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Search for a possible flexible-to-rigid transition in models of phase change materials
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Structural models of the prototypal phase change material Ge-Sb-Te are generated from first-principles
molecular dynamics simulations with a particular attention to the GexSbxTe100−2x join. Constraint counting
algorithms permit us to analyze the obtained amorphous networks within the framework of topological constraint
(rigidity) theory. A flexible-to-rigid transition is found at x � 8.5% which satisfies the Maxwell isostatic
criterion and is characterized by an important topological disorder with large amounts of mixed geometries
and miscoordinations. The angular constraint count furthermore leads to the identification of tetrahedral Ge sites
whose population decreases with growing Ge/Sb content and is about 55% for Ge2Sb2Te5. Sb sites change
from a dominant pyramidal geometry typical of Group V chalcogenides to a defect octahedral one which is
reminiscent of the crystalline polymorph of Ge2Sb2Te5.
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I. INTRODUCTION

Amorphous chalcogenides represent an attractive class of
materials with promising applications in optoelectronics, and
most of the properties can be changed continuously to be
optimized with chemical composition [1]. These physical,
chemical, or electronic properties result essentially from the
deep modification of the network characteristics which evolve
starting from a near one-dimensional (1D) chain structure
typical of the base elements (S, Se, and Te) to a continuous
three-dimensional (3D) network structure. Among such sys-
tems, amorphous tellurides appear to be attractive but also
challenging materials given the increased crystallization ten-
dency of elemental Te and the subsequent typical alloys. This
dramatically reduces the glass-forming region (GFR) [2–4]
when contrasted with corresponding, e.g., selenides (Fig. 1).
Furthermore, tellurides appear to not fulfill the “8-N ” rule that
could predict network structures in, e.g., Ge-Sb-Te from four-
fold coordinated Ge, threefold coordinated Sb, and twofold
coordinated Te atoms [11,12]. Here, N represents the number
of valence electrons for a given chemical species. Instead,
Te appears to have a coordination number rTe � 2 that also
evolves with increasing temperature [13], and Ge is found in
different geometries [14].

The glass structure of tellurides provides, therefore, a
strong contrast to the other S- or Se-based chalcogenides
which display (i) well-established coordination numbers both
from theory and experiments [15], (ii) well-defined geome-
tries entirely based on, e.g., tetrahedral (T) Ge and pyramidal
(PYR) Group V atoms that serve to characterize the under-
lying network topology [16], (iii) extended GFRs [1], and
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(iv) reduced crystallization tendencies [17]. Regarding the lat-
ter, the temperature dependence of transport properties (e.g.,
viscosity, diffusivity) plays obviously an important role in
the enhanced nucleation and/or growth rates of crystalline
polymorphs in Te-based liquids [18]. These unique properties
are used to design phase-change materials able to switch on
the nanosecond timescale between a crystalline and an amor-
phous phase with large optical or electrical contrast [19].

For such materials, it is certainly desirable to produce
realistic structure models that could help in decoding prop-
erties and also producing in silico design of new compositions
or applications. In this respect, topological constraint theory
(TCT) or rigidity theory appears to be central for an increased
understanding of the role of network topology on properties
in the amorphous phase as well as locating compositions at
which glass-forming tendency is promoted.

A. Rigidity transitions

In its initial mean-field version, TCT considers the molec-
ular network as an analog of a mechanical truss made of bars
(i.e., bonds) and nodes (i.e., atoms) for which a Maxwell
mechanical stability analysis can be performed [20]. This
approach can be cast into an elastic phase transition prob-
lem driven by the average coordination number r̄ which
acts as an external parameter for the transition [21,22]. The
latter transition is obtained between an elastically flexible
underconstrained network to a stressed-rigid network that
is overconstrained by radial and angular interactions. The
locus of the transition is found when the average number
of constraints per atom nc = 3, the number of degrees of
freedom per atom in 3D, corresponding to the well-known
Maxwell isostatic criterion [23]. Experimentally, this transi-
tion has been detected in various glassy systems at the average
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FIG. 1. Glass-forming region (orange) in Ge-Sb-Te (top [5–7])
and Ge-Sb-Te (bottom [8–10]) obtained from melt quench. In se-
lenides, an intermediate phase develops (green [6]), and a possible
flexible-to-rigid transition can be expected along the Sb2Se3-GeSe4

join (black line). In Ge-Sb-Te, the present investigated compositions
are found on the red line GexSbxTe100−2x (see text for details). The
typical phase change materials are given in blue and are found on the
Sb2Te3-GeTe join.

coordination number of r̄c = 2.4, this condition being fulfilled
exactly when all bond-stretching (BS) and bond-bending (BB)
constraints are intact and no dangling bonds are present [24].
Given the generic character of the approach, such behaviors
have been found in a variety of selenide and sulfide sys-
tems [25], independently of chemical composition and relying
solely on r̄. This is known in the literature as the isocoordinate
rule that has been probed numerically [26] and experimen-
tally [27].

More recent theoretical and experimental work has indi-
cated that two transitions can occur and will separate the
flexible and stressed-rigid phases by an intermediate phase
(IP) [28] which results from a possible self-organization
during glass transition to reduce energetically unfavorable
configurations and maintains isostatically rigid but stress-
free networks over a finite compositional interval [29–32].
The detection of this phase is realized from the measure-
ment of a relaxation (nonreversing) enthalpy �Hnr accessed
from temperature-modulated differential scanning calorime-
try experiments [33–35]. Across the compositions defining

2 2.2 2.4 2.6 2.8
Mean coordination number r

20

30

40

50

F
ra

gi
lit

y 
m

Ge-As-S
Ge-As-Se
Ge-As-Te
Ge-Sb-Se
Ge-Sb-Te

FIG. 2. Fragility of ternary chalcogenides of the same family
Ge-As-X and Ge-Sb-X (X = S, Se, or Te). Data from Ge-As-S [55],
Ge-As-Se [39], Ge-As-Te [9], Ge-Sb-Se [6], and Ge-Sb-Te [9]. Note
that, for convenience, all data are here represented as a function of
the mean coordination number r̄ according to the 8-N rule, which is
known not to be fully valid in tellurides.

the IP, this nonreversible enthalpy takes a minimal value,
but other quantities also display anomalies and threshold
behaviors as also detected from molecular dynamics (MDs)
simulations [36–38]. For the GexAsxSe100−2x system [39],
this composition range is reported as 9.5% < x < 17% or
2.28 < r̄ < 2.51, and different anomalies are evidenced such
as minima in relaxation and thermal properties with composi-
tion or r̄.

