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Angular rigidity in tetrahedral network glasses with changing composition
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A set of oxide and chalcogenide tetrahedral glasses is investigated using molecular dynamics simulations. We
show that the changes in the Ge composition affect mostly bending around germanium in binary Ge-Se systems,
leaving Se-centered bending almost unchanged. In contrast, the corresponding Se twisting (quantified by the
dihedral angle) depends on the Ge composition and is reduced when the system becomes rigid. It is also shown
that angles involving the fourth neighbor around Ge is found to change when the system enters the stressed rigid
phase. The same analysis reveals that unlike stoichiometric selenides such as GeSe2 and SiSe2, germania and
silica display large standard deviations in the bond angle distributions. Within bond-bending constraints theory,
this pattern can be interpreted as a manifestation of broken (i.e., ineffective) oxygen bond-bending constraints,
whereas the silicon and germanium bending in oxides is found to be similar to the one found in flexible and
intermediate Ge-Se systems. Our results establish the atomic-scale foundations of the phenomenological rigidity
theory, thereby profoundly extending its significance and impact on the structural description of network glasses.
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I. INTRODUCTION

The large variety (Ref. 1) of physicochemical behaviors
inherent in tetrahedral network glasses [in particular, those
involving Group IV (A = Si, Ge) oxides (X = O) or chalco-
genides (X = S, Se, Te)] is deeply related to the underlying
network topology [i.e., the nature of the connections (edge or
corner sharing) among the basic tetrahedral structural units.2,3]
In the search for a unifying approach, it is tempting to follow
rigidity theory, which describes the interplay between network
properties and connectivity by considering covalent networks
in very much the same fashion as mechanical trusses.4,5 This
is achieved via enumeration of mechanical rigid constraints nc

arising from relevant atomic interactions, r/2 bond stretching
(BS, radial) and (2r − 3) bond bending (BB, angular) for an
atom with cooordination r .

According to rigidity theory, the glass-forming ability and
the compositional trends in physical and chemical properties
are determined by comparing nc with the number of atomic
degrees of freedom (i.e., 3 in 3 dimensions). A central
result of rigidity theory is the identification of a rigidity
transition at the network mean coordination number r̄ = 2.4,
separating underconstrained networks having low-frequency
(floppy) deformation modes (nc < 3) from overconstrained
ones (nc > 3) (Refs. 4 and 5). The optimum glass compositions
are those in which nc equals exactly the number of degrees
of freedom, leading to an isostatic glass. A number of
studies on the determination of bulk glass-forming regions in
binary and ternary network glasses have shown that samples
could be rather easily produced close to compositional joins
satisfying nc � 3. In Ge-Se systems, slow cooling allows only
glass formation at network connectivities that are somewhat
lower than the critical coordination number r̄ = r̄c = 2.4.
An increase of the cooling rate (from air quench to water
quench) increases the glass-forming region6 up to r̄ = 2.67

where stress-induced phase separation occurs.7,8 Similarly, in
silicates the critical cooling rate9 to avoid crystallization is
found to be minimum at compositions close to the optimal
constrained compositions.10,11

As mentioned above, the main input for the constraint
enumeration in rigidity theory are the coordination numbers
of the involved atoms and the relevant atomic interactions
(BS, BB) which are effective as mechanical rigid constraints.
Defining a simple link between nc and such quantities
(coordination numbers, interactions) is highly contentious.
For instance, there has been an unsuccessful search for the
effect of increasing stress on the local atomic structure.
While numerical models have suggested that there is a link
between the increase of rigidity and bond mismatch12,13 (i.e.,
a decreased accommodation to obtain the zero stress bond
length), no obvious structural signatures of rigidity transitions
have been found from neutron or high enery x-ray diffraction
on the position of the width of e.g., the first sharp diffraction
peak.14,15

