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From pockets to channels: Density-controlled diffusion in sodium silicates
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Classical molecular dynamics is used to study the dynamics of sodium atoms in liquid Na2O-3SiO2 (NS3)
as a function of system density. It is found that diffusion displays different régimes with increasing density at
fixed temperature: a channel-connected network at ambient pressures which reduces to small pockets once the
density is increased. The obtained features can be further characterized by the probability of Na hopping that
shows a percolative behavior at around 2.25 g/cm3 at the lowest temperature of 1500 K, which correlates with
a threshold in the coordination number of the silicon and oxygen atoms. These results highlight the fact that
transport properties in simple silicates can be substantially modified under a limited density change.
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I. INTRODUCTION

Silicates are the major components of magmatic liquids and
their behavior under various thermodynamic conditions (pres-
sure, temperature, and composition) have therefore received
an important interest over decades.1,2 Among such properties,
transport properties of magmas intimely relate to the physical,
chemical, and climatological evolution of the Earth’s mantle
and its surface. However, despite intensive studies in recent
years,3,4 little is known about the flow mechanism and the
diffusion of chemical species in response to the important
pressure that is applied at gigapascal values.

Sodium silicates have been extensively studied both from
the experimental and theoretical sides.5 The addition of sodium
usually disrupts the basic silica network by creating so-
called nonbridging oxygen (NBO), having, in their immediate
vicinity, a sodium cation, and whose fraction can be quantified
as a function of Na composition.6 This results in a global
softening of the glass network that manifests in a rigid to
flexible transition at the critical concentration of 20% soda.7,8

For larger compositions, flexibility promotes ionic conduction
as local pathways are possible because of the presence of local
deformation (floppy) modes.9

Of particular interest is that the Na diffusion does not
take place in a random fashion but along preferential paths
that have been inferred from extended x-ray absorption
spectroscopy10,11 and extensively characterized from molecu-
lar dynamics simulations and inelastic neutron scattering.12–14

This has led to the identification of the so-called channel
diffusion also popularized by the modified random network
model of Greaves.15,16 On the other hand, little is known about
such dynamical properties in densified silicates. While there
has been some studies on the structural changes induced by
pressure with observed salient features, such as the growth
of silicon and oxygen coordination numbers,17,18 it has been
reported only that the network-forming ions (oxygen) were
displaying a diffusivity maximum19 with pressure, an anomaly
that bears some striking similarities with the one found in
liquid silica20 and liquid water.21 The change of Na diffusion
in a 7% densified Na2O-3SiO2 glass has been investigated by
Zhang and coworkers,22 and these authors have suggested that
the observed changes in the activation energy for diffusion
could be attributed to a change in the pathways for ionic

migration. On related systems (Mg silicates), it was shown
from first-principles molecular dynamics that the diffusion
properties were highly sensitive to pressure and temperature.23

Here, we attempt to address this basic issue (sodium
diffusion in densified silicates) and report on the dynamic
properties with changing densities and temperatures using
molecular dynamics. It is found that along an isotherm, the
diffusion constant DNa displays three approximate régimes: A
first one at low density in which DNa is found to be nearly
constant. For densities larger than a certain threshold value
ρc1(T ), a sharp decrease is obtained, followed by an even more
pronounced decrease at very high density. No Na diffusivity
anomaly is found.

The analysis reveals that in the high-density régime, the
motion is restricted to small pockets of size 5 Å on the
picosecond time scale, with diffusion setting on at nanoseconds
only. The size of these pockets tends to grow with decreasing
ρ as does the spatial extent of Na motion, and these ultimately
percolate into the channels found at ambient pressure. The
trends with ρ can be correlated with changes in structure and
highlight the crucial role played by thermodynamic conditions
(ρ but also temperature) in the transport properties of model
silicates.

II. SIMULATION DETAILS

The system we have been considering is a N = 3000
atom Na2O-3SiO2 (NS3) system containing 750 silicon, 500
sodium, and 1750 oxygen atoms, being placed in a cubic box
of various lengths to obtain the desired density. The length
L = 32.39 Å allows us to recover the experimental density24