B. Fingerprints of rigidity transitions in tellurides

We are only aware of a select number of systems where
a direct measurement of �Hnr has permitted one to identify
flexible-to-rigid transitions and IPs in tellurides. IPs have been
measured in different Group IV and Group V tellurides such
as Ge-Si-Te [4,40], Ge-Te-In-Ag [41,42], Ge-Te-Cu [43], Ge-
Te-In [44]. For other telluride materials, a useful means to
detect onset of rigidity and IPs builds on the strong-fragile
melt classification that measures the viscosity evolution η(T)
with temperature and composition in stoichiometric glass-
forming melts, alcohols, sugars, and organic polymers. From
papers by Laughlin and Uhlmann [45] and Angell [46], the
corresponding fragility index

m(x) =
[

d log10 η(x, T )

dTg(x)/T

]
T =Tg(x)

, (1)

displays nonmonotonic behavior with composition x or aver-
age coordination number r̄ for the case of nonstoichiometric
glass-forming melts undergoing flexible-to-rigid transitions,
as acknowledged [47] for the As-Ge-Se ternary, which shows
a minimum in m(r̄) and in the associated activation en-
ergy for viscous flow or enthalpic relaxation near r̄ = 2.40
(Fig. 2). More recent work on a large body of selenide and
sulfide melts indicates that the fragility index m(x) takes on a
rather low value of about 15 for concentrations belonging to
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the IP where the enthalpic relaxation at the glass transition
temperature is minuscule [39,48–51]. A theoretical link
among enthalpic changes, fragility, and isostatic character of
the glass network has been established from analytical mod-
els [52,53] and also confirmed quantitatively from molecular
simulations [36,54].

In tellurides, given the increased crystallization tendency,
only sparse data are available (Fig. 2). These reflect, indeed, a
possibility of a flexible-to-rigid transition that might manifest
by minimum in fragility for relaxation such as Ge-As-Te [9],
which is found at a somewhat larger mean coordination num-
ber (r̄ � 2.5) than corresponding sulfides or selenides (r̄ �
2.45 [39,55]). An opposite shift is encountered for Si-Ge-
Te [4] with a minimum found for m at r̄ = 2.34. In related
binary glasses (e.g., GexTe100−x), a systematic investigation of
m(x) has not been performed, but some data [56] indicate a de-
crease in the telluride-rich region down to GeTe4, similarly to
the corresponding sulfides [34] or selenides [48]. For materi-
als displaying phase change properties such as Ge-Sb-Te, only
two compositions have been investigated from this viewpoint,
i.e., Ge15Sb2Te83 (m = 51 [9]), Ge2Sb2Te5 (m = 90 [57] or
m = 129 [58]), and the detection of a possible flexible-to-
rigid transition from fragility measurements is unfortunately
excluded by the fast crystallization of the liquids.

C. Glass formation in Ge-Sb-Te systems

It has been recognized that a network that is rigid but
stress-free and that satisfies nc = 3 lies at a mechanical critical
point that influences the glass-forming ability [25]. In fact, the
presence of flexible modes in chalcogen-rich regions brings
an additional increase to the heat of vitrification, whereas the
absence of excess constraints prevents phase separation. The
result is that glass formation at the rigidity transition compo-
sition should be optimal, which was acknowledged [17], and
also linked with critical cooling rates to avoid crystallization
which seem to minimize for isostatic liquids [59]. The link
with the dynamics of glass-forming melts has also been estab-
lished [48].

The detection of the isostatic condition in Ge-Sb-Te ap-
pears therefore crucial for the search and establishment of its
GFR. Up to recently, experimental attempts to produce bulk
glasses in this ternary have been limited to Sb-poor compo-
sitions close to the eutectic Ge15Te85, where a freezing-point
depression permits us to increase viscosity to lower tempera-
tures and to avoid crystallization [8–10], i.e., a glass transition
temperature of Tg = 403.7 K was found for Ge15Sb2Te83 [9].
As a result, the GFR of Ge-Sb-Te is partly unknown (Fig. 1,
bottom) as material investigation has been essentially con-
centrated on phase change applications that use poor glass
formers such as Ge2Sb2Te5 (GST225), Ge1Sb2Te4 (GST124),
or Ag4In3Sb67Te26 (AIST). Furthermore, the GFR appears to
be substantially reduced when compared with the isochemical
ternary Ge-Sb-Se [6] (Fig. 1, top), the binary Sb-Se leading,
as for Sb-Te, to phase separation already at very low compo-
sition [60]. In this paper, we use structure models obtained
from first-principles MD to determine exactly the location
of a flexible-rigid transition in the canonical Ge-Sb-Te phase
change material. We target compositions for which an equiv-
alent addition of (Ge, Sb) atoms is added into the base Te

network, i.e., GexSbxTe100−2x for different content x. Such
models are first extensively compared with available experi-
mental data. The application of MD-based constraint counting
algorithms then permits us to determine a series of important
results and/or findings:

(1) A flexible-to-rigid transition is found at x � 8.5%.
One expects bulk glass formation to be optimized close to this
composition.

(2) The angular topological constraint count leads to the
identification of T-Ge sites whose population η decreases from
�80% in Ge6Sb6Te88 with growing x; and for GST225, we
find η = 55%.

(3) Conversely, the population of Sb sites appears to
change from a dominant PYR geometry encountered in Group
V selenides or sulfides to a defect octahedral (O) one that is
typical of Ge2Sb2Te5.

A previous qualitative MD investigation on this system has
been performed for select compositions and with a density
functional theory (DFT) scheme that did not consider dis-
persion forces [61]. Since then, it has been shown that the
incorporation of such corrections is crucial for the produc-
tion of accurate structure models in liquid and amorphous
tellurides, and the algorithms permitting us to enumerate topo-
logical constraints have been improved [62–64].