On a separate and also debated issue, for stoichiometric
compositions like GeSe2 or GeS2, with Ge and Se (or S)
forming, respectively, four-fold and two-fold units, one obtains
2 BS (respectively 1) and 5 BB constraints (respectively 1),
leading on the overall to nc = 3.67 (i.e., such glasses should be
rigid and overconstrained). As a result, because of the higher
stress piled in the network, these glasses are found at the very
limit of the binary glass-forming region (in, e.g., GexSe1−x ,
Ref. 16). At a first glance, the corresponding oxides (GeO2

and SiO2) should be analogous to the stoichiometric GeSe2

with a mean coordination number r̄ = 2.67, and nc = 3.67.
However, the legitimacy of such a simple picture is challenged
by a certain number of experimental observations. One has first
to remark that silica (SiO2) and germania (GeO2) are found to
form rather easily glasses,17 in contrast with the corresponding
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chalcogenides (e.g., GeSe2, Ref. 18 and 19). Furthermore,
oxides have a low frequency (floppy) contribution in the
vibrational density of states, suggesting that these systems are
flexible20 or, at least, nearly optimally constrained21 (isostatic,
nc = 3). The latter result can be recovered in rigidity theory
under the heuristic assumption that enhanced oxygen bond-
angle values within a broad Si-O-Si distribution should lead
to broken angular constraints22 reducing nc from 3.67 to 3.0.
This assumption is challenged by recent studies23,24 showing
that the Si-O-Si angle is significantly narrower in SiO2, at odds
with previous work on the experimental determination of the
silica bond angle distribution.25

Here we propose a very general method26,27 which allows
to compute such constraints without any prerequisite on
coordination numbers or interactions. We rely on an atomic-
scale approach (as molecular dynamics, MD) which is able
to substantiate and enrich the general trends of rigidity theory
via the explicit account of the corresponding local structure.
This allows to bridge the gap between constraint counting
algorithms based merely on coordination numbers (bound
to fail in certain situations),28 and the statistical mechanical
behavior of relevant atomic-scale quantities (radial and angular
distributions) on which counting algorithms are applied. A
set of nine different chalcogenides and oxide glasses are
investigated: five compositions in the GexSe1−x system, SiO2,
GeO2, SiSe2, and a densified GeSe2 glass.

First, we find that in the binary GexSe1−x system with
increasing Ge content, structural changes are mostly noticeable
in the angular environment of the germanium atoms, leaving
the Se centered angular excursions (quantified by σθ , the
standard deviation of partial bond angle distributions) nearly
unchanged when moving from a flexible to a stressed rigid
phase. It appears that the amplitude of the angular excursion
around Ge atoms is increased in the stressed rigid phase with
an increased distortion of the tetrahedra. This result allows
reconsidering the general accepted picture of a Ge-Se network
made of flexible Se-chains and rigid GeSe4/2 tetrahedra.4 We
analyze in a similar fashion a densified GeSe2 glass, and
find an important decrease of the edge-sharing fraction. The
tetrahedral distortion is even more enhanced as compared to
ambient GeSe2, suggesting that pressure-induced stress also
acts on the Ge angular motion. In addition, we provide insight
into the nature of the chemical bonding in GexSe1−x via an
analysis of the correlations between the atomic centers and
the localized Wannier centers. This information is readily
obtained from an analysis of the electronic structure of our
systems.

We finally focus also on the stoichiometric AX2 composi-
tions (i.e., SiO2, GeO2, SiSe2, and GeSe2) and show that oxide
systems contain tetrahedra which act as rigid units having a
much smaller minimal angular excursion for the Group IV
element than their chalcogenide counterparts. Specifically, we
find that such excursions for oxygen in oxides are much larger
than those for selenium in GeSe2, suggesting that oxygen
bending constraints are, in fact, broken (i.e., ineffective) in
SiO2 and GeO2. This provides a microscopic rationale for the
sensitivity to bond-bending around oxygen in oxide networks,
consistent with experimental evidence.22