ρ = 2.37 g/cm3 and corresponds to a computed pressure of
P = −1.9 GPa. The interaction potential is a two-body Teter
potential25 that has been extensively used for the structural,
topological, and thermodynamical properties26–28 of sodium
silicates with changing compositions. Alternative potentials
have been proposed29 for the study of the same system but
most of them lead to the same results (for a critical comparison
of certain structural quantities; see, however, Ref. 30). The
effect of density on such systems using a classical potential
has been considered18 only in a high-temperature liquid for
the NS4 silicate with a Born-Mayer interaction potential fairly
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similar to the one used here. While one may wonder about the
reliability of such potentials to account for the description of
silicates under pressure, we have checked that a certain number
of salient features observed experimentally5,17 were recovered
from our simulations: (i) reduction of the bond lengths with
increasing density, (ii) silicon coordination number change
from four to five to six (we obtain nSi = 4.5 at P =
17.7 GPa and 1500 K), and (iii) broadening of the structure
factor S(Q) with a significant reduction of the first sharp
diffraction peak. Beyond these encouraging results, the main
question is to know to what extent fixed charges can be
considered in an interaction potential with increasing density.
At ambient pressure, the use of a Coulomb interaction with
fixed partial charges is simply the result of the ionic character
of the interactions present, and the absence of charge transfer
during the simulation. While we are not aware of any report of
densified silicates, a recent ab initio molecular dynamics study
(where the electrons and charge transfer are treated explicitely)
on an oxide network-forming glass under high pressure31,32 has
shown that the deformation of the electronic cloud is still small
enough so that there is no need to modify the pseudopotentials
designed for ambient pressures. Nevertheless, one cannot be
100% sure in the reliability of empirical potentials at very high
pressures, but the present example31,32 suggests that a certain
degree of confidence can be expected.

After having equilibrated the liquid at fixed density and
6000 K for 1 ns (time step 1 fs and integration using a
Verlet algorithm), we have cooled the system in the micro-
canonical ensemble to various (T ,ρ) conditions of interest.
In the following, we have focused on the long-time dynamic
properties of the system, and mostly on the Na dynamics as it
appears that its diffusion constant is two orders of magnitude
larger than the one of silicon or oxygen. This difference
tends to decrease with increasing temperature but remains
significant. In most of the situations, the diffusive régime
(linearity of the mean-squared displacement in a log-log plot)
could be unambiguously determined. For systems with high
density, however, there was need to extend runs up to several
nanoseconds. Finally, for systems at the very limit of the
region of investigation (T � 1500 K, ρ = 4.5 g/cm3), it was
difficult to extract a meaningful number for the diffusion
constant DNa.

III. RESULTS

Figure 1 shows accumulated snapshots of 15 Na atoms at
ρ = 2.0 and 4.0 g/cm3 for T = 1500 K over a time interval of
20 ps. The upper panel highlights simply the general accepted
picture of a SiO2 rigid matrix in which the sodium motion
is achieved through preferential paths,12,13 leading to the
“channel dynamics.” These paths can be clearly seen in Fig. 1:
within the fixed time frame (20 ps), entire regions contain a
large number of Na atoms (even though it is 2D projected),
whereas other regions are indicative of the silica-rich structure
with only a few or no sodium present. On the opposite, at
high ρ, the global picture differs completely in appearance
with isolated pockets separated by a mean distance of 6 Å.
Diffusion takes off at long times (t � 2 ns), after a substantial
time spent in a caging régime (10 ps to 2 ns), identified with
back-and-forth hops inside a Na-rich pocket.

FIG. 1. (Color online) Accumulated trajectories over t = 20 ps
at 1500 K of 15 sodium atoms in the NS3 system for ρ = 2 g/cm3

(top panel) and ρ = 4 g/cm3 (bottom panel).

Figures 2 and 3 represent the diffusion constant DNa

obtained from the long time limit of the mean-squared
displacement via the usual Einstein equation:

DNa = limt→∞
1

6tNNa

NNa∑

i=1

〈|ri(t) − ri(0)|2〉. (1)

Results are shown as a function of density for various isotherms
ranging from 1500 K to 4500 K. It should be noted that DSi

and DO display a diffusivity anomaly (Fig. 2) very similar to
the one found in liquid silica20 and liquid water.21

Coming back to the sodium motion, we obtain three clear
régimes for the diffusion: a first one at low density ρ < ρc(1)(T)
where DNa is nearly constant and changes only by a factor of
3 in the considered temperature range (1500 K–4500 K). The
threshold density ρc1(T ) is found to be lower by 0.1 g/cm3

than the density at zero pressure for nearly all temperatures.
When compared to the oxygen and silicon diffusion constant, it
becomes obvious that the intermediate régime for Na diffusion
is found in the anomalous density region where DSi and DO

become maximum. However, the locations of the maxima (ρ =
2.91 g/cm3) and minima (ρ = 2.4 g/cm3) in DSi and DO are
not found to correspond to the régime thresholds obtained for
DNa.