II. NUMERICAL METHODS

A. Generation of structure models

To detect a possible flexible-to-rigid transition and to an-
alyze in more detail different properties emerging from the
topological analysis, we have generated a certain number of
different amorphous structural models of five compositions
in the GexSbxTe100−2x ternary (300 K): x = 0% (pure Te),
6%, 10%, 14%, and 22% (GST225). The calculated proper-
ties result from four independent quenches from equilibrated
configurations analyzed previously in the liquid state [58,63].

All were obtained by quenching (�10 K/ps) independent
configurations of the equilibrated liquids obtained at 820 K
(Fig. 3) and accumulating trajectories over 30–50 ps each at
this temperature [63]. For all four configurations per compo-
sition, the subsequent quenching was as follows: A 600 K
plateau for 20 ps followed by a relaxation at 300 K for
50 ps. The involved quenching rate is still several orders
of magnitude faster than the experimental one, which is a
typical feature of classical or first-principles MD simulations.
However, the total energy is converging rapidly toward an
asymptotic value at each temperature plateau. Furthermore, by
averaging over four independent trajectories which describe
possible quenched structures of the potential energy land-
scape, one increases the statistical accuracy of the structural
model, although the detail of each configuration indicates, as
it should be, that the thermal history influences essentially
defects (e.g., homopolar bonding) in the structure (Fig. 4),
consistently with previous studies [65]. It should be further-
more noted that such defects might also evolve with increasing
relaxation time.

MD simulations of Car–Parrinello type were performed
on 300-atom systems in a cubic box with periodic boundary
conditions and a density equal to experimental ones [63,66].

134206-3



M. MICOULAUT AND H. FLORES-RUIZ PHYSICAL REVIEW B 103, 134206 (2021)

FIG. 3. Snapshot of an amorphous Ge10Sb10Te80 atomic system.
Blue, red, and yellow atoms correspond to Te, Sb, and Ge atoms,
respectively.

The electronic structure has been described within DFT
with the inclusion of dispersion forces (DFT-D2), and
evolved self-consistently during the motion (time step �t =
0.36 fs) using a generalized gradient approximation. Va-
lence electrons were treated explicitly in conjunction with
Troullier–Martins norm-conserving pseudopotentials using a
plane-wave basis set with an energy cutoff of 20 Ry. The
exchange-correlation functional was taken from Perdew–
Burke–Ernzerhof (PBEsol) [66] together with DFT-D2 [67]
to improve local structure (bond length) with respect to exper-
imental findings [63].
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FIG. 4. Ge-Ge and Ge-Te pair correlation functions of the four
independently quenched configurations of Ge2Sb2Te5.
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FIG. 5. (a) Calculated x-ray diffraction (XRD) and neutron
diffraction (ND) structure factor S(k) (black) for amorphous
Ge2Sb2Te5 compared with results from Kohara et al. (XRD,
blue [68]) and Jóvári et al. (XRD and ND, red [69]). (b) Calculated
pair correlation function g(r) for the same systems (black) and com-
pared with experiments from Kohara et al. (XRD, red curve [68]) and
Jóvári et al. (ND, red curve [69]).

B. Model validation

The obtained structures (Fig. 3) reproduce the main fea-
tures (peak positions and amplitudes) of the typical structure
functions which are weighted accordingly to obtain experi-
mental neutron diffraction (ND) or x-ray diffraction (XRD)
scattering results in both reciprocal and real space (Fig. 5).
Some discrepancies do appear, however, in both reciprocal
and real space. Here, for the the x-ray form factors, we have
used fi(k) = Zi = 32, 51, and 52 for i =Ge, Sb, and Te,
respectively. It should, furthermore, be noted that DFT-D2
substantially improves the structural properties with the prin-
cipal peaks of the total x-ray structure factor S(k) found at 2.0,
3.5, and 5.0 Å−1. Similarly, the corresponding pair correlation
function g(r) is also reproduced and is dominated by Ge-Te
and Sb-Te correlations, although it should be noted that an
overestimation of Sb-related bond distances (Sb-Sb and Sb-
Te, see below) splits the main peak of the XRD weighted g(r).
These features are reduced once compared with a neutron
weighted pair correlation function [Fig. 5(b)]. Besides the first
peak, we note that all secondary peaks (4.10 and 6.30 Å)
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FIG. 6. Calculated difference functions �iS(k) in amorphous
GST225 (k = Ge, Sb, Te, red curves) together with the total structure
factor S(k) compared with experimental data accessed from anoma-
lous x-ray scattering (AXS, circles[70]) and corresponding RMC fit
(black solid lines).

are very well reproduced in terms of position and amplitude,
and this provides rather good confidence that the quenched
DFT structure models can be used for additional insight and
analysis.

The correlations in reciprocal space can be further decoded
and the structure model analyzed by comparing calculated
difference functions �iS(k) from anomalous x-ray scattering
(AXS) [70] (Fig. 6). Such a comparison not only provides
increased information on partial structure correlations that
is usually reported for lighter chalcogenides [15,16], but
also constrains the models in an increased fashion. Note
that the AXS weighting factors are given in Ref. [70]. The
main features are reproduced from our simulations and agree
with the AXS data, although one can acknowledge a slight
shift of the principal peak in �SbS(k) at k � 2 Å−1. The
comparison indicates that structural properties at low mo-
mentum transfer are dominated by Ge correlations because
of a small prepeak at k � 1 Å−1 that is reproduced from our
simulations, whereas �GeS(k) obviously has only a small
contribution [76] to the principal peaks found for the to-
tal S(k). Conversely, both �SbS(k) and �TeS(k), which are
perfectly reproduced from our simulations, exhibit a profile
like S(k). This furthermore signals that atomic arrangements
involving Ge must be rather different from those involving Sb
and Te.

The detail of bond distances di j (Table I) shows that the
typical bond distances obtained from our GST225 model are
compatible with previous findings, as we found 2.64 and
2.88 Å for the main Ge-Te and Sb-Te contributions that can
be compared with 2.61–2.63 and 2.83–2.85 Å from extended

TABLE I. Calculated first correlating distances di j (Å) of
GST225 compared with previous DFT-based simulations and exper-
iments. The resolution for bond distances is 0.05 Å.

i- j Ge-Ge Ge-Sb Ge-Te Sb-Sb Sb-Te Te-Te

This paper 2.51 2.72 2.64 2.96 2.88 2.87
Liquid state [63] 2.53 2.72 2.69 3.00 2.92 2.92
EXAFS [71] 2.61 2.85
EXAFS [72] 2.47 2.63 2.83
RMC [70] 2.50 2.65 2.82
RMC [73] 2.48 2.69 2.60 2.82
DFT [74] 2.78 2.93
DFT/RMC [75] 2.45 2.70 2.75 2.90 2.85 2.85

x-ray absorption fine structure (EXAFS [71,72]) experiments,
respectively. While a full comparison with correlating dis-
tances is not possible due to a lack of experimental data on
partial pair correlation functions (restricted to EXAFS data),
our results can be put into perspective with Reverse Monte
Carlo (RMC) [70,73,75], and these indicate also rather good
consistency (Table I).