Although we apply these methods to archetypal network
glasses, the rationale developed here is novel and insightful

especially for the case of bond-bending constraints. Methods
based on the atomic scale trajectories are prone to be applied
also to glasses incorporating charge-compensating cations29

or pressure-induced rigidity.20

II. SIMULATION METHODOLOGY

Our analysis is based on molecular dynamics trajectories
obtained at T = 300 K for a set of glassy systems encom-
passing GeO2, SiO2, SiSe2, and GexSe1−x for five different
compositions: x = 0.10 (GeSe9 in the flexible phase), x =
0.20 (GeSe4 at the rigidity transition30), x = 0.25 (GeSe3 in
the Boolchand intermediate phase),16,18,19 x = 0.33 (GeSe2),
and x = 0.40 (Ge2Se3, both in the stressed rigid phase). Oxides
at the experimental densities have been simulated according to
Refs. 31 and 32 using a classical Born-Mayer force field. Due
to the large difference of electronegativity between Si(Ge)
and O, this choice ensures plausible qualitative modeling
within classical molecular dynamics. In the case of SiSe2

and GexSe1−x systems, we resort to first-principles molecular
dynamics (FPMD) within a fully self-consistent framework
that proved adequately to describe chemical bonding and
its changes with concentration.33 For some of the systems,
temporal trajectories recorded previously34 are substantially
extended to attain optimal statistical accuracy (within a
few percent at most). Otherwise, as in the case of GeSe9

and GeSe3, glassy structures are produced from the outset
after cooling from the liquid state and appropriate structural
relaxation. Overall, typical time trajectories for collection
of the averages in the glassy state cover ∼100 ps. Details
on the FPMD methodology and the productions of glassy
structure are extensively reported in Refs. 34–42. For all glassy
structures, the atomic-scale picture is consistent with that
obtained by using an alternative first-principles approach.43–47

The densified GeSe2 system has been produced from the
starting ambient GeSe2 glass, with a gradual change in the
system cell length, leading at the end to an increase in density
of 15.5%, and a corresponding pressure of 3 GPa.

We are interested in determining the sensitivity of chemical
bonding to the composition. To this purpose, an insight into
the bonding localization properties can be achieved by the
formalism of the Boys localized orbitals.48 Since we use a
supercell approach, the Boys localized orbitals are calculated
as their periodic system generalization, namely the maximally
localized Wannier functions49,50 (WF) and the weighted center
of their charge distribution [i.e., the Wannier functions centers
(WFC)]. An analysis in terms of localized orbitals were
performed by computing the WFs and WFCs. Namely, WFs
are obtained by a unitary transformation of the occupied Bloch
orbitals. It should be recalled that, in principle, the WFs
are not uniquely defined, due to the arbitrary phase factor
of the Bloch orbitals. This indeterminacy has been resolved
in Ref. 50 by requiring that the total spread of the Wannier
functions

S =
∑

n

(〈r2〉n − 〈r〉2
n), (1)

be minimized in real space.
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FIG. 1. (Color online) Neighbor distribution functions (NDF)
(red: neighbors 1–4, green: neighbors 5–9) around a central Ge atom
in glassy GeSe4. The sum of the nine distributions yields the pair
distribution function at low distance (black curve). The insert shows
corresponding neighbor (NDF) peak positions as a function of the
neighbor number for SiSe2 (filled circles), SiO2, GeO2 (filled boxes),
and GexSe1−x (open circles).

III. RESULTS

A. Bond stretching

To obtain the number of bond-stretching interactions we
have focused on neighbor distribution functions (NDFs). A
set of NDFs can be defined by fixing the neighbor number
n (first, second, etc), the sum of all NDFs yielding the stan-
dard pair distribution function gi(r)(i = A,X). Integration of
gi(r)(i = A,X) up to the first minimum gives the coordination
numbers rX and rA, and hence the corresponding number of
bond-stretching constraints ri/2(i = A,X). Figure 1 shows
such application to the GeSe4 glass. Four NDFs (red curves)
contribute to the first peak of gGe(r), very well separated from
the second shell of neighbors (green curves), and indicative
of the presence of four neighbors around a Ge atom. The
separation between the first and second shells of neighbors can
be also characterized by plotting the NDF peak positions as a
function of the neighbor number (inset of Fig. 1). One sees that
there is a clear gap in the distance between n = 4 and n = 5 for
all considered systems. Here one can furthermore remark that
in GexSe1−x , there is almost no change in the neighborhood
of Ge atoms. Thus, we find rX = 2 and rA = 4 leading to
1 and 2 bond-stretching constraints for the X and A atoms
at any composition. When integrating the pair distribution
function up to its first minimum, we find for GeO2 rGe = 4.01
and rO = 1.97, and for GeSe2, rGe = 4.02 and rSe = 1.96, in
agreement with experiments.3,51,52

