. Moreover,
the order of magnitude of our libron frequencies (shifted)
are rather well simulated. However, our calculations overesti-
mate the differences between frequencies at a given pressure,
typically by 60 to 70% between the lowest and the highest
frequency, and seem to increase with pressure. Therefore,
one can see that our highest in-phase libron are in line
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FIG. 17. Vibrational (a) and librational (b) frequencies of O2

modes as a function of pressure across the α-δ transition, compared
to experimental Raman data retrieved from Refs. [18,75–77] and
classical MD simulations [11]. Note that our vibrational data are
shifted for comparison (see text). The gray zone represents the α-δ
transition region determined from spectroscopic studies [17]. The
lower branch of vibron frequencies is not observed experimentally.

with experiments, while the lowest in-phase libron is sys-
tematically underestimated. Typically, temperature dependent
Raman measurements suggest a split of around 32 cm−1 [74]
or 34.5 cm−1 [78] (at ambient pressure and 13 K) and approx-
imately 40 cm−1 [76], compared with around 69 cm−1 in our
calculations (see the difference between in-phase modes in
Table IV).

TABLE V. Raman active libron frequencies calculated at the �

point (0; 0; 0) and calculated at the zone boundary along the c axis
(0; 0; π/c) at 8 GPa according to the crystal and magnetic structure
of the orthorhombic δ phase.

Frequency(cm−1) Vibration

at (0; 0; 0) at (0; 0; π/c)

— 54.7 in
— 114.8 in
— 123.4 in
— 196.3 out
208.2 212.7 in
229.2 218.1 out
— 227.4 out
— 262.8 in
272.3 271.8 out
306.9 309.4 in

Note that below the α-δ transition, experiments exhibit a
change of the slope. This behavior seems to be reproduced to a
certain extent at a pressure of 5 GPa and is consistent with our
previous comment on the in-phase vibron Raman component.

At a last remark, the two lowest librons at zero-pressure
are very close, but not degenerated as found in MD cal-
culations [11] and ab initio approach with an empirical
potential for long range dispersion coefficients [61]. However,
we find different modes of vibration, compatible with the
experiment [76].

To explain an additional experimental weak peak at around
90 cm−1 [18], we finally study the effect of the lattice structure
along the c axis (doubling of the unit cell along c axis due
to the HTC magnetic structure) on the librational modes at
a pressure of 8 GPa. Note that this new peak can not be a
magnon since it shifts with 18O isotopic substitution with the
same coefficient than the phonons [18].

Table V compares these libron frequencies calculated
along the c axis—at the (0; 0; π/c) zone edge—to the pre-
vious Raman active ones in the center of the BZ. One can see
that the simulations on the FM δ-O2 phase produce modes be-
low 120 cm−1. By taking into account our (comparison) shift
of 50 cm−1, we found one possible mode at 73.4 cm−1 (fre-
quency of 123.4 cm−1 in Table V), with an in-phase vibration.

V. SUMMARY AND CONCLUSION

We note that our DFT+vdW-D2+U method to reduce
self-interactions is convenient but by no means unique, and
other possibilities such as hybrid functional approximations
could have been adopted. In addition, we assume to keeping
Hubbard term constant in the range of stability of the α phase.
However, this approach allows, even if at the approximate
semiemperical vdW term, to describe the locus of the α-δ tran-
sition of solid oxygen. Indeed, while a plain GGA calculation
would give the δ-O2 as stable throughout the pressure range
considered, we find that adding vdW and GGA+U corrections
to the GGA correlation energy stabilizes the α-O2 phase at
ambient pressure. Within our approximations the locus of the
α-δ transition takes place approximately at 5.4 GPa.
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According to the equation of state and other structural
parameters, the agreement with experimental data is rather
satisfactory, even though we have a better capability to re-
produce volume and lattices from 2 GPa with our set of
parameters.

The study of electronic properties of α-O2 at ambient
pressure reveals a flat band dispersion, in contrast to the
others oxygen phases. Our simulations displays an indirect
band of around 3.9 eV ambient pressure, which decreases
with increasing pressure, as expected experimentally. More-
over, the localization of the Kohn-Sham orbitals using the
IPR method shows that the Hubbard correction enables to
increase significantly the energy band gap to a value compat-
ible with extrapolation of experimental data at high pressure.
This effect is all the more relevant as it does not affect the
location of the orbitals. An experimental absorption study of
solid oxygen at ambient pressure is needed to confirm these
simulated values.

As far as phonons are concerned, our model gives the
right orders of magnitude and symmetry, in agreement with
experimental data. Furthermore, the emergence of an addi-
tional Raman peak in the experimental patterns of δ-O2 may
be interpreted as a contribution of the BZ boundary effect due
to the doubling of the c lattice parameter in the LTC magnetic
phase. A complementary study of all δ-O2 magnetic structures
should verify our hypothesis.
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