In Table II, we reproduce the calculated coordina-
tion numbers of the different amorphous systems, and for
Ge22Sb22Te56 (GST225), we furthermore compare those re-
sults with other estimates that also strongly depend on the
chosen cutoff distance [62]. We find that, for all composi-
tions, coordination numbers differ from the 8-N rule, i.e.,
nGe � 3.9–4.2, nSb � 3.25, and nTe � 2.45–2.50. These num-
bers indicate the presence of higher coordinated species
reminiscent of the O nature of crystalline GST (essentially
fourfold Sb and threefold Te) and are compatible with pre-
vious investigations of GST225 or GeTe [78–80] and also
to experimental results on partial correlations using AXS
and associated RMC fits (nGe = 4.24, nSb = 2.95, nTe =
2.30 [70,76]). Note that the inclusion of dispersion forces (i.e.,
DFT-D2) leads to an overall reduction of both the coordination
numbers and the bond lengths with respect to regular DFT, as
already acknowledged in Ge-Sb-Te liquids [63].

TABLE II. Calculated coordination numbers ni at different com-
positions x in amorphous GexSbxTe1−2x at the cutoff distance
rm = 3.2 Å determined from the minimum of corresponding
functions gi(r). Corresponding evaluations are also given for
GST225 [74–76].

System nGe nSb nTe

Te — — 2.53 ± 0.05
DFT [77] — — 2.39
Ge6Sb6Te88 4.05 ± 0.05 3.23 ± 0.05 2.46 ± 0.05
Ge10Sb10Te80 3.93 ± 0.05 3.24 ± 0.05 2.46 ± 0.05
Ge14Sb14Te72 4.14 ± 0.05 3.25 ± 0.05 2.50 ± 0.05
Ge22Sb22Te56 4.07 ± 0.05 3.27 ± 0.05 2.45 ± 0.05
RMC [76] 4.24 2.95 2.30
DFT [74] 4.20 3.70 2.90
DFT/RMC [75] 3.92 3.41 2.56
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FIG. 7. Calculated angular second moment σ of Ge, Sb, and Te
atoms in amorphous Ge14Sb14Te72 for all possible angles i0 j (i, j =
1,6). For individual constraint calculations, σm = 16◦ is used (see text
for details).

We are not aware of other experimental structure data for
the other investigated compositions on the GexSbxTe100−2x

join.

C. Topological analysis

To obtain the atomic density of BS constraints nBS
c (i), we

use species-centered correlation function [gi(r), a combina-
tion of pair functions gi j (r) and i = Ge, Sb, Te], and the
integration up to the first minimum rm = 3.20 Å of gi(r) gives
the coordination numbers ri = 2nBS

c (i) [21].

1. Average constraints

The average BB constraint counting nBB
c from MD simu-

lations is based on partial bond angle distributions (PBADs)
and defined by (i) selecting for each type k (k = Ge, Sb, Te)
of a central atom 0 the N first neighbors leading to N(N−1)/2
possible angles (N = 6 hereafter) and (ii) calculating all pos-
sible PBADs to extract their corresponding second moment
(standard deviation σ ), which provides a quantitative estimate
of the angular excursion around the mean angle, thus verifying
if the corresponding angle acts as a rigid constraint. Small σ

values correspond, indeed, to an intact BB constraint which
maintains a rigid angle at a fixed value, whereas a large σ

corresponds to a BB weakness, giving rise to an ineffective
constraint.

Figure 7 shows the application of such an average treat-
ment on the obtained amorphous Ge14Sb14Te72 model, where
the species-related standard deviation σ for the 15 different
PBADs is represented as a function of the corresponding angle
(from 102 up to 506). The trend clearly acknowledges two
different populations separated by a gap in σ , i.e., those for
which σ is small (8◦ � σ � 15◦) and which are associated
with intact angular constraints and those displaying σ � 20◦
that are ineffective from the viewpoint of rigidity. It should
be noted that the germanium-related data exhibit six small
values for σ but result from two possible populations: a T-Ge
with six small σ values and a PYR or defect O-Ge with only
three small σ values. The average treatment does not permit
us to distinguish both populations, and therefore, an individual
MD-based BB count is necessary [24], as presented next.

60 80 100 120 140 160 180
θ (deg)

0

P
(θ

)

(T)-Ge

(O)-Sb

(O)-Ge

FIG. 8. (a) Bond angle distribution of identified tetrahedral
(T)-Ge, octahedral (O)-Ge, and O-Sb geometries in amorphous
Ge22Sb22Te56 (GST225). Note that the identification of the ge-
ometries relies only on the number of intact bond-bending (BB)
constraints (i.e., σk), not on the angles themselves (i.e., θ̄k).

2. Individual constraints

To obtain a detailed analysis, angular constraints can also
be tracked individually during the course of the MD sim-
ulation. In this case, for each individual atom k, a single
bond angle distribution (BAD) is calculated together with
its average value θ̄k over the trajectory (the first moment
of the distribution k) and a second moment σk . A cutoff of
σk = σm = 16◦ is chosen to determine if a constraint is intact
or broken, based on what has been previously obtained on
average. This value corresponds to the lower bound of σ for
averaged intact constraints (Fig. 7). Once these angles are
tracked individually during the simulation, one can identify
a Ge tetrahedron [(T)-Ge] if six rigid angles are found which
give rise to six corresponding low standard deviations [14].
The remaining angles which do not fulfill this criterion usually
have only three low standard deviations and are, therefore,
identified as PYR geometries or defect octahedra [(O)-Ge]
as for the Sb species [(O)-Sb] in the present systems. Av-
erages over the entire system then lead to a precise fraction
η of (T)-Ge with thermodynamic conditions or composition.
Such fractions can eventually be compared with Mössbauer
spectroscopy of 119Sn substituted tellurides which probes the
local geometry, T vs O [4,14,81,82] because nuclear hyperfine
signals are directly transferable to those measured in T or O
reference compounds [83].