B. Bond bending

The bond-bending constraint counting is based on partial
bond angle distributions (PBADs) P (θij ) defined as follows:
for each type of central atom 0, the N first neighbors i

are selected and the N (N − 1)/2 corresponding angles i0j

(i = 1, . . . ,N − 1,j = 2, . . . ,N) computed (i.e., 102, 103,
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FIG. 2. (Color online) From top to bottom: oxygen, selenium,
and germanium partial bond angle distributions (PBAD) in GeO2

and GeSe2 for an arbitrary N = 6. The colored curves correspond to
PBADs having the lowest standard deviation(s) σθ . The sharp peaks
at θ � 40◦ correspond to the hard-core repulsion. Labels defined in
the bottom panel are used throughout the text.

203, etc.). The standard deviation σθij
[written as σθ or σi

(i = X,A) in the following] of each distribution P (θij ) gives a
quantitative estimate of the angular excursion around a mean
angular value, and provides a measure of the bond-bending
strength.26,27 Small values for σθ correspond to an intact
bond-bending constraint which maintains a rigid angle at a
fixed value, whereas large σθ correspond to a bond-bending
weakness giving rise to an ineffective or broken constraint.

The results of such an analysis are shown in Fig. 2 for
GeO2 and GeSe2. Broad distributions are found in most of
the situations, together with a certain number of sharper dis-
tributions (colored) which will be identified as intact angular
constraints. The oxygen PBAD 102 is found to be centered at
135◦, close to the value obtained from experiments,53 whereas
the corresponding selenide distribution shows a bimodal
distributions with peaks at 80◦ and 100◦, indicative of edge-
and corner-sharing tetrahedra,38 respectively. This feature is
absent in the oxides. For the Ge-centered PBAD in GeO2,
one finds six nearly identical distributions at 109◦, defining
the tetrahedra. From all these different distributions, a second
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FIG. 3. (Color online) Standard deviation σGe and σSe extracted
from the partial bond angle distributions (PBAD) for five selected
compositions in glassy GexSe1−x .

moment (standard deviation) can be computed as a function of
an arbitrary angle number, ranging from 1 to N (N − 1)/2 (see
labeling in the bottom panel of Fig. 2). In the forthcoming, we
chose an arbitrary N = 6 leading to 15 different distributions
and corresponding standard deviations.

IV. RIGIDITY TRANSITION

A. Angular motion

It is of interest to apply the above rationale to the GexSe1−x

family of systems since both the elastic nature (flexible, rigid)
and the connectivity are strongly dependent on composition.
Figure 3 shows the standard deviations σSe and σGe for
the five GexSe1−x compositions as a function of the angle
number (see labeling in the bottom panel of Fig. 2). Among
these 15 different standard deviations, we observe that six
of them display a low value for σGe of about 10◦, and four
times smaller than all the others. These six σGe’s are those
associated with angular bending inside a GeSe4/2 tetrahedron.
Since only five of them are independent (the sixth angle
around Ge can be determined from the knowledge of the
five other angles), we conclude that such a method allows
to recover exactly what is expected from a direct Maxwell
constraint count30 for which nBB

c = 2rGe–3 = 5. Similarly, one
finds a single constraint (i.e., one low standard deviation, see
Fig. 3(b)) for the Se atoms. A more detailed inspection shows
that there is a clear difference between compositions having
the six standard deviations σGe (1,2,3,6,7,10) nearly equal
(x = 0.10, x = 0.20, x = 0.25) and compositions belonging
to the stressed rigid phase (x = 0.33, x = 0.40) which have
different σGe.