When plotted at fixed ρ, we find an Arrhenius behavior
DNa = D0 exp(−EA/kBT ) for the diffusion. It appears that
our DNa is in excellent agreement with the experimental
results34,35 obtained from tracer diffusion techniques and all
contrast substantially with previous results from Horbach’s
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FIG. 2. (Color online) Sodium diffusion constant DNa as a
function of density ρ in a liquid NS3 system for various isotherms
(circles). Straight lines are guides to the eye. The broken lines serve to
define approximatively the thresholds ρc1(T) and ρc2(T). The bottom
(squares) show the oxygen and silicon diffusion constants DO and
DSi at 1500 K.

MD simulations.33 Given the fact that the dynamcial prop-
erties of liquids are usually very sensitive to the interaction
potential,36 the present agreement obtained from the Teter
potential reinforces the reliability of the present simulations.
The corresponding activation energy is found to be EA =
0.43 eV at ρ = 2.40 g/cm3, which is slightly smaller than the
one determined by Gupta and King34 (0.70 eV), as observed

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

10
3
/T

0.001

0.01

0.1

1

10

D
N

a (
10

-5
 c

m
2 /s

)

Horbach et al. [33]

ρ=2.5 g/cm
3

ρ=2.4 g/cm
3

Gupta and King [34]
Johnson et al. [35]

FIG. 3. Sodium diffusion constant DNa as a function of inverse
temperature for ρ = 2.4 (red squares) and 2.5 g/cm3 (blue squares)
compared to other results from MD simulations33 and to experimental
results from Gupta and King34 and Johnson et al.35

from the different slopes on Fig. 3. The latter value is in
harmony with other experiments (EA = 0.73 eV37) performed
in the vicinity of the glass transition (found to be equal7

to 480 ◦C, i.e., 103/T = 1.33). It has been found from
conductivity measurements EA = 0.73 eV that contains the
Coulomb and the strain part of the activation energy for
conduction, the strain part being the one associated with the
activation energy for diffusion. For the density ρ = 2.5 g/cm3,
we obtain EA = 0.45 eV, i.e., �EA = 0.02 eV when compared
to the density at ambient pressure, similarly to the results found
on densified silicates.22

A second régime (Fig. 2) appears for ρc(1)(T ) < ρ <

ρc(2)(T ), for which DNa now decreases much more markedly
with density. In the low-temperature limit (1500 K), we
obtain a change from 4.5 × 10−5 cm2 s−1 to 0.31 ×
10−5 cm2 s−1 when changing ρ from 2.25 (corresponding
pressure −0.8 GPa) to 3.1 g/cm3 (corresponding pressure
8.9 GPa). Similarly, at fixed density changes in DNa appear
to be more pronounced with temperature increase. Finally, a
third régime is obtained at high density [ρ > ρc(2)(T )], for
which diffusion decreases even more with compaction.

To further characterize the dynamics of these régimes, we
use the self part of the Van Hove correlation function38 defined
by

Gs(r,t) = 1

NNa

NNa∑

i=1

〈δ(r − |ri(t) − ri(0)|〉. (2)

The latter allows to determine the probability 4πr2Gs(r,t)
that a sodium atom initially (t = 0) at r = 0 has moved by a
distance r during a time t . In Fig. 4, we show Gs(r,T ) as a
function of the distance for a time t0 = 20 ps at the temperature
of 2000 K for various densities. The value of 20 ps is used in
forthcoming calculations but we have also considered t0 =
100 ps and checked that the conclusions were consistent, i.e.,
a scaling (increase) in t0 leads to a scaling (increase) in the
maximal distance covered by the Na ions (LM , see below).

From Fig. 4, it can be seen that at the lowest density
[ρ < ρc(1)(T )], there is a possibility for the ions to move up
to a distance LM = 20–25 Å for the given time scale (red
curve, LM being defined by 4πr2Gs(r,t) = 0.01). The Van
Hove function remains nearly unchanged in this density range,
indicative of a weak effect of compaction on the dynamics, as
also noted from the mild decrease of DNa with ρ (Fig. 3). The
dynamics starts to evolve for larger densities and a gradual
decrease of LM is obtained which reduces to less than 5 Å.
Ultimately, for, e.g., ρ = 4.5 g/cm3, the Van Hove function
reduces to a single sharp peak (blue curve) centered at around
1.83 Å, corresponding to a distance somewhat lower than the
Na-O distance (2.36 Å,39 i.e., sodium atoms only oscillate
between different neighboring positions inside a given pocket.
Hence, we conclude that on a given time scale (here 20 ps),
with decreasing density, sodium atoms will first display only
cagelike motions with back-and-forth hops, and then, as ρ