Figure 8 exemplifies the method of individual constraints
which can lead to geometry-dependent BADs. Based on the
selection criteria of σk alone, it is interesting to note that the
obtained BADs satisfying six and three rigid angular con-
straints are centered at θ̄Ge = 109◦ and 90◦, respectively. The
latter BAD furthermore contains a broad contribution close to
180◦ that permits us to unambiguously identify defect O sites
for some Sb and Ge atoms.

III. RESULTS AND DISCUSSION

We now turn to the main results of this contribution, that
is, the determination of the locus of the rigidity transition.
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FIG. 9. (a) Calculated fraction of topological constraints nc in
amorphous GexSbxTe100−2x as a function of the composition x.
The broken line corresponds to the mean-field estimate nc = 2 +
7x/2 [39]. (b) Ge-related and (c) Sb-related topological constraints
[total, bond-stretching (BS), and bond-bending (BB)] as a function
of x (symbols). The horizontal lines correspond to the expected
values if the 8-N rule applies. (d) Calculated fraction of topo-
logical constraints nc [same as (a)] as a function of the network
mean coordination number r̄. Comparison with Ge-S [34] and Ge-
Se glasses [54]. The broken line corresponds with the mean-field
estimate nc = 5

2 r̄ − 3.

A. Flexible-to-rigid transition

Using the methods described above, we have calculated
the BS and BB constraint density in the different amorphous
systems.

Figure 9(a) represents the constraint density as a func-
tion of the content x. It is seen that, as expected, nc grows
with increasing atomic cross-link density as it does in all
modified chalcogenides. An isostatic condition corresponding
to a flexible-to-rigid transition is expected for compositions
close to the compound Ge8.5Sb8.5Te83, i.e., xc = 8.5%. This
location is found to be somewhat lower that the one usually

determined from a mean-field constraint count with a full
application of the 8-N rule as in the isochemical Ge-As-Se
compound [39]. In this case, one has nc=2(1 − 2x)+7x+ 9

2 x
and xc = 13.3% [broken line in Fig. 9(a)]. The present anal-
ysis, thus, suggests that, when compared with selenide or
sulfide analogs, the Ge-Sb-Te stiffens earlier during the course
of structural modification induced by the addition of (Ge, Sb)
atoms (see below). The detail of the different topological
contributions reveals that, while the BS density remains more
or less constant which is indicative of a constant coordina-
tion number r for Ge and Sb atoms [Table II and Figs. 9(b)
and 9(c)], BB constraints evolve with x. This situation is
at variance with selenides and sulfides, where nBB

c = 2r − 3
is independent of composition and nBB

c = 7 and 3 for Ge
and Sb, respectively. The evolution of nBB

c with x results
from the presence of mixed geometries (T, defect octrahedral)
that are specific to these tellurides. Here, one notices that
one always has nBB

c (Ge) < 5 [Fig. 9(b)], which is indica-
tive of a network having <100% tetrahedra [15]. Conversely,
the Sb atom displays an opposite trend with x, and for the
GST225 composition, it nearly approaches the value of nBB

c =
3 expected for Group V chalcogenides when the 8-N rule
applies. We discuss the detail of the Sb geometries in the
following.

While Ge- and Sb-related constraints appear to be less rigid
than in corresponding selenides and sulfides, the increased
rigidity observed for the entire system arises essentially from
the Te atoms [Fig. 10(a)].

In fact, except for elemental Te for which the density of
BB constraints is slightly less than nBB

c = 1 because of the
presence of dangling bonds (onefold or terminal chain Te),
one acknowledges a systematic increase of angular stiffening,
the number of BS constraint remaining constant and close to
a value of nBS

c � 1.16(5). Instead of remaining constant at
a fixed value of nc = 2 as in sulfides, nc(Te) now increases
steadily from 2.07(0) for elemental Te up to 2.47(8) for
GST225.

As a result, the locus of the mean-field flexible-rigid tran-
sition, which is usually found at the average coordination
number of r̄ = 2.4, is shifted to higher r̄ in the present tel-
lurides. Using the coordination numbers determined from the
simulation (Table II), we find, indeed, that the composition
x = 8.5% corresponds with a network mean coordina-
tion number r̄ = 2.65(8) which is also larger than the location
of the dynamic anomaly obtained [9] for the isochemical
Ge-As-Te system (r̄ � 2.5, Fig. 2). Overall, nc scales as

nc(x) =
(

1 + rTe

2

)
+ 1

2

(
rSb − 2rTe

)
x +

[
6 + 2η(x)

]
x,

(2)

where it has been assumed that (i) rGe = 4 (Table II) and Ge
exist in two local geometries with a fraction η(x) of tetrahedra,
(ii) rSb > 3, but always has nBB

c = 3, and (iii) rTe > 2.

B. Comparison with other simulated chalcogenides

It is interesting to compare the present findings with
previous results obtained from the application of MD-
based constraint counting algorithms to other chalcogenides.
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FIG. 10. (a) Calculated fraction of tellurium-related topological
bond-stretching (BS) (circles) and bond-bending (BB) constraints
(boxes) in amorphous GexSbxTe100−2x as a function of the com-
position x. The black horizontal line nc = 1 is the expected value
from the 8-N rule for BS and BB constraints. (b) Te-centered bond
angle distributions (BADs) of Ge6Sb6Te88 (black) and Ge22Sb22Te56

(GST225, red) according to the presence of 1 or 3 BB constraints.
The broken blue curve corresponds to Se-centered BAD in amor-
phous As2Se3 [89]. Fragments of the atomic structure containing
threefold Te (blue atoms) with nBB

c = 3 and twofold Te (nBB
c = 1)

are indicated. Sb and Ge atoms are in yellow and red, respectively.