By increasing the Ge concentration the angular excursion
inside the tetrahedra is seen indeed to increase [e.g., σGe

moving up to 20◦ for GeSe2, from less than 10◦ in the n = 3
(104) PBAD] while leaving the stiffest angle (102) constant.
This underscores the fact that the presence of stress will lead
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FIG. 4. (Color online) Standard deviations σGe as a function
of Ge composition, split into a contribution involving the fourth
neighbor (red line, average of 104, 204, and 304) and the other
contributions (black line, average of 102, 103, and 104). The shaded
area corresponds to the Boolchand intermediate phase.16,18

to asymmetric intratetrahedral bending motions. When the six
relevant standard deviations σGe are plotted as a function of
the Ge composition (Fig. 4), the angular motion involving the
fourth neighbor (PBADs 104, 204, 304) exhibits a substantial
increase once the system is in the stressed rigid phase, while
the others (102, 103, 203) are left with a nearly similar angular
excursion. The quantity σGe appears therefore to be an indicator
of stressed rigidity.

Bending around the Se atoms is nearly unchanged with
increasing Ge content, and it does not display any noticeable
change when the system becomes rigid. To find a structural
parameter pertaining to the Se atoms and sensitive to changes
in composition, we have to resort to the dihedral angle δ̄ around
a Se atom (see definition in Fig. 5). As shown in Table I,
the dihedral angular excursion takes a value of σδ = 27.4◦
for the flexible GeSe9 composition and decreases significantly
(down to 20◦–21◦) for the compositions of rigid systems GeSe3

and GeSe2. Therefore, the network adapts to the predominant
presence of Se atoms both by decreasing the angular variability
inside the GeSe4/2 tetrahedra, and by allowing for enhanced
twisting along the Se chains.

z

y

δ
A

X
X−A−X

θ        − −π
2

FIG. 5. Definition of the dihedral angle δ̄ used in the text. Note
that the upper black-filled atom can be X(rX = 2) or A(rA = 4).
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TABLE I. Mean dihedral angle δ̄ and standard deviation σδ of the
dihedral angle distribution for seven investigated systems.

System SiO2 GeO2 SiSe2 GeSe9 GeSe4 GeSe3 GeSe2

δ̄(deg.) 30.9 30.4 30.9 35.0 40.3 31.9 30.6
σδ(deg.) 17.7 17.5 23.9 27.4 25.9 20.6 21.6

B. Chemical bonding

In the quest of correlations between composition changes
within the GexSe1−x family of disordered systems and their
physical properties we turn our attention to the nature of
chemical bonding. As a tentative statement, one could assume
that the most ionic GexSe1−x networks are those with the
largest ratio between the amount of GeSe4/2 tetrahedra and
the number of Ge atoms (i.e., GeSe2). On the opposite side
of the composition range, departures from stoichiometry are
characterized, for x < 0.33, by the existence of Se chains,
while for x > 0.33 the network has to accommodate those
Ge atoms excluded from full GeSe4/2 tetrahedral bonding
in miscoordinated units and homopolar Ge-Ge bonds.7 By
focusing on the pair distribution function gGeW (r) and gSeW (r)
we can gather information on the correlation between the
localized orbitals and the distances separating the localization
center from the atomic sites. Any detectable trend of these cor-
relations with composition provides insight into the character
of bonding and its variation within the GexSe1−x family of
disordered systems.