decreases, they experience distances that are larger than simply
the spatial extent of a pocket (from Fig. 1, typically 6 Å), and
will ultimately be able to cover long distances along ionic
pathways as ρ < ρc(1)(T ).
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FIG. 4. (Color online) Van Hove function Gs(r,t) of the NS3
system at 2000 K and fixed time t = t0 = 20 ps for various densities
between 2.0 and 4.5 g/cm3. The red and blue curves correspond to
2.0 and 4.5 g/cm3, respectively. The insert shows the change in Si
coordination number nSi as a function of density for three selected
temperatures.

IV. DISCUSSION

We find a clear correlation with structural changes as seen
from the inset of Fig. 4. The threshold density ρc(1)(T ) coin-
cides indeed with the density at which the silicon and oxygen
network becomes respectively four- and twofold connected.
This correlation can be clearly established when temperature
changes are considered. Indeed, the threshold density ρc(1)(T )
found for DNa is found to shift to lower densities when the
temperature is increased (broken line in Fig. 2), consistently
with the obtained corresponding shift of the density at which
Si and O become respecively four- and twofold connected.
For lower densities, we find a stretched melt, i.e., there is a
constant decrease of the network connectivity which does not
hinder mass transport as DNa is found to be nearly constant. For
densities larger than ρc(1)(T ), however, the silicon coordination
number grows to values larger than 4, whereas a small increase
of nO is found (to 2.3 at 4.4 g/cm3). The additional interactions
(via the increase of nSi) appearing on densification must
contribute to the decrease of the Na motion as more energy is
needed in local deformations in order to create pathways for
the ionic migration.

The fraction of Na atoms that have migrated through the
structure can be computed from the Van Hove function Gs(r,t)
at a given time, and corresponding results are displayed for the
two distances r0 = 5 and 15 Å. At 1500 K and ρ = 2 g/cm3,
nearly 70% of the sodium atoms have moved by a distance
of 5 Å within 20 ps. This fraction falls to less than 10% if
a distance larger than the interpocket distance is considered
(15 Å) in Fig. 5. Furthermore, one can remark that this fraction
is nearly constant for low densities. At ρ = ρc(1)(T ) and low
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FIG. 5. (Color online) Fraction of Na atoms having moved by
5 Å (left) and 15 Å (right) after 20 ps as a function of density
for different temperatures. The broken line represents the density
threshold ρc(1)(T ).

temperatures, however, this fraction drops precipitously to zero
within a small density range (typically 0.8 g/cm3 for T =
1500 K). An increase in temperature leads to a less marked
drop but still with a similar trend. It also implies that for glasses
(T < 1500 K, not studied here because of the numerical
limitation that does not allow us to reach the diffusive régime
on computer time scales), the change in the dynamics at
ρ = ρc(1)(T ) should be even more dramatic as the drop at
ρc(1)(T ) increases with decreasing temperature. These results
suggest that the Na motion displays a percolative behavior
when the density is decreased from, e.g., 4 g/cm3 to ρc(1)(T )
with intrapocket motions being dominant at high density
(Fig. 2) as the system is locked by an increasingly connected
Si network created by higher coordination numbers (Fig. 4
insert). These pockets connect together in small trees under a
density decrease because Na atoms experience larger distances
on a given time scale. These trees finally percolate together at
ρ = ρc(1)(T ) and lead to the usual channel motion.

In summary, we have shown that the spatial distribution and
dynamics of sodium atoms in a silicate system was subject to
huge changes with increasing density. While the sodium forms
a well-connected network of diffusion channels at low density,
these reduce to smaller pathways on increasing ρ and finally
reduce to pockets for ρ � 4 g/cm3. Threshold behaviors are
clearly obtained from the behavior of the sodium diffusion
constant DNa with density along different isotherms. These
thresholds correlate well with those found from the study of the
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network coordination numbers, and the Van Hove correlation
function quantifying how the Na atoms evolve through the
network structure.

Given the importance of the silicate system in earth sciences
and given the fact that such high densities (4 g/cm3) can be
easily achieved at gigapascal pressures that do apply in the
Earth’s mantle, it is tempting to stress as a conclusion that mass
transport in simplified magmas must be sometimes abruptly
affected by small density or pressure changes. However, one

has to keep in mind that cation diffusion in real magmas at
depth are also very sensitive40 to dissolved components such
as water or carbon dioxide.
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