Figure 9(d) represents the constraint density nc now
represented as a function of the mean coordination number r̄
for Ge-Sb-Te, contrasted to Ge-S [34] and Ge-Se [54] glasses.
For both Ge-based binary glasses, the shift to low r̄ is re-
lated to coordination numbers fulfilling exactly the 8-N rule,
and in this case, the numerical estimate of nc matches the
mean-field density of constraints [21] given by nc = 5

2 r̄ − 3
that merely satisfies the isostatic criterion for r̄ � 2.4 [broken
line, Fig. 9(d)]. As mentioned before, the peculiar constraint
behavior of Ge-Sb-Te results from two major differences with
respect to the Ge-S and Ge-Se compounds. First, the break-
down of the 8-N rule (Table II) leads to a systematic increase
for all compositions of ni (i = Sb, Te) with respect to the
reference values nSb = 3 and nTe = 2 and produces a subse-
quent increase of r̄. The resulting shift appears, thus, to be
specific to the telluride compounds because the isochemical
Ge-Sb-Se is found to also follow the usual mean-field
nc = 5

2 r̄ − 3 behavior [6]. Second, we have stressed above

0 10 20 30 40
Modifier concentration (%)

GexSixTe100-2x

GexGaxTe100-2x

GexTe100-x

GexSi15Te15-x

GexSbxTe100-2x

SixTe100-x

Si15CuxTe85-x

FIG. 11. Glass-forming region (GFR; bars) and locus of the
flexible-rigid transition satisfying the Maxwell stability criterion
nc = 3 (filled circles) in GexSbxTe100−2x (this paper) compared
with the GFR determined experimentally from co-evaporation
techniques [84]. Various telluride glasses are also reported
from the literature: GexSi15Te85−x [40,85], GexGaxTe100−2x [3],
GexSixTe100−2x [4], SixTe100−x [86], and Si15CuxTe85−x [43].

that nc = nBB
c also differs when compared with Ge-S and

Ge-Se as the Ge and Sb BB density is always lower than the
“reference” values of nBB

c = 5 and 3, respectively [Fig. 9(b)
and 9(c)]. The reduction of such constraints is compensated
by an increased rigidity of Te [Fig. 10(a)] that contrasts with
the constant value nBB

c = 1 for selenium and sulfur.

C. Comparison with experiments

The locus of the flexible-to-rigid transition at x � 8.5%
can now be compared with experimental results. Recently,
using thermal co-evaporation techniques, glass formation in
the Ge-Sb-Te system has been examined along the same
compositional join [84]. Noteworthy is the fact the glass-
forming range of GexSbxTe100−2x glasses extends from the
locus xc of the rigidity transition (Fig. 11) on both sides
(chalcogen rich and chalcogen poor) with 5.5% � x � 14.7%.
A perusal of the GFR of different melt-quenched telluride
glasses (Fig. 11) shows that the flexible-to-rigid transition is
systematically found within the GFR for different telluride
systems involving, e.g., Group IV and V elements. These
observed features are compatible with the earlier established
correlations linking the isostatic criterion with optimal glass
formation [17,25].

In Ref. [84], it has been furthermore detected that the opti-
cal band gap Eg(x) in GexSbxTe100−2x displays a maximum at
xc, and this drives the anomalous conductivity behavior of the
amorphous phase and also the ageing behavior [87]. For a par-
ent system (GexTe100−x [88]), it was argued that the Maxwell
stability condition defining a flexible-to-stress transition could
be detected from conductivity measurements because stressed
rigid glasses (x > xc = 26.5%) were exhibiting a rather strong
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resistance drift with time, the optical band gap Eg(x) leading
to a maximum for xc. These results indicate a globally con-
sistent behavior for two binary and ternary tellurides and also
suggest that anomalies (as those initially represented in Fig. 2)
can also be detected from optical and/or electric properties at
the flexible-to-rigid transition.

D. Constraints in detail

The nature of the Te-centered BADs in Ge-Sb-Te can be
analyzed [Fig. 10(b)] by separating Te populations according
to the presence of one (nBB

c = 1) or three BB constraints
(nBB

c = 3). According to TCT, each new bond added onto
a central r-fold atom needs, indeed, the definition of two
additional angles as nBB

c = (2r − 3) [21]. Figure 10(b) now
represents for two compositions the related BADs fulfilling
either nBB

c = 1 or 3. The former appears to be nearly inde-
pendent of composition, with an average angle θ̄ > 90◦ and
resembles the one obtained for a typical selenide glass [89] for
which coordination change for the chalcogen atom is absent.
These features are at variance with those determined for Te
atoms fulfilling nBB

c = 3 which appear to have an angular
topology obviously influenced by Ge/Sb content, and cen-
tered in GST225 at angles typical of an O environment (see
below).

This dramatic increase in nBB
c (Te) can be decoded fur-

ther by examining each Te atom individually [Fig. 12(a)] or
by classifying them according to their mechanical character
[Fig. 12(b)]. It is, indeed, detected that increased miscoordi-
nations appear for Te atoms with increasing connectivity or
x as manifested by the constraint histograms [panel (a)]. For
elemental Te, the picture is compatible with previous numer-
ical investigations [66,77], i.e., the Te network is essentially
made of Te chains but with a coordination number that is
slightly >2, as also acknowledged from neutron scattering
experiments [13]. The twofold atoms are the most abundant;
additional terminals (onefold Te) are found and also overco-
ordinated atoms which act as cross-links for the chains and
form fragments of network regions. These arise from longer
bonds. Interestingly, these extra bonds do not initially give
rise to additional rigid angular constraints so that, except for
terminal Te, one always has nBB

c = 1 per atom in elemental Te
[Figs. 10(a) and 12(c)] and nc = 2.07(0), as mentioned above.
The possible defect angular topologies only lead to flexibility
that slightly decrease with addition of (Ge, Sb) cross-links as
less and less chain fragments become available [black curve,
Fig. 12(c)].