In Figs. 6 and 7 we show the pair distribution functions
gGeW (r) and gSeW (r), respectively. The interpretation of
gGeW (r) and gSeW (r) is substantiated by the analysis of Fig. 8,
where the positions of the Wannier centers are shown in
representative subunits of GexSe1−x networks. Two main
features common to all compositions can be seen in Fig. 6. The
first is located in the vicinity of ∼1.35 Å a distance larger than
half the typical Ge-Se bond length 2.35 Å (Fig. 1). This value
can be rationalized by invoking the larger electronegativity of
Se atoms and the resulting electron charge transfer occurring
toward the Se atoms upon formation of the GeSe4 tetrahedron.
Close observation of the maxima of the distribution in the range
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FIG. 6. (Color online) Pair distribution function gGeW (r) express-
ing the correlation between the Ge atomic sites and the position of
the Wannier centers in the glassy GexSe1−x systems.
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FIG. 7. (Color online) Pair distribution function gSeW (r) express-
ing the correlation between the Se atomic sites and the position of the
Wannier centers in the glassy GexSe1−x systems.

1.35–1.5 Å reveals that the main peak slightly moves at larger
values of r with an increasing concentration of Ge atoms. This
indicates that the ionic character of bonding inside the GeSe4

tetrahedron undergoes a moderate increase for growing Ge

FIG. 8. (Color online) Representative subsets of Ge, Se, and
Wannier centers extracted from the configurations of glassy GexSe1−x

systems. Ge atoms appear in blue, Se atoms in yellow, and Wannier
centers in red. If a bond AB exists between an atom A and an atom
B, the bond is colored as follow: A→AB/2 using the color of atom
A, AB/2→B using the color of atom B.
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composition. Interestingly, this trend is analogous to the one
followed by the dihedral angular excursion, which decreases
for increasing values of x. It appears that smaller standard
deviations of the dihedral angle occur in correspondence to a
larger ionic character, in a way qualitatively consistent with the
higher repulsion between ionic centers bearing predominant
charge distribution of the same sign.

The second broad feature visible in Fig. 6 in between 2.3 and
2.5 Å can be associated to correlations between the Ge atomic
sites and the Wannier centers resulting from the nonbonding
Se electrons located close to the Se sites. These are easily
observable in Fig. 8 when focusing on Ge-Se bonds, as they
appear close to the Se atoms and, conversely, farther apart
from the Ge atoms. At very short distances (smaller than
0.5 Å in the case of GeSe4 and scattered around 0.5 Å for GeSe2

and Ge2Se3) a set of sharp peaks appear in Fig. 6. These peaks
are due to nonbonding electrons lying close to those Ge atoms
being involved in undercoordinated, defective GeSen units.
Examples are given in Fig. 8(b). For all compositions, Fig. 7 is
characterized by a sharp peak at 0.5 Å. This peak is due to the
nonbonding electrons localized around the Se site. The similar
intensity of this peak for all compositions is due to the fact
that these localized electrons do not depend on the number
of Se atoms involved in tetrahedra and can be encountered
also in the vicinity of Se atoms forming Se-made chains. A
second peak of lower intensity is seen to develop at ∼1 Å the
largest intensity being reached for Ge2Se3. This feature can be
correlated to Ge-Se bonds within the tetrahedra, its position
being much smaller than half the the typical Ge-Se bond length
2.35 Å (Fig. 1). In analogy with the analysis developed for the
case of Ge, this value stems from the larger electronegativity
of Se atoms, the centers of the localized orbitals being closer
to Se atoms than to Ge atoms.

Finally, the increase in the number of Se chains with
decreasing x yields the appearance of an additional bump that
becomes clearly visible at 1.2 Å in GeSe4 and GeSe9. This
bump is an indication of covalent Se-Se bonds that begin to
affect the position of the Wannier centers for compositions
lower than GeSe3, this feature being absent for the latter.

V. GESE2 UNDER PRESSURE

We apply the same analysis performed on the angular
motion of GexSe1−x on a densified GeSe2 glass. It is found
that the number of neighbours around the Ge atom is still
four. The neighbor (NDF) peak positions of the first four
neighbors lie within the range 2.3–2.5 Å, clearly separated
from the fifth neighbor peak position found at 3.25 Å. In this
respect, the results on the densified system are very close to
those obtained for the ambient GeSe2 (inset of Fig. 1). Similar
results are found for the Se atoms, with a gap in peak position
found between n = 1 and n = 2 (r = 2.25 Å), and n = 3
(r = 3.1 Å). Integration of the Ge-centered and Se-centered
pair distribution functions gGe(r) and gSe(r) are in agreement
with the latter analysis, and lead to nGe = 4.1 and nSe = 2.04.

Figure 9 shows the 15 Ge-centered and Se-centered dif-
ferent PBADs. First, we remark that the angular environment
around the Ge atom is nearly identical as compared to the
ambient GeSe2, with the relevant distributions still centered at
the tetrahedral angle of 109◦. On the other hand, we find that
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FIG. 9. (Color online) Partial bond angle distributions around Ge
(top) and Se (bottom) for densified GeSe2. The curves in color (six in
the Ge PBAD and one in the Se PBAD) correspond to distributions
with a low standard deviation. The broken red curve in the bottom
panel serves for comparison and represents the 102 distribution of the
ambient GeSe2 glass (same as Fig. 2).

the effect of pressure has substantially modified the bimodal
Se-centered bond angle distribution. In fact, the peak obtained
at 80◦ has almost vanished to become a shoulder of the main
peak at 100◦ that corresponds to corner-sharing tetrahadral
connections. This indicates that the fraction of edge-sharing
tetrahedra has been significantly reduced, consistently with
results from neutron diffraction.54 The latter show that in
the pressure range 0–5 GPa, the network topology is deeply
modified, the number of edge-sharing connections being
severely reduced.

The corresponding standard deviations σGe and σSe are
shown in Fig. 10. While we find that the Se based standard
deviation is weakly sensitive to additional stress arising from
the applied pressure, we obtain an enhanced asymmetric
angular motion for the Ge tetrahedra under pressure. We
remind that the stressed rigid GeSe2 displays six nonequivalent
standard deviation σGe, which contrasts with the symmetric
motion found for flexible and intermediate compositions in
GexSe1−x . The results obtained in densified GeSe2 suggest
that the pressure increases even more the difference between
the six standard deviations. Clearly, the latter represents a
measure of the presence of stress which can be driven either
by composition or by densification under applied pressure.

VI. OXIDES AND CHALCOGENIDES COMPARED

We finally turn to a comparison between stoichiometric
AX2 glasses. In Fig. 2, PBADs have been shown for oxygen
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FIG. 10. (Color online) Standard deviation σGe and σSe extracted
from the partial bond angle distributions (PBAD, Fig. 9) in GeSe2

(black line), and densified GeSe2 (red).

(Ge-O-Ge angle) and germanium (O-Ge-O) in GeO2 and for
selenium (Ge-Se-Ge) in GeSe2. While oxygen displays for the
principal contribution 102 (angle number 1, in red) a broad dis-
tribution centered around the angle θ = 135◦, corresponding
to the one defined by the two closest (Ge) neighbors of oxygen,
secondary distributions 103 and 203 show peaks centered at
around θ � 90◦ and 75◦. Such a distribution contrasts with
the one found for GeSe2 which exhibits a much sharper
distribution for the same 102 contribution, implying reduced
angular excursions as compared to GeO2. Six germanium
centered angles (bottom panel) are found to have almost the
same distribution in GeO2, centered at an angle of 109◦ typical
of the tetrahedral environment.

The behavior of the standard deviations for the PBADs is
shown in Fig. 11. For all chalcogenide or oxide systems, the
PBADs relative to the Group IV (Si, Ge) atom have a low stan-
dard deviation σθ , of the order of 10–20◦, for instance σGe � 7◦
for the PBAD 102 of GeO2. These values are much smaller than
those of the other distributions (105, 106, etc.), found close
at �40◦. In addition to very low angular excursions around
the tetrahedral angle of 109◦ (Fig. 11 top), oxides feature all
σθ nearly equal for the six relevant (Ge, Si) distributions. A
different situation occurs in the stoichiometric chalcogenides
(Fig. 11 bottom, red curve), which exhibit increased bending
for the angles defining the tetrahedra (angle 3: 104, angle 7:
204, etc., as already described). These results exemplify the
difference in the bending nature of the tetrahedra in these
two families of networks, pointing to a higher rigidity of
the tetrahedra in oxides, as all angular excursions are main-
tained at the same low value (typically 7◦).