The addition of Ge/Sb content in GexSbxTe100−2x now
deeply impacts the topology of the Te subnetwork as the
additional angles arising from third neighbor contributions
stiffen as x �= 0 and lead to a secondary contribution centered
at nc = 4.5 [Fig. 12(a)] identified with threefold coordinated
Te as nc = r/2 + (2r − 3) [24] leads to nc = 4.5 for r = 3,
typical of threefold coordinated atoms. This contribution is
found to increase up to GST225, and as Te atoms are selected
according to their number of rigid constraints (nBB

c = 1 or
3), corresponding BADs display, as described above, a rather
different profile [Fig. 10(b)]. For nBB

c = 1, the distribution is
centered at �97◦, like a Se-centered BAD in As2Se3 [89], and
appears to be weakly sensitive to composition as differences
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FIG. 12. (a) Five histograms showing the distribution of total Te-
related topological constraints at various compositions in amorphous
GexSbxTe100−2x . (b) Calculated fraction of Te defect topologies as a
function of composition x exhibiting nc > 2 (rigid, red) and nc < 2
(flexible, black). (c) Population of perfect 8-N topologies: tetrahe-
dral (T)-Ge with nBB

c = 5, Sb with nBB
c = 3, and Te with nBB

c = 1).
The red broken line represents the calculated fraction η of Ge tetra-
hedra in GexTe100−x [81] appropriately rescaled on the x axis (see
text for details). The broken vertical lines in (b) and (c) indicate the
locus of the flexible-to-rigid transition at xc = 8.5%.

in the Ge6Sb6Te88 and GST225 BADs are negligible. It can,
thus, be concluded that such Te atoms behave as their (S,
Se) chemical analogs. For a more rigid environment [nc = 3,
Fig. 10(b) top], one finds Te to be in a defect O geometry that
manifests by a main peak at 88–92◦ depending on composi-
tion and a contribution at 180◦.

An additional means to decode the growth of Te rigidity
is to calculate the fraction of atoms fulfilling either nc > 2
or nc < 2, which corresponds to atoms being more or less
rigid compared with the selenide counterpart, respectively.
The result shows an overall increase of rigid Te [Fig. 12(b)],
whereas the population of perfect topologies satisfying the
8-N rule decreases continuously [Fig. 12(c)].

E. Evolutive geometries

The detailed investigation using individual angular con-
straints to determine the nature of short-range order also
permits us to infer the presence of geometries that are sensitive
to chemical composition.
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FIG. 13. Bond angle distribution (BAD) of tetrahedral (T)-Ge
and Sb geometries using the identification criteria from the number
of topological constraints T-Ge to satisfy nBB

c = 5 (black curves).
The Sb BAD is represented either totally (red curve) or by selecting
them from the condition nBB

c = 3 (gray area, see text for details).
The broken blue curve corresponds to a S-Ge-S BAD calculated for
GeS2 [90]. Blue arrows indicate 98◦ (pyramidal geometry) and 90◦

(octahedral geometry).

1. Population of tetrahedra

Figure 13 represents Ge- and Sb-centered BADs fulfill-
ing certain selection criteria based on angular constraints,
now represented for different compositions. It is seen that
Ge atoms fulfilling nBB

c = 5 display a BAD that is centered
at the T angle of θT = arccos(− 1

3 ) = 109◦47. For GST225,
the distribution is broad (same as Fig. 8) and like the one
determined for GeS2 [90] (blue broken line). The residual dis-
tribution consists of essentially signatures from O-Ge (Fig. 8).
With decreasing Ge/Sb content, the distribution displays an
obvious tail at angles θ > θT . This evolution has been previ-
ously obtained for GeTe2 [81] and interpreted as a mixture
of tetrahedra containing possible Ge-Ge homopolar bonds.
The deviation from θT to larger angles is found in strained
molecules such as, e.g., fenestranes [91], a class of materials
where the bond lengths deviate from those found in reference
alkanes and induce a bond angle at the central carbon atom of
around 130◦. The mechanism of “planarization” of the T car-
bon results from a gradual increase in bond angle deformation
and strain energy that affect a change in hybridization [92].
For the GexSbxTe100−2x system, this secondary T population
appears to be an intermediate geometry between the regular
(T) and the O geometry.

The population of tetrahedra can be calculated as a function
of Ge/Sb content, and results indicate that the presence of
increasing stress (or x) induces a progressive (T) to (O) con-
version [Fig. 12(c)] as η continuously decreases from 78.0%

in Ge6Sb6Te88 to 55.1% in Ge22Sb22Te56 (GST225), at vari-
ance with the calculated evolution of η(x) in the binary Ge-Te.
This system exhibited, indeed, a minimal value of T popula-
tion for GeTe3 [81], i.e., for a concentration of Te atoms of
75% which is equivalent in the present system to x = 12.5%
[red broken line in Fig. 12(c), data are appropriately rescaled
by a factor of 2 on the x axis]. The fraction of η = 55.1%
found for GST225 is substantially larger than the one de-
termined in previous studies of GST225 (33% [93]) or on
Ge1Sb2Te4 (21% [94]) using different analysis methods (for a
discussion on the accuracy of the methods, see Ref. [14]). As
a reminder, the inclusion of dispersion forces leads to a global
reduction of the Ge-Te bond lengths which in turn increases
the population of tetrahedra as exemplified recently for the
GeTe system where η = 64.7% and 41.2% for DFT-D2 and
DFT, respectively. The present calculation showing a majority
of (T)-Ge in GST225 is supported by recent 119Sn Mössbauer
spectroscopy [82]. In fact, isomer shifts indicate that tin atoms
substitute germanium atomic sites and form sp3 tetrahedra,
and corresponding spectra exhibit a single line typical of
Ge-T sites.

2. T stiffness

To access the rigidity of the Ge tetrahedra, we build on an
analysis developed recently [81] that interprets the BADs in
terms of an effective potential Ueff(θ ), assuming that one has

P(cos θ ) ∝ exp[Ueff(θ )/kBT ], (3)

as introduced in studies on liquid-liquid transitions of sil-
ica [95]. It is, furthermore, assumed that the effective potential
is harmonic with a stiffness constant k2(x), i.e., Ueff(θ ) =
1
2 k2(x)(θ − θT )2, and θT being the T angle. Using Eq. (3), the
different Ge-related BADs of Fig. 13 can be fitted (Fig. 14)
to extract a stiffness k2 that is represented as a function of
Ge content (inset). One should also note that (i) θT is left
as an adjustable parameter, and the fits lead to values that
are always found in the range of the T angle (105◦–107◦),
(ii) a second distribution [shaded gray, Fig. 14(a)] of the
form of Eq. (3) is needed because of the presence of the
tail at θ > θT , which is especially visible for Ge10Sb10Te80

and Ge14Sb14Te72 (Fig. 13). This second contribution in-
volves a fitted mean angle of θT = 117.0◦ and 116.7(8)◦
for x = 6% and 22%, respectively. Corresponding stiffness
constants are represented in the inset of Fig. 14(a), and these
(red circles) are found to be systematically smaller than the
dominant contribution (black circles). The detailed analysis of
the Ge-centered BADs shows that the former contribution is
associated with a Ge-Ge-Te BAD (not shown), the emergence
of such motifs being linked with the growing presence of
homopolar bonds in the structure which already give rise to
a typical angle.