Angle distributions around the Group VI atoms are
markedly different. Indeed, the selenium standard deviation
σSe of the PBAD 102 is found to be low (11.7◦ for GeSe2)
compared to the corresponding oxide system (26.7◦ for GeO2).
Therefore, the restoring effect associated with bending is much
lower in GeO2, allowing for the identification of a broken
angular constraint. It is worth pointing out that the standard
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FIG. 11. (Color online) Standard deviation σθij
of partial bond

angle distributions (PBADs) in oxides (SiO2, GeO2, top panel) and
chalcogenides (SiSe2, GeSe2, bottom panel) as a function of the angle
number (see definition in Fig. 2).

deviations found around 20◦ are close to those found in high
temperature liquids (18–25◦ at 1373 K for GeSe2), where angu-
lar constraints are assumed to be broken.27,55 By considering
such a bending constraint as broken, the number density of
constraints is reduced to nc = 0.33( 5

2 rA − 3) + 0.67( 5
2 rX −

4) = 3.00 (i.e., oxides are optimally constrained). This result
is correlated with the fact that germania (or silica) have a Ge
(or Si) tetrahedral angular motion which is very similar to
the one found at flexible and intermediate compositions of
the GexSe1−x system (i.e., six equivalent σGe), also indicative
of the absence of stress, as discussed above. Because of its
large fraction of edge-sharing tetrahedra,35 the situation of
SiSe2 appears to be somewhat intermediate with σθ12 = 19.6◦,
resulting from contributions arising from both edge-sharing
and corner-sharing tetrahedra which have ineffective56 and
intact Se bond-bending constraints, respectively. The presence
of six nonequivalent standard deviations in SiSe2 indicates
that this compound is stressed rigid, similarly to GeSe2.
Experimentally, it has been found56 that SiSe2 belongs to the
stressed rigid phase.

VII. SUMMARY AND CONCLUSION

We have shown that structural information gathered from
molecular dynamics is able to provide an atomic-scale counter-
part to phenomenological constraint counting concepts applied
to network glasses. It appears that in such systems, most of the
changes are found in angular motion, leaving the tetrahedral
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character (i.e., the coordination numbers and thus the number
of bond-stretching constraints) of the network unchanged
under increase of stress.

In systems undergoing a rigidity transition such as
GexSe1−x , it is found that the angles defining the GeSe4/2

tetrahedron soften with decreasing Ge weight to accommodate
stress, while the Se angular bending is almost unchanged.
Flexibility along the Se chains is best accounted for in terms of
twisting along the Se chains, found to increase with Se content.
The increase of stress (or Ge content) results in an asymmetric
bending motion inside the tetrahedra which appears once the
system is in the stressed rigid phase, and is even enhanced if
pressure is applied on the system. An analysis from Wannier
functions shows that a moderate increase of the ionic character
inside the GeSe4 tetrahedron is found with growing Ge
content in the GexSe1−x system, which can be correlated
with the decrease of the angular excursion of the dihedral
angle.

When oxide and chalcogenide stoichiometric compositions
are compared, the results show increased bending around
the oxygen atom. This is consistent with a direct Maxwell
constraint counting and the stress-free nature of these glasses,

which also manifests itself by an equivalent bending motion
inside the Ge or Si tetrahedra, a situation also found in
flexible and intermediate glasses. We obtain a clear picture
of the topological differences between systems having the
same composition but different chemical nature and systems
made of the same species but differing in composition. The
differences between glasses (oxides and chalcogenides) of
same stoichiometry are rationalized in terms of amplitude
of the intertetrahedral and intratetrahedral bending angular
variations.

The present approach finally provides a general framework
to substantiate bonding constraints theory concepts via atomic-
scale simulations.
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