Corresponding Ge-centered pair correlation functions gi(r)
are calculated from the neighbor distributions [61], and these
indicate that tetrahedra lead to a more structured shell of first
and second neighbors [Fig. 14(b)], the minimum obtained
at r = rm � 3.2 Å, leading to a lower value for gGe(rm)
when compared with the same calculation for the total num-
ber of Ge atoms of the system (black line). These features
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FIG. 14. (a) Fit of P(cosθ ) using Eq. (3) for the Ge10Sb10Te80

compound, using a majority (blue curve) and a minority (T)-mode
(shaded gray). The inset shows the evolution of the stiffness k2 with
composition for the main mode (black, θ � θT ) and the mode with
θ > θT (red curve). (b) Calculated pair correlation function gGe(r)
in GST225: Total (black curve) and function calculated only for
identified Ge tetrahedra (red).

are typical of T chalcogenides, and in GeSe2, one usually
has gGe(rm) � 0 [15].

3. From PYR to defect O antimony

A similar analysis is performed for the Sb atoms, and
Fig. 13 highlights the main features obtained. The Sb-centered
BAD consists of a broad distribution at 80◦–110◦ and a
secondary peak at 180◦, as already acknowledged in the liq-
uid [63] and in the amorphous state [78], where it was found
that the Sb geometry is O in GST225.

We select, again, atoms according to a BB criteria expected
from the 8-N rule prevailing in lighter Sb chalcogenides.
In such materials, the pnictide (Group V, i.e., P, As, and
Sb) atoms usually form trigonal PYRs such as AsSe3/2 with
typical angles of 98◦ [1], and these involve three angular
topological constraints so that nBB

c = 3. We select Sb atoms
fulfilling this criterion together with rSb = 3, and correspond-
ing BADs are represented in Fig. 13 (gray distributions). It is
seen that, at low Sb/Ge content, such Sb atoms essentially
behave as in other typical selenides or sulfides, i.e., they
have three neighbors, and the three rigid Sb-centered angles
(mostly Te-Sb-Te) are found at an angle of 98◦ typical of the
PYR geometry (arrow in Fig. 13 for the composition of 6%),
without any contribution at θ � 180◦. The population of such
PYR units appears to be dominant, as about 65% are found in

(a) (b)

FIG. 15. Local Sb geometries detected in amorphous Ge-Sb-Te.
(a) Pyramidal (PYR) unit and (b) defect octahedral unit. Typical
involved bond distances are indicated.

Ge6Sb6Te88 [Fig. 12(c)]. An inspection of the structures ob-
tained (Fig. 15) permits us, indeed, to identify both geometries
in Ge6Sb6Te88 and Ge10Sb10Te80, and it is furthermore noted
that the PYR involves bond distances that are slightly smaller
(2.82–2.90 Å) when compared with the distances defining the
equatorial plane in (O)-Sb (2.91–3.07 Å). Note that longer
bonds perpendicular to the equatorial plane do exist (3.19 Å).
The typical average PYR angle maintains up to x = 10–14%,
but then shifts to about 90◦ (second blue arrow in Fig. 13),
which signals that, for GST225, the dominant geometry is,
indeed, defect O with threefold or fourfold coordinated Sb
(Table II).

IV. SUMMARY AND CONCLUSIONS

Here, we have investigated the possibility of a flexible-to-
rigid transition in Ge-Sb-Te, which is a system of important
interest due to its potential applications in optoelectronics and
data storage, and given that one should expect rigidity to onset
with increasing cross-link density, as in many other glassy
chalcogenides.

Using DFT-based MD simulations, we have generated dif-
ferent structure models along the join of GexSbxTe100−2x and
investigated the topology of the underlying networks. By enu-
merating BS and BB constraints from dedicated algorithms,
we have been able to establish the locus of a flexible-to-rigid
transition at x � 8.5%, i.e., for the Ge8.5Sb8.5Te83 compound
corresponding to a higher average network coordination num-
ber [r̄ = 2.65(8)] than the one usually obtained when all
BS and BB constraints are intact and no dangling bonds
are present. Having in mind that glass-forming ability is in-
creased in isostatic networks [20], bulk glass formation should
be possible close to this composition and might extend the
glass-forming domain, which is experimentally restricted at
this stage to Sb-poor compositions close to the binary Ge-Te
glasses. Work in this direction is in progress [84].

The second main outcome of this contribution is the use of
the angular constraint counting algorithms to identify T-Ge,
O, and PYR Sb sites in the structure. With growing Ge/Sb
content, (T)-Ge and (PYR)-Sb both decrease, although for
GST225, Ge (T) still turns out to be the dominant geometry
(55%), the residue being made of defect O Ge sites that
are either fourfold or fivefold coordinated. The dominant T
character of Ge in the amorphous phase of GST225 seems
in agreement with a very recent 119Sn Mössbauer study [82]
that confirms a conclusion drawn from x-ray absorption spec-
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troscopy [71]. The population of Sb sites appears to switch
from a PYR geometry that is typical of Group V sulfides or
selenides to a defect O one, reminiscent of crystalline GST.

Taken together, the present numerical results reveal the
complexity of the GST networks that contain geometries
which are highly sensitive to composition, thermodynamic
conditions, and sample preparation. It is, for instance, now
rather well established that the fraction of Ge-(T) depends
crucially on the way the amorphous samples are gener-
ated [96,97]. In contrast to lighter chalcogenides such as

Ge-S, Ge-As-Se, or Ge-Sb-Se, where the elementary network
building blocks can be regarded as stable T or PYR units,
our investigation finally indicates that, for tellurides, atoms
involved in local geometries experience larger bending mo-
tions which give rise to a variety of structural motifs. These
arise from an increased delocalized bonding and/or metal-
licity which permit us to experience different types of local
geometries and/or bonding. The presence of such “soft units”
able to switch rather easily during the phase change mecha-
nism appears to be generic